Topics in Concurrency

Lecture 7

Glynn Winskel

11 February 2020
Petri nets

- Introduced in 1962 (though claimed to have been invented by 1939)
- Starting point: think of a transition system where a number of processes can be in a given state and then allow coordination
- **Conditions**: local components of state
- **Events**: transitions and coordination
- Allows study of concurrency of events, reasoning about causal dependency and how the action of one process might conflict with that of another
- The first of a range of models: event structures, Mazurkiewicz trace languages, asynchronous transition systems, . . .
- Many variants with different algorithmic properties and expressivity
$\omega^\infty = \omega \cup \{\infty\}$

Extend addition:

\[n + \infty = \infty \quad \text{for } n \in \omega^\infty \]

Extend subtraction

\[\infty - n = \infty \quad \text{for } n \in \omega \]

Extend order:

\[n \leq \infty \quad \text{for } n \in \omega^\infty \]

An ∞-multiset over a set X is a function

\[f : X \to \omega^\infty \]

It is a multiset if $f : X \to \omega$.

ω^∞-multisets
Operations on ∞-multisets

- $f \leq g$ iff $\forall x \in X. f(x) \leq g(x)$
- $f + g$ is the ∞-multiset such that
 \[
 \forall x \in X. (f + g)(x) = f(x) + g(x)
 \]
- For g a multiset such that $g \leq f$,
 \[
 \forall x \in X. (f - g)(x) = f(x) - g(x)
 \]
General Petri nets

A general Petri net consists of

- a set of conditions \(P \)
- a set of events \(T \)
- a pre-condition map assigning to each event \(t \) a multiset of conditions \(\bullet t \)
- a post-condition map assigning to each event \(t \) an \(\infty \)-multiset of conditions \(t\bullet \)
- a capacity map \(\text{Cap} \) an \(\infty \)-multiset of conditions, assigning a capacity in \(\omega^\infty \) to each condition
A marking is an ∞-multiset M such that

\[M \leq \text{Cap} \]

giving how many tokens are in each condition.

The token game:

For M, M' markings, t an event:

\[M \xrightarrow{t} M' \quad \text{iff} \quad \bullet t \leq M \quad \& \quad M' = M - \bullet t + t\bullet \]

An event t has concession (is enabled) at M iff

\[\bullet t \leq M \quad \& \quad M - \bullet t + t\bullet \leq \text{Cap} \]
Further examples

1. Cap: 5
 - 1

2. Cap: 5
 - 2
 - 1

3. Cap: 5
 - 2
 - 2

4. Cap: 5
 - 2
 - 2
Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

- a set of conditions B
- a set of events E
- a pre-condition map assigning a subset of conditions $\cdot e$ to any event e
- a post-condition map assigning a subset of conditions e^\bullet to any event e such that

$$\cdot e \cup e^\bullet \neq \emptyset$$

The capacity of any condition is implicitly taken to be 1:

$$\forall b \in B : \text{Cap}(b) = 1$$

A marking \mathcal{M} is now a subset of conditions.

$$\mathcal{M} \stackrel{e}{\rightarrow} \mathcal{M}' \quad \text{iff} \quad \cdot e \subseteq \mathcal{M} \quad \& \quad (\mathcal{M} \setminus \cdot e) \cap e^\bullet = \emptyset$$

$$\quad \& \quad \mathcal{M}' = (\mathcal{M} \setminus \cdot e) \cup e^\bullet$$
Concepts

Congruency

Forwards conflict

Backwards conflict

Contact
Safe nets

- Contact occurs in marking M if there exists an event e such that
 $$\cdot e \subseteq M \quad (M \setminus \cdot e) \cap e^\bullet \neq \emptyset$$

- A basic net is safe if there is no marking reachable from the initial marking in which contact occurs.
A safe Petri net semantics for CCS can be constructed by ‘surgery’ on the nets:

- Nil process
- Prefixing
- $p + q$
- $p \parallel q$