Topics in Concurrency
Lecture 8

Glynn Winskel

18 February 2020
Petri nets

- Introduced in 1962 (though claimed to have been invented by 1939)
- Starting point: think of a transition system where a number of processes can be in a given state and then allow coordination
- **Conditions**: local components of state
- **Events**: transitions and coordination
- Allows study of *concurrency* of events, reasoning about *causal dependency* and how the action of one process might *conflict* with that of another
- The first of a range of models: event structures, Mazurkiewicz trace languages, asynchronous transition systems, . . .
- Many variants with different algorithmic properties and expressivity
\(\infty\)-multisets

Multisets generalise sets by allowing elements to occur some number of times. \(\infty\)-multisets generalise further by allowing infinitely many occurrences.

\[\omega^\infty = \omega \cup \{\infty\}\]

Extend addition:

\[n + \infty = \infty \quad \text{for } n \in \omega^\infty\]

Extend subtraction

\[\infty - n = \infty \quad \text{for } n \in \omega\]

Extend order:

\[n \leq \infty \quad \text{for } n \in \omega^\infty\]

An \(\infty\)-multiset over a set \(X\) is a function

\[f : X \to \omega^\infty\]

It is a multiset if \(f : X \to \omega\).
Operations on ∞-multisets

- \(f \leq g \) iff \(\forall x \in X. f(x) \leq g(x) \)
- \(f + g \) is the \(\infty \)-multiset such that
 \[
 \forall x \in X. (f + g)(x) = f(x) + g(x)
 \]
- For \(g \) a multiset such that \(g \leq f \),
 \[
 \forall x \in X. (f - g)(x) = f(x) - g(x)
 \]
General Petri nets

A general Petri net consists of

- a set of conditions P
- a set of events T
- a pre-condition map assigning to each event t a multiset of conditions $\cdot t$
- a post-condition map assigning to each event t an ∞-multiset of conditions t^\cdot
- a capacity map Cap an ∞-multiset of conditions, assigning a capacity in ω^∞ to each condition
A marking is an ∞-multiset \mathcal{M} such that

$$\mathcal{M} \leq \text{Cap}$$

giving how many tokens are in each condition.

The token game:

For $\mathcal{M}, \mathcal{M}'$ markings, t an event:

$$\mathcal{M} \xrightarrow{t} \mathcal{M}' \quad \text{iff} \quad t \leq \mathcal{M} \quad \& \quad \mathcal{M}' = \mathcal{M} - t + \bullet t$$

An event t has concession (is enabled) at \mathcal{M} iff

$$t \leq \mathcal{M} \quad \& \quad \mathcal{M} - \bullet t + \bullet t \leq \text{Cap}$$
Further examples
Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

- a set of conditions B
- a set of events E
- a pre-condition map assigning a subset of conditions $\bullet e$ to any event e
- a post-condition map assigning a subset of conditions e^\bullet to any event e such that

$$\bullet e \cup e^\bullet \neq \emptyset$$

The capacity of any condition is implicitly taken to be 1:

$$\forall b \in B : \ Cap(b) = 1$$

A marking \mathcal{M} is now a subset of conditions.

$$\mathcal{M} \xrightarrow{e} \mathcal{M}' \iff \bullet q \subseteq \mathcal{M} \quad \& \quad (\mathcal{M} \setminus \bullet e) \cap e^\bullet = \emptyset$$

$$\quad \& \quad \mathcal{M}' = (\mathcal{M} \setminus \bullet e) \cup e^\bullet$$
Concepts

Concurrency

Forwards conflict

Backwards conflict

Contact
Persistent conditions

Between basic and general nets, conditions can be introduced that when they hold persist thereafter. Useful for modelling broadcast messages.

\[M \xrightarrow{e} M' \text{ iff } \bullet e \subseteq M \land (e^\bullet \cap (M \setminus (\text{Persistent} \cup \bullet e))) = \emptyset \land M' = (M \setminus \bullet e) \cup e^\bullet \cup (M \cap \text{Persistent}) \]
Persistent conditions

Between basic and general nets, conditions can be introduced that when they hold persist thereafter. Useful for modelling broadcast messages.

\[M \xrightarrow{e} M' \iff \bullet e \subseteq M \land (e\bullet \cap (M \setminus (\text{Persistent} \cup \bullet e))) = \emptyset \land M' = (M \setminus \bullet e) \cup e\bullet \cup (M \cap \text{Persistent}) \]
Persistent conditions

Between basic and general nets, conditions can be introduced that when they hold persist thereafter. Useful for modelling broadcast messages.

\[M \xrightarrow{e} M' \quad \text{iff} \quad \bullet e \subseteq M \land (e^* \cap (M \setminus (\text{Persistent} \cup \bullet e))) = \emptyset \land M' = (M \setminus \bullet e) \cup e^* \cup (M \cap \text{Persistent}) \]
Persistent conditions

Between basic and general nets

conditions can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages

\[M \xrightarrow{e} M' \quad \text{iff} \quad \bullet e \subseteq M \& (e^\bullet \cap (M \setminus (\text{Persistent} \cup \bullet e))) = \emptyset \& M' = (M \setminus \bullet e) \cup e^\bullet \cup (M \cap \text{Persistent}) \]
Persistent conditions

Between basic and general nets

conditions can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages

\[M \xrightarrow{e} M' \text{ iff } \bullet e \subseteq M \land (e^* \cap (M \setminus (\text{Persistent} \cup \bullet e))) = \emptyset \]
\[\land M' = (M \setminus \bullet e) \cup e^* \cup (M \cap \text{Persistent}) \]
Between basic and general nets

conditions can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages

\[M \xrightarrow{e} M' \iff \bullet e \subseteq M \land (e^* \cap (M \setminus (\text{Persistent} \cup \bullet e))) = \emptyset \land M' = (M \setminus \bullet e) \cup e^* \cup (M \cap \text{Persistent}) \]
Persistent conditions

Between basic and general nets

conditions can be introduced that when they hold persist thereafter

Useful for modelling broadcast messages

\[M \xrightarrow{e} M' \iff \bullet e \subseteq M \land (e^\bullet \cap (M \setminus (Persistent \cup \bullet e))) = \emptyset \land M' = (M \setminus \bullet e) \cup e^\bullet \cup (M \cap Persistent) \]
Modelling cryptographic protocols and event-based reasoning
Cryptographic protocols

- Protocols that use cryptosystems to achieve some security goal across a distributed network
- Difficult and important to get right
- Security properties are subtle and hard to express
- Must reason about processes in an adverse environment:
 - Asynchronous communication
 - Dolev-Yao attacker (idealised cryptographic primitives)

⇝ a language to represent protocols
- with a Petri net semantics
- Analysis based on causal dependency: event-based reasoning
Public-key cryptography:

- for each entity/participant/agent A, there is a key $Pub(A)$ and a key $Priv(A)$.
- $Pub(A)$ is intended to be known by everybody: it is public
- $Priv(A)$ is intended to be known only by A: it is private
- Any agent can encrypt using a key that it knows
- To decrypt a message encrypted under $Pub(A)$ it is necessary to know $Priv(A)$
- To decrypt a message encrypted under $Priv(A)$ it is necessary to know $Pub(A)$

Will also allow symmetric keys e.g. $Key(A, B)$.
The goal of the NSL protocol: two agents use public-key cryptography to ensure

- **authentication**: For A as the initiator: upon completion of the protocol, A can demonstrate that B generated the messages that A received following the protocol in response to A’s request

- **shared secret**: if two entities complete the protocol with each other, at the end they both know a value not known to any potential attacker (e.g. to be used in more efficient symmetric-key cryptographic operations)

Formally, the correctness properties are subtle (e.g. what if B chose to release its private key?)
The protocol

(1) A \rightarrow B: $\{m, A\}_{Pub(B)}$
(2) B \rightarrow A: $\{m, n, B\}_{Pub(A)}$
(3) A \rightarrow B: $\{n\}_{Pub(B)}$

- m and n are nonces: randomly-generated (very) long integers
- Only B can decrypt the message sent in (1)
- A knows that only B can have sent the message in (2)
- B knows that only A can have sent the message in (1)
- the nonces m and n are shared secrets

But these properties are informal and approximate, and we’ve only described what’s *supposed* to happen . . .
The original protocol

Original protocol introduced by Needham and Schröder in 1978 contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker E *convinces* A *to start communication with* E *and uses the messages generated by* A *to follow the protocol with* B, *posing as* A.

\[
\text{A} \rightarrow \text{B} : \{m, A\}_{Pub(B)}
\]

\[
\text{B} \rightarrow \text{A} : \{m, n\}_{Pub(A)}
\]

\[
\text{A} \rightarrow \text{B} : \{n\}_{Pub(B)}
\]
The original protocol

Original protocol introduced by Needham and Schröder in 1978 contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker E convinces A to start communication with E and uses the messages generated by A to follow the protocol with B, posing as A.

\[
\begin{align*}
A & \rightarrow B : \{m, A\}_{Pub(B)} \\
E & \rightarrow \bullet : \{m, A\}_{Pub(E)} \\
B & \rightarrow A : \{m, n\}_{Pub(A)} \\
A & \rightarrow B : \{n\}_{Pub(B)}
\end{align*}
\]
The original protocol

Original protocol introduced by Needham and Schröder in 1978 contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker \(E \) **convinces** \(A \) **to start communication with** \(E \) **and uses the messages generated by** \(A \) **to follow the protocol with** \(B \), **posing as** \(A \).

\[
\begin{align*}
A &\rightarrow B : \{m, A\}_{Pub(B)} \\
E &\rightarrow A : \{m, A\}_{Pub(E)} \\
B &\rightarrow A : \{m, n\}_{Pub(A)} \\
A &\rightarrow B : \{n\}_{Pub(B)}
\end{align*}
\]
The original protocol

Original protocol introduced by Needham and Schröder in 1978 contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

M-man-in-the-middle attacker E *convinces* A *to start communication with* E *and uses the messages generated by* A *to follow the protocol with* B, *posing as* A.

```
A → B : \{m, A\}_{Pub(B)}
```

```
B → A : \{m, n\}_{Pub(A)}
```

```
A → B : \{n\}_{Pub(B)}
```
The original protocol

Original protocol introduced by Needham and Schröder in 1978 contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker E *convinces* A *to start communication with* E *and uses the messages generated by* A *to follow the protocol with* B, *posing as* A.

\[
\begin{align*}
A &\rightarrow B : \{m, A\}_{\text{Pub}(B)} \\
B &\rightarrow A : \{m, n\}_{\text{Pub}(A)} \\
A &\rightarrow B : \{n\}_{\text{Pub}(B)}
\end{align*}
\]
The original protocol

Original protocol introduced by Needham and Schröder in 1978 contained a flaw revealed (and fixed) by Lowe in 1995 [using CSP]:

Man-in-the-middle attacker E **convinces** A **to start communication with** E **and uses the messages generated by** A **to follow the protocol with** B, **posing as** A.

\[
A \rightarrow B : \{m, A\}_{Pub(B)} \\
B \rightarrow A : \{m, n\}_{Pub(A)} \\
A \rightarrow B : \{n\}_{Pub(B)}
\]

\[
E \rightarrow A : \{m, A\}_{Pub(E)} \\
B \rightarrow A : \{m, A\}_{Pub(B)} \\
E \rightarrow B : \{n\}_{Pub(E)} \\
B \rightarrow E : \{n\}_{Pub(B)}
\]
We take an infinite set of names

\[\text{Names} = \{m, n, \ldots, A, B, \ldots\} \]

with name variables

\[x, y, \ldots, X, Y \]

Messages shall be ranged over by message variables

\[\psi, \psi', \psi_1, \ldots \]

Indices shall be used to identify components of parallel compositions

\[i \in \text{Indices} \]

Messages can contain free variables \(\leadsto \) messages as patterns on input
SPL syntax

Name expressions \(v :: = n | A | \ldots | x | X \)

Key expressions \(K :: = Pub(v) | Priv(v) | Key(v, v') \)

Messages \(M :: = \psi | v | k | M_1, M_2 | \{ M \}_k \)

Processes \(p :: = \) out new \(\vec{x} M.p \) in pat \(\neg x \vec{\psi} M.p \) \(||_{i \in I} p_i \)
Conventions

- out $M.p$ where the list of new variables is empty
- in $M.p$ where the lists of name and message variables are precisely the free name and message variables in M
- nil is the empty parallel composition, which may be freely omitted
- use infix notation for finite parallel composition: $p_1 \parallel p_2$ is $\parallel_{i\in\{1,2\}} p_i$
- replication of a process $!p$ is $\parallel_{i\in\omega} p$