Topics in Concurrency
Lectures 6

Glynn Winskel

6 February 2020
CTL: Computation tree logic

A logic based on paths

\[A ::= \text{At} \mid A_0 \land A_1 \mid A_0 \lor A_1 \mid \neg A \mid T \mid F \mid \text{EX } A \mid \text{EG } A \mid E[A_0 \cup A_1] \]

A path from state \(s \) is a maximal sequence of states

\[\pi = (\pi_0, \pi_1, \ldots, \pi_i \ldots) \]

such that \(s = \pi_0 \) and \(\pi_i \rightarrow \pi_{i+1} \) for all \(i \).

\(s \models \text{EX } A \) iff Exists a path from \(s \) along which the next state satisfies \(A \)

\(s \models \text{EG } A \) iff Exists a path from \(s \) along which Globally each state satisfies \(A \)

\(s \models E[A \cup B] \) iff Exists a path from \(s \) along which \(A \) holds Until \(B \) holds
Derived assertions

\[AX \ B \equiv \neg EX \neg B \]
\[EF \ B \equiv E[T U B] \]
\[AG \ B \equiv \neg EF \neg B \]
\[AF \ B \equiv \neg EG \neg B \]
\[A[B U C] \equiv \neg E[\neg C U \neg B \land \neg C] \land \neg EG \neg C \]

The *Until* operator is strict
Want a modal-\(\mu\) assertion equivalent to \(\text{EG } A\).

Begin by writing a fixed point equation:

\[X = \varphi(X) \quad \text{where} \quad \varphi(X) = A \land (\neg F \lor \langle \rangle X) \]

Least or greatest fixed point? Consider:

\[\mu X. A \land (\neg F \lor \langle \rangle X) = \emptyset \]
\[\nu X. A \land (\neg F \lor \langle \rangle X) = \{s, t\} \]

Alternatively, consider the approximants for finite-state systems.
A translation into modal-μ

\[
\begin{align*}
\text{EX} \ a & \equiv \langle - \rangle A \\
\text{EG} \ a & \equiv \nu Y.A \land ([-]F \lor \langle - \rangle Y) \\
E[a \lor b] & \equiv \mu Z.B \lor (A \land \langle - \rangle Z)
\end{align*}
\]

Based on this, we get a translation of CTL into the modal-μ calculus.
Proposition

\[s \models \nu Y. A \land (\neg F \lor \langle - \rangle Y) \]

in a finite-state transition system iff
there exists a path \(\pi \) from \(s \) such that \(\pi_i \models A \) for all \(i \).

Proof:
Take \(\varphi(Y) \overset{\text{def}}{=} A \land (\neg F \lor \langle - \rangle Y). \)

\[\nu Y. \varphi(Y) = \bigcap_{n \in \omega} \varphi^n(T) \quad \text{where} \quad T \supseteq \varphi(T) \supseteq \ldots \]

since \(\varphi \) is monotonic and \(\cap \)-continuous due to the set of states being finite.
By induction, for \(n \geq 1 \)
\[s \models \varphi^n(T) \quad \text{iff} \quad \text{there is a path of length } \leq n \text{ from } s \text{ along which all states satisfy } A \text{ and the final state has no outward transition} \]
or \[\text{there is a path of length } n \text{ from } s \text{ along which all states satisfy } A \text{ and the final state has some outward transition} \]
Assuming the number of states is k, we have

$$\varphi^k(T) = \varphi^{k+1}(T)$$

and hence $\nu Y.\varphi(Y) = \varphi^k(T)$.

$s \models \nu Y.\varphi(Y)$ iff $s \models \varphi^k(T)$

iff there exists a maximal A path of length $\leq k$ from s

or there exists a necessarily looping A path of length k from s
Model checking modal-μ

Assume processes are finite-state

- Brute force (+ optimizations) computes each fixed point
- Local model checking [Larsen, Stirling and Walker, Winskel]

"Silly idea" Reduction Lemma

\[p \in \nu X. \varphi(X) \iff p \in \varphi(\nu X.\{p\} \lor \varphi(X)) \]
Modal-\(\mu\) for model checking

Extend the syntax with defined basic assertions and adapt the fixed point operator:

\[
A ::= U \mid T \mid F \mid \neg A \mid A \land B \mid A \lor B \mid \langle a \rangle A \mid \langle \neg \rangle A \mid \nu X \{p_1, \ldots, p_n\}.A
\]

Semantics identifies assertions with subsets of states:

- \(U\) is an arbitrary subset of states
- \(T = S\)
- \(F = \emptyset\)
- \(\neg A = S \setminus A\)
- \(A \land B = A \cap B\)
- \(A \lor B = A \cup B\)
- \(\langle a \rangle A = \{p \in S \mid \exists q. p \xrightarrow{a} q \land q \in A\}\)
- \(\langle \neg \rangle A = \{p \in S \mid \exists q, a.p \xrightarrow{a} q \land q \in A\}\)
- \(\nu X \{p_1, \ldots, p_n\}.A = \bigcup\{U \subseteq S \mid U \subseteq \{p_1, \ldots, p_n\} \cup A[U/X]\}\)

As before, \(\mu X.A \equiv \neg \nu X.\neg A[\neg X/X]\) and now

\[
\nu X.A = \nu X\{\}.A
\]
Lemma

Let \(\varphi : \mathcal{P}(S) \to \mathcal{P}(S) \) be monotonic. For all \(U \subseteq S \),

\[
U \subseteq \nu X. \varphi(X) \quad \iff \quad U \subseteq \varphi(\nu X. (U \cup \varphi(X)))
\]

In particular,

\[
p \in \nu X. \varphi(X) \quad \iff \quad p \in \varphi(\nu X. (\{p\} \cup \varphi(X))).
\]
Model checking algorithm

Given a transition system and a set of basic assertions \{U, V, \ldots\}:

- \(p \models U \) \rightarrow true if \(p \in U \)
- \(p \models U \) \rightarrow false if \(p \notin U \)
- \(p \models T \) \rightarrow true
- \(p \models F \) \rightarrow false
- \(p \models \neg B \) \rightarrow not(p \models B)
- \(p \models A \land B \) \rightarrow \(p \models A \) and \(p \models B \)
- \(p \models A \lor B \) \rightarrow \(p \models A \) or \(p \models B \)
- \(p \models \langle a \rangle B \) \rightarrow \(q_1 \models B \) or \(\ldots \) or \(q_n \models B \)

\[\{q_1, \ldots, q_n\} = \{q \mid p \xrightarrow{a} q\} \]

- \(p \models \nu X \{\tilde{r}\}.B \) \rightarrow true if \(p \in \{\tilde{r}\} \)
- \(p \models \nu X \{\tilde{r}\}.B \) \rightarrow \(p \models B[\nu X \{p, \tilde{r}\}.B/X] \) if \(p \notin \{\tilde{r}\} \)

Can use any sensible reduction technique for not, or and and.
Examples

Define the pure CCS process

\[P \overset{\text{def}}{=} a.(a.nil + a.P) \]

Check

\[P \vdash \nu X.\langle a\rangle X \]

and check

\[P \vdash \mu Y.[-]F \lor \langle - \rangle Y \]

Note:

\[\mu Y.[-]F \lor \langle - \rangle Y \equiv \neg \nu Y.\neg ([-]F \lor \langle - \rangle \neg Y) \]
A binary relation $<$ on a set A is well-founded iff there are no infinite descending chains

$$\ldots < a_n < \ldots < a_1 < a_0$$

The principle of well-founded induction:
Let $<$ be a well-founded relation on a set A. Let P be a property on A. Then

$$\forall a \in A. \ P(a)$$

iff

$$\forall a \in A. \ ((\forall b < a. \ P(b)) \implies P(a))$$
Correctness and termination of the algorithm

Write \((p \models A) = \text{true}\) iff \(p\) is in the set of states determined by \(A\).

Theorem

Let \(p \in \mathcal{P}\) be a finite-state process and \(A\) be a closed assertion. For any truth value \(t \in \{\text{true, false}\}\),

\[
(p \models A) \rightarrow^* t \iff (p \models A) = t
\]
Proof sketch

For assertions A and A', take

$$A' < A \iff \text{ or } A \equiv \nu X \{\bar{r}\} B \& \exists p \ A' \equiv \nu X \{\bar{r}, p\} B \& p \notin \bar{r}$$

Want, for all closed assertions A,

$$Q(A) \iff \forall q \in \mathcal{P} . \forall t . (q \vdash A) \rightarrow^* t \iff (q \vdash A) = t$$

We show the following stronger property on open assertions by well-founded induction:

$$Q^+(A) \iff \forall \text{closed substitutions for free variables } B_1/X_1, \ldots, B_n/X_n : Q(B_1) & \ldots & Q(B_n) \implies Q(A[B_1/X_1, \ldots, B_n/X_n])$$

The proof (presented in the lecture notes) centrally depends on the reduction lemma.