Topics in Concurrency Lecture 7

Glynn Winskel

6 February 2020

- Introduced in 1962 (though claimed to have been invented by 1939)
- Starting point: think of a transition system where a number of processes can be in a given state and then allow coordination
- Conditions: local components of state
- Events: transitions and coordination
- Allows study of concurrency of events, reasoning about causal dependency and how the action of one process might conflict with that of another
- The first of a range of models: event structures, Mazurkiewicz trace languages, asynchronous transition systems, ...
- Many variants with different algorithmic properties and expressivity

∞ -multisets

Multisets generalise sets by allow elements to occur some number of times. ∞ -multisets generalise further by allowing infinitely many occurrences.

$$\omega^{\infty} = \omega \cup \{\infty\}$$

Extend addition:

 $n + \infty = \infty$ for $n \in \omega^{\infty}$

Extend subtraction

 $\infty - n = \infty$ for $n \in \omega$

Extend order:

 $n \leq \infty$ for $n \in \omega^{\infty}$

An ∞ -multiset over a set X is a function

 $f:X\to\omega^\infty$

It is a multiset if $f: X \to \omega$.

- $f \leq g$ iff $\forall x \in X.f(x) \leq g(x)$
- f + g is the ∞ -multiset such that

$$\forall x \in X. \ (f+g)(x) = f(x) + g(x)$$

• For g a multiset such that $g \leq f$,

$$\forall x \in X. \ (f-g)(x) = f(x) - g(x)$$

General Petri nets

A general Petri net consists of

- a set of conditions P
- a set of events T
- a pre-condition map assigning to each event t a multiset of conditions •t

 a post-condition map assigning to each event t an ∞-multiset of conditions t[•]

a capacity map Cap an ∞-multiset of conditions, assigning a capacity in ω[∞] to each condition

Dynamics

A marking is an $\infty\text{-multiset}\ \mathcal{M}$ such that

 $\mathcal{M} \leq \textit{Cap}$

giving how many tokens are in each condition.

The token game:

For $\mathcal{M}, \mathcal{M}'$ markings, t an event: $\mathcal{M} \xrightarrow{t} \mathcal{M}'$ iff ${}^{\bullet}t \leq \mathcal{M} \quad \& \quad \mathcal{M}' = \mathcal{M} - {}^{\bullet}t + t^{\bullet}$

An event t has concession (is enabled) at \mathcal{M} iff

•
$$t \leq \mathcal{M}$$
 & $\mathcal{M} - {}^{\bullet}t + t^{\bullet} \leq Cap$

Further examples

Basic Petri nets

Often don't need multisets and can just consider sets.

A basic net consists of

- a set of conditions B
- a set of events E
- a pre-condition map assigning a subset of conditions •e to any event e
- a post-condition map assigning a subset of conditions e[•] to any event e such that

 $e \cup e \neq \emptyset$

The capacity of any condition is implicitly taken to be 1:

 $\forall b \in B : Cap(b) = 1$

A marking \mathcal{M} is now a subset of conditions.

Concepts

• Contact occurs in marking M if there exists an event e such that

$$\bullet e \subseteq M \qquad (M \smallsetminus \bullet e) \cap e^{\bullet} \neq \emptyset$$

• A basic net is safe if there is no marking reachable from the initial marking in which contact occurs.

A safe Petri net semantics for CCS can be constructed by 'surgery' on the nets:

- Nil process
- Prefixing
- *p* + *q*
- p || q