Type Systems
Lecture 1

Neel Krishnaswami
University of Cambridge
Type Systems for Programming Languages

- Type systems lead a double life
- They are an essential part of modern programming languages
- They are a fundamental concept from logic and proof theory
- As a result, they form the most important channel for connecting theoretical computer science to practical programming language design.
What are type systems used for?

- Error detection via *type checking*
- Support for structuring large (or even medium) sized programs
- Documentation
- Efficiency
- Safety
A Language of Booleans and Integers

Terms \(e ::= \text{true} | \text{false} | n | e \leq e | e + e | e \land e | \neg e \)

Some terms make sense:

- \(3 + 4\)
- \(3 + 4 \leq 5\)
- \((3 + 4 \leq 7) \land (7 \leq 3 + 4)\)

Some terms don’t:

- \(4 \land \text{true}\)
- \(3 \leq \text{true}\)
- \(\text{true} + 7\)
Types \(\tau \ ::= \) bool | \(\mathbb{N} \)
Terms \(e \ ::= \) true | false | \(n \) | \(e \leq e \) | \(e + e \) | \(e \land e \)

- How to connect term (like 3 + 4) with a type (like \(\mathbb{N} \))?
- Via a *typing judgement* \(e : \tau \)
- A two-place relation saying that “the term \(e \) has the type \(\tau \)”
- So \(_: _ \) is an infix relation symbol
- How do we define this?
Typing Rules

- **Num**: \(n : \mathbb{N} \)
- **True**: \(\text{true} : \text{bool} \)
- **False**: \(\text{false} : \text{bool} \)

\[
\begin{align*}
\frac{e : \mathbb{N} \quad e' : \mathbb{N}}{e + e' : \mathbb{N}} & \quad \text{Plus} \quad \frac{e : \text{bool} \quad e' : \text{bool}}{e \land e' : \text{bool}} & \quad \text{AND} \\
\frac{e : \mathbb{N} \quad e' : \mathbb{N}}{e \leq e' : \text{bool}} & \quad \text{LEQ}
\end{align*}
\]

- Above the line: premises
- Below the line: conclusion
An Example Derivation Tree

\[
\begin{array}{c}
3 : \mathbb{N} \\
\hline
3 + 4 : \mathbb{N} \\
\hline
3 + 4 \leq 5 : \text{bool}
\end{array}
\]
Adding Variables

Types \(\tau ::= \text{bool} \mid \mathbb{N} \)

Terms \(e ::= \ldots \mid x \mid \text{let } x = e \text{ in } e' \)

- Example: \(\text{let } x = 5 \text{ in } (x + x) \leq 10 \)
- But what type should \(x \) have: \(x : ? \)
- To handle this, the typing judgement must know what the variables are.
- So we change the typing judgement to be \(\Gamma \vdash e : \tau \), where \(\Gamma \) associates a list of variables to their types.
Contexts

\[
\text{Contexts } \Gamma ::= \cdot \mid \Gamma, x : \tau
\]

\[
\Gamma \vdash n : \mathbb{N} \quad \Gamma \vdash \text{true} : \text{bool} \quad \Gamma \vdash \text{false} : \text{bool}
\]

\[
\Gamma \vdash e : \mathbb{N} \quad \Gamma \vdash e' : \mathbb{N} \quad \text{Plus} \quad \Gamma \vdash e + e' : \mathbb{N}
\]

\[
\Gamma \vdash e : \text{bool} \quad \Gamma \vdash e' : \text{bool} \quad \text{AND} \quad \Gamma \vdash e \land e' : \text{bool}
\]

\[
\Gamma \vdash e : \mathbb{N} \quad \Gamma \vdash e' : \mathbb{N} \quad \text{LEQ} \quad \Gamma \vdash e \leq e' : \text{bool}
\]

\[
\text{VAR} \quad \Gamma \vdash x : \tau \quad \Gamma, x : \tau \vdash e' : \tau' \quad \text{LET} \quad \Gamma \vdash \text{let } x = e \text{ in } e' : \tau'
\]
We have: a type system, associating elements from one grammar (the terms) with elements from another grammar (the types)

- We *claim* that this rules out “bad” terms
- But does it really?
- To prove, we must show *type safety*
We have introduced variables into our language, so we should introduce a notion of substitution as well

\[
[e/x]\text{true} = \text{true} \\
[e/x]\text{false} = \text{false} \\
[e/x]n = n \\
[e/x](e_1 + e_2) = [e/x]e_1 + [e/x]e_2 \\
[e/x](e_1 \leq e_2) = [e/x]e_1 \leq [e/x]e_2 \\
[e/x](e_1 \land e_2) = [e/x]e_1 \land [e/x]e_2 \\
[e/x]z = \begin{cases}
 e & \text{when } z = x \\
 z & \text{when } z \neq x
\end{cases} \\
[e/x](\text{let } z = e_1 \text{ in } e_2) = \text{let } z = [e/x]e_1 \text{ in } [e/x]e_2 \quad (\ast)
\]

(\ast) α-rename to ensure z does not occur in e!
1. (Weakening) If $\Gamma, \Gamma' \vdash e : \tau$ then $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$. If a term typechecks in a context, then it will still typecheck in a bigger context.

2. (Exchange) If $\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash e : \tau$ then $\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash e : \tau$. If a term typechecks in a context, then it will still typecheck after reordering the variables in the context.

3. (Substitution) If $\Gamma \vdash e : \tau$ and $\Gamma, x : \tau \vdash e' : \tau'$ then $\Gamma \vdash [e/x]e' : \tau'$. Substituting a type-correct term for a variable will preserve type correctness.
A Proof of Weakening

- Proof goes by *structural induction*
- Suppose we have a derivation tree of $\Gamma, \Gamma' \vdash e : \tau$
- By case-analysing the root of the derivation tree, we construct a derivation tree of $\Gamma, x : \tau'', \Gamma' \vdash e : \tau$, assuming inductively that the theorem works on subtrees.
Proving Weakening, 1/4

\[\Gamma, \Gamma' \vdash n : \mathbb{N} \quad \text{By assumption} \]

\[\Gamma, x : \tau'', \Gamma' \vdash n : \mathbb{N} \quad \text{By rule Num} \]

- Similarly for TRUE and FALSE rules
\[\Gamma, \Gamma' \vdash e_1 : \mathbb{N} \quad \Gamma, \Gamma' \vdash e_2 : \mathbb{N} \]
\[\quad \Gamma, \Gamma' \vdash e_1 + e_2 : \mathbb{N} \quad \text{PLUS} \]

By assumption

\[\Gamma, \Gamma' \vdash e_1 : \mathbb{N} \quad \text{Subderivation 1} \]
\[\Gamma, \Gamma' \vdash e_2 : \mathbb{N} \quad \text{Subderivation 2} \]
\[\Gamma, x : \tau'', \Gamma' \vdash e_1 : \mathbb{N} \quad \text{Induction on subderivation 1} \]
\[\Gamma, x : \tau'', \Gamma' \vdash e_2 : \mathbb{N} \quad \text{Induction on subderivation 2} \]
\[\Gamma, x : \tau'', \Gamma' \vdash e_1 + e_2 : \mathbb{N} \quad \text{By rule PLUS} \]

- Similarly for LEQ and AND rules
Proving Weakening, 3/4

\[
\Gamma, \Gamma' \vdash e_1 : \tau_1 \quad \Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2
\]

\[
\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2 \quad \text{LET}
\]

By assumption

\[
\Gamma, \Gamma' \vdash e_1 : \tau_1
\]

Subderivation 1

\[
\Gamma, \Gamma', z : \tau_1 \vdash e_2 : \tau_2
\]

Subderivation 2

\[
\Gamma, x : \tau'', \Gamma' \vdash e_1 : \tau_1
\]

Induction on subderivation 1

Extended context

\[
\Gamma, x : \tau'', \quad \Gamma', z : \tau_1 \quad \vdash e_2 : \mathbb{N}
\]

Induction on subderivation 2

\[
\Gamma, x : \tau'', \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2
\]

By rule LET
Proving Weakening, 4/4

\[
\frac{z : \tau \in \Gamma, \Gamma'}{\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2} \quad \text{VAR}
\]

By assumption

\[
z : \tau \in \Gamma, \Gamma'
\]

By assumption

\[
z : \tau \in \Gamma, x : \tau'', \Gamma'
\]

An element of a list is also in a bigger list

\[
\Gamma, x : \tau'', \Gamma' \vdash z : \tau
\]

By rule VAR
By assumption

\[\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \vdash n : \mathbb{N} \]

By rule \texttt{Num}

\[\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash n : \mathbb{N} \]

• Similarly for \texttt{TRUE} and \texttt{FALSE} rules
\[
\begin{align*}
\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1 : \mathbb{N} & \quad \Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_2 : \mathbb{N} \\
\Gamma, \Gamma' \vdash e_1 + e_2 : \mathbb{N}
\end{align*}
\]

By assumption

\[
\begin{align*}
\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_1 : \mathbb{N} & \quad \text{Subderivation 1} \\
\Gamma, x_1: \tau_1, x_2: \tau_2, \Gamma' \vdash e_2 : \mathbb{N} & \quad \text{Subderivation 2} \\
\Gamma, x_2: \tau_2, x_1: \tau_1, ., \Gamma' \vdash e_1 : \mathbb{N} & \quad \text{Induction on subderivation 1} \\
\Gamma, x_2: \tau_2, x_1: \tau_1, ., \Gamma' \vdash e_2 : \mathbb{N} & \quad \text{Induction on subderivation 2} \\
\Gamma, x_2: \tau_2, x_1: \tau_1, ., \Gamma' \vdash e_1 + e_2 : \mathbb{N} & \quad \text{By rule PLUS}
\end{align*}
\]

• Similarly for LEQ and AND rules
\[
\begin{align*}
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' & \vdash e_1 : \tau' \\
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma', z : \tau' & \vdash e_2 : \tau_2
\end{align*}
\]
\[
\Gamma, \Gamma' \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2 \quad \text{LET}
\]

By assumption

\[
\begin{align*}
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' & \vdash e_1 : \tau' \\
\Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma', z : \tau' & \vdash e_2 : \tau_2
\end{align*}
\]
Subderivation 1
Subderivation 2

\[
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash e_1 : \tau_1
\]
Induction on s.d. 1

Extended context

\[
\begin{align*}
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' & \vdash e_2 : \mathbb{N} \\
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' & \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2
\end{align*}
\]
Induction on s.d. 2
By rule LET
\[
\frac{z : \tau \in \Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma'}{
\Gamma, \Gamma' \vdash z : \tau}
\]

By assumption

\[
z : \tau \in \Gamma, x_1 : \tau_1, x_2 : \tau_2, \Gamma' \\
z : \tau \in \Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \\
\Gamma, x_2 : \tau_2, x_1 : \tau_1, \Gamma' \vdash z : \tau
\]

By assumption

An element of a list is also in a permutation of the list

By rule VAR
A Proof of Substitution

• Proof also goes by *structural induction*

• Suppose we have derivation trees $\Gamma \vdash e : \tau$ and $\Gamma, x : \tau \vdash e' : \tau'$.

• By case-analysing the root of the derivation tree of $\Gamma, x : \tau \vdash e' : \tau'$, we construct a derivation tree of $\Gamma \vdash [e/x]e' : \tau'$, assuming inductively that substitution works on subtrees.
Substitution 1/4

\[\Gamma, x : \tau \vdash n : \mathbb{N} \quad \text{By assumption} \]
\[\Gamma \vdash e : \tau \quad \text{By assumption} \]
\[\Gamma \vdash n : \mathbb{N} \quad \text{By rule Num} \]
\[\Gamma \vdash [e/x]n : \mathbb{N} \quad \text{Def. of substitution} \]

- Similarly for TRUE and FALSE rules
\[
\begin{align*}
\Gamma, x : \tau & \vdash e_1 : \mathbb{N} \quad \Gamma, x : \tau & \vdash e_2 : \mathbb{N} \\
\Gamma, x : \tau & \vdash e_1 + e_2 : \mathbb{N}
\end{align*}
\]

By assumption: (1)

\[
\Gamma \vdash e : \tau
\]

By assumption: (2)

\[
\Gamma, x : \tau \vdash e_1 : \mathbb{N} \\
\Gamma, x : \tau \vdash e_2 : \mathbb{N} \\
\Gamma \vdash [e/x]e_1 : \mathbb{N} \\
\Gamma \vdash [e/x]e_2 : \mathbb{N} \\
\Gamma \vdash [e/x]e_1 + [e/x]e_2 : \mathbb{N} \\
\Gamma \vdash [e/x](e_1 + e_2) : \mathbb{N}
\]

Subderivation of (1): (3)
Subderivation of (1): (4)
Induction on (2), (3): (5)
Induction on (2), (4): (6)
By rule PLUS on (5), (6)
Def. of substitution

• Similarly for LEQ and AND rules
\[\Gamma, x : \tau \vdash e_1 : \tau' \quad \Gamma, x : \tau, z : \tau' \vdash e_2 : \tau_2 \]

\[\Gamma, x : \tau \vdash \text{let } z = e_1 \text{ in } e_2 : \tau_2 \quad \text{LET} \]

By assumption: (1)

\(\Gamma \vdash e : \tau \)

By assumption: (2)

Subderivation of (1): (3)

\(\Gamma, x : \tau \vdash e_1 : \tau' \)

Subderivation of (1): (4)

\(\Gamma, x : \tau, z : \tau' \vdash e_2 : \tau_2 \)

Induction on (2) and (3): (4)

\(\Gamma \vdash [e/x]e_1 : \tau' \)

Induction on (2) and (3): (4)

\(\Gamma, z : \tau' \vdash e : \tau \)

Weakening on (2): (5)

\(\Gamma, z : \tau', x : \tau \vdash e_2 : \tau_2 \)

Exchange on (4): (6)

\(\Gamma, z : \tau' \vdash [e/x]e_2 : \tau_2 \)

Induction on (5) and (6): (7)

\(\Gamma \vdash \text{let } z = [e/x]e_1 \text{ in } [e/x]e_2 : \tau_2 \)

By rule LET on (6), (7)

\(\Gamma \vdash [e/x](\text{let } z = e_1 \text{ in } e_2) : \tau_2 \)

By def. of substitution
Proving Substitution, 4a/4

\[z : \tau' \in \Gamma, x : \tau \]
\[\frac{}{\Gamma, x : \tau \vdash z : \tau'} \quad \text{VAR} \]

\[\Gamma \vdash e : \tau \quad \text{By assumption} \]

\[\text{Case } x = z: \]
\[\Gamma \vdash [e/x]x : \tau \quad \text{By def. of substitution} \]
\[
\begin{align*}
 &z : \tau' \in \Gamma, x : \tau \\
 &\Gamma, x : \tau \vdash z : \tau' \quad \text{VAR} \\
 &\Gamma \vdash e : \tau \\
 &\Gamma \vdash e : \tau \\
 &\text{Case } x \neq z : \\
 &z : \tau' \in \Gamma \\
 &\Gamma, z : \tau' \vdash z : \tau' \quad \text{since } x \neq z \text{ and } z : \tau' \in \Gamma, x : \tau \\
 &\Gamma, z : \tau' \vdash [e/x]z : \tau' \quad \text{By rule VAR} \\
 &\Gamma, z : \tau' \vdash [e/x]z : \tau' \quad \text{By def. of substitution}
\end{align*}
\]
Operational Semantics

- We have a language and type system
- We have a proof of substitution
- How do we say what value a program computes?
- With an operational semantics
- Define a grammar of values
- Define a two-place relation on terms $e \leadsto e'$
- Pronounced as “e steps to e'”
An operational semantics

Values \(v \ ::= \ n \mid \text{true} \mid \text{false} \)

\[
\begin{align*}
e_1 \leadsto e'_1 & \quad \text{ANDCONG} \\
e_1 \land e_2 \leadsto e'_1 \land e_2 & \\
\text{true} \land e \leadsto e & \quad \text{ANDTRUE} \\
\text{false} \land e \leadsto \text{false} & \quad \text{ANDFALSE}
\end{align*}
\]

(similar rules for \(\leq \) and \(+\))

\[
\begin{align*}
e_1 \leadsto e'_1 & \quad \text{LETCONG} \\
\text{let } z = e_1 \text{ in } e_2 \leadsto \text{let } z = e'_1 \text{ in } e_2 & \\
\text{let } z = v \text{ in } e_2 \leadsto [v/z]e_2 & \quad \text{LETSTEP}
\end{align*}
\]
Reduction Sequences

- A *reduction sequence* is a sequence of transitions $e_0 \sim e_1$, $e_1 \sim e_2$, ..., $e_{n-1} \sim e_n$.

- A term e is *stuck* if it is not a value, and there is no e' such that $e \sim e'$

<table>
<thead>
<tr>
<th>Successful sequence</th>
<th>Stuck sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(3 + 4) \leq (2 + 3)$</td>
<td>$(3 + 4) \land (2 + 3)$</td>
</tr>
<tr>
<td>$\sim 7 \leq (2 + 3)$</td>
<td>$\sim 7 \land (2 + 3)$</td>
</tr>
<tr>
<td>$\sim 7 \leq 5$</td>
<td>$\sim ???$</td>
</tr>
<tr>
<td>$\sim \text{false}$</td>
<td></td>
</tr>
</tbody>
</table>

Stuck terms are erroneous programs with no defined behaviour.
A program is *safe* if it never gets stuck.

1. (Progress) If $\vdash e : \tau$ then either e is a value, or there exists e' such that $e \leadsto e'$.
2. (Preservation) If $\vdash e : \tau$ and $e \leadsto e'$ then $\vdash e' : \tau$.

- Progress means that well-typed programs are not stuck: they can always take a step of progress (or are done).
- Preservation means that if a well-typed program takes a step, it will stay well-typed.
- So a well-typed term won’t reduce to a stuck term: the final term will be well-typed (due to preservation), and well-typed terms are never stuck (due to progress).
(Progress) If $\vdash e : \tau$ then either e is a value, or there exists e' such that $e \leadsto e'$.

- To show this, we do structural induction on the derivation of $\vdash e : \tau$.
- For each typing rule, we show that either e is a value, or can step.
Progress: Values

\[
\text{\underline{Num}} \quad \text{\underline{\scriptsize{Def. of value grammar}}}
\]

\[
\vdash n : \mathbb{N} \quad \text{By assumption}
\]

\[
n \text{ is a value} \quad \text{Def. of value grammar}
\]

Similarly for boolean literals...
Progress: Let-bindings

\[
\text{\textbf{LET}} \quad \frac{\cdot \vdash e_1 : \tau \quad x : \tau \vdash e_2 : \tau'}{\cdot \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'}
\]

By assumption: (1)

Subderivation of (1): (2)

Subderivation of (1): (3)

\(e_1 \leadsto e'_1 \text{ or } e_1 \text{ value}\)

Induction on (2)

Case \(e_1 \leadsto e'_1:\)

\[\text{let } x = e_1 \text{ in } e_2 \leadsto \text{let } x = e'_1 \text{ in } e_2\]

By rule \text{LETCONG}

Case \(e_1 \text{ value}:\)

\[\text{let } x = e_1 \text{ in } e_2 \leadsto [e_1/x]e_2\]

By rule \text{LETSTEP}
(Preservation) If $\vdash e : \tau$ and $e \sim e'$ then $\vdash e' : \tau$.

1. We will use structural induction again, but on which derivation?
2. Two choices: (1) $\vdash e : \tau$ and (2) $e \sim e'$
3. The right choice is induction on $e \sim e'$
4. We will still need to deconstruct $\vdash e : \tau$ alongside it!
Type Preservation: Let Bindings 1

\[
\frac{e_1 \sim e'_1}{\text{let } x = e_1 \text{ in } e_2 \sim \text{let } x = e'_1 \text{ in } e_2}
\]

By assumption: (1)

\[
\begin{align*}
\cdot & \vdash e_1 : \tau \\
\cdot & x : \tau \vdash e_2 : \tau' \\
\cdot & \vdash \text{let } x = e_1 \text{ in } e_2 : \tau'
\end{align*}
\]

By assumption: (2)

\[
\begin{align*}
e_1 & \sim e'_1 \\
\cdot & \vdash e_1 : \tau \\
x & : \tau \vdash e_2 : \tau' \\
\cdot & \vdash e'_1 : \tau \\
\cdot & \vdash \text{let } x = e'_1 \text{ in } e_2 : \tau'
\end{align*}
\]

Subderivation of (1): (3)
Subderivation of (2): (4)
Subderivation of (2): (5)
Induction on (3), (4): (6)
Rule LET on (6), (4)
Type Preservation: Let Bindings 2

\[
\text{let } x = v_1 \text{ in } e_2 \sim [v_1/x]e_2 \quad \text{By assumption: (1)}
\]

\[
\begin{align*}
\cdot & \vdash v_1 : \tau \\
\cdot & \vdash x : \tau \vdash e_2 : \tau' \\
\cdot & \vdash \text{let } x = v_1 \text{ in } e_2 : \tau' \\
\end{align*}
\quad \text{By assumption: (2)}
\]

\[
\begin{align*}
\cdot & \vdash v_1 : \tau \\
\cdot & \vdash x : \tau \vdash e_2 : \tau' \\
\cdot & \vdash [v_1/x]e_2 : \tau' \\
\end{align*}
\quad \text{Subderivation of (2): (3)}
\]

\[
\begin{align*}
\cdot & \vdash v_1 : \tau \\
\cdot & \vdash x : \tau \vdash e_2 : \tau' \\
\cdot & \vdash [v_1/x]e_2 : \tau' \\
\end{align*}
\quad \text{Substitution on (3), (4)}
\]
Given a language of program terms and a language of types:

- A type system ascribes types to terms
- An operational semantics describes how terms evaluate
- A type safety proof connects the type system and the operational semantics
- Proofs are intricate, but not difficult
Exercises

1. Give cases of the operational semantics for \leq and \circ.
2. Extend the progress proof to cover $e \land e'$.
3. Extend the preservation proof to cover $e \land e'$.

(This should mostly be review of IB *Semantics of Programming Languages.*)