Topics in Concurrency
Lectures 6

Glynn Winskel

4 February 2020
CTL: Computation tree logic

A logic based on paths

\[A ::= \text{At} | A_0 \land A_1 | A_0 \lor A_1 | \neg A | T | F | \]
\[\text{EX} \ A | \text{EG} \ A | \text{E}[A_0 \cup A_1] \]

A path from state \(s \) is a maximal sequence of states

\[\pi = (\pi_0, \pi_1, \ldots, \pi_i, \ldots) \]

such that \(s = \pi_0 \) and \(\pi_i \rightarrow \pi_{i+1} \) for all \(i \).

\[s \models \text{EX} \ A \quad \text{iff} \quad \text{Exists a path from } s \text{ along which the next state satisfies } A \]

\[s \models \text{EG} \ A \quad \text{iff} \quad \text{Exists a path from } s \text{ along which globally each state satisfies } A \]

\[s \models \text{E}[A \cup B] \quad \text{iff} \quad \text{Exists a path from } s \text{ along which } A \text{ holds Until } B \text{ holds} \]
Derived assertions

\[AX \, B \equiv \neg EX \, \neg B \]
\[EF \, B \equiv E[T U B] \]
\[AG \, B \equiv \neg EF \, \neg B \]
\[AF \, B \equiv \neg EG \, \neg B \]
\[A[B U C] \equiv \neg E[\neg C U \neg B \wedge \neg C] \wedge \neg EG \, \neg C \]

The Until operator is strict
From CTL to μ

Want a modal-μ assertion equivalent to $\text{EG } A$.

Begin by writing a fixed point equation:

$$X = \varphi(X) \quad \text{where} \quad \varphi(X) = A \land ([\neg] F \lor \langle \rangle X)$$

Least or greatest fixed point? Consider:

$$\mu X . A \land ([\neg] F \lor \langle \rangle X) = \emptyset$$

$$\nu X . A \land ([\neg] F \lor \langle \rangle X) = \{s, t\}$$

Alternatively, consider the approximants for finite-state systems.
A translation into modal-μ

\[
\begin{align*}
\text{EX } a & \equiv \langle - \rangle A \\
\text{EG } a & \equiv \nu Y. A \land ([-]F \lor \langle - \rangle Y) \\
E[a \cup b] & \equiv \mu Z. B \lor (A \land \langle - \rangle Z)
\end{align*}
\]

Based on this, we get a translation of CTL into the modal-μ calculus.
Proposition

\[s \models \nu Y. A \land (\neg F \lor \neg Y) \]

in a finite-state transition system iff
there exists a path \(\pi \) from \(s \) such that \(\pi_i \models A \) for all \(i \).

Proof:
Take \(\varphi(Y) \triangleq A \land (\neg F \lor \neg Y) \).

\[\nu Y. \varphi(Y) = \bigcap_{n \in \omega} \varphi^n(T) \quad \text{where} \quad T \supseteq \varphi(T) \supseteq \cdots \]

since \(\varphi \) is monotonic and \(\cap \)-continuous due to the set of states being finite.

By induction, for \(n \geq 1 \)
\[s \models \varphi^n(T) \quad \text{iff} \quad \text{there is a path of length } \leq n \text{ from } s \quad \text{iff} \quad \text{there is a path of length } n \text{ from } s \]
all states satisfy \(A \) and the final state has no outward transition
or there is a path of length \(n \) from \(s \) along which all states satisfy \(A \) and the final state has some outward transition
Assuming the number of states is k, we have

$$\varphi^k(T) = \varphi^{k+1}(T)$$

and hence $\nu Y.\varphi(Y) = \varphi^k(T)$.

$s \models \nu Y.\varphi(Y)$ iff $s \models \varphi^k(T)$

iff there exists a maximal A path of length $\leq k$ from s

or there exists a necessarily looping A path of length k from s
Model checking modal-μ

Assume processes are finite-state

- Brute force (+ optimizations) computes each fixed point
- Local model checking [Larsen, Stirling and Walker, Winskel]
 “Silly idea” Reduction Lemma

\[p \in \nu X. \phi(X) \iff p \in \phi(\nu X. \{p\} \lor \phi(X)) \]
Modal-μ for model checking

Extend the syntax with defined basic assertions and adapt the fixed point operator:

$$A ::= U \mid T \mid F \mid \neg A \mid A \land B \mid A \lor B \mid \langle a \rangle A \mid \langle \neg \rangle A \mid \nu X\{p_1, \ldots, p_n\}.A$$

Semantics identifies assertions with subsets of states:

- U is an arbitrary subset of states
- $T = S$
- $F = \emptyset$
- $\neg A = S \setminus A$
- $A \land B = A \cap B$
- $A \lor B = A \cup B$
- $\langle a \rangle A = \{p \in S \mid \exists q. p \xrightarrow{a} q \land q \in A\}$
- $\langle \neg \rangle A = \{p \in S \mid \exists q, a. p \xrightarrow{a} q \land q \in A\}$
- $\nu X\{p_1, \ldots, p_n\}.A = \bigcup\{U \subseteq S \mid U \subseteq \{p_1, \ldots, p_n\} \cup A[U/X]\}$

As before, $\mu X.A \equiv \neg \nu X.\neg A[\neg X/X]$ and now

$$\nu X.A = \nu X\{\} . A$$
Lemma

Let $\varphi : \mathcal{P}(S) \to \mathcal{P}(S)$ be monotonic. For all $U \subseteq S$,

\[
U \subseteq \nu X. \varphi(X) \iff U \subseteq \varphi(\nu X. (U \cup \varphi(X)))
\]

In particular,

\[
p \in \nu X. \varphi(X) \iff p \in \varphi(\nu X. \{p\} \cup \varphi(X)))
\]
Model checking algorithm

Given a transition system and a set of basic assertions \(\{U, V, \ldots\} \):

<table>
<thead>
<tr>
<th>Expression</th>
<th>Transformation</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p \vdash U)</td>
<td>(\rightarrow) true</td>
<td>if (p \in U)</td>
</tr>
<tr>
<td>(p \vdash U)</td>
<td>(\rightarrow) false</td>
<td>if (p \notin U)</td>
</tr>
<tr>
<td>(p \vdash T)</td>
<td>(\rightarrow) true</td>
<td></td>
</tr>
<tr>
<td>(p \vdash F)</td>
<td>(\rightarrow) false</td>
<td></td>
</tr>
<tr>
<td>(p \vdash \neg B)</td>
<td>(\rightarrow) not((p \vdash B))</td>
<td></td>
</tr>
<tr>
<td>(p \vdash A \land B)</td>
<td>(\rightarrow) (p \vdash A) and (p \vdash B)</td>
<td></td>
</tr>
<tr>
<td>(p \vdash A \lor B)</td>
<td>(\rightarrow) (p \vdash A) or (p \vdash B)</td>
<td></td>
</tr>
<tr>
<td>(p \vdash \langle a \rangle B)</td>
<td>(\rightarrow) (q_1 \vdash B) or (\ldots) or (q_n \vdash B)</td>
<td></td>
</tr>
<tr>
<td>({q_1, \ldots, q_n} = {q \mid p \xrightarrow{a} q})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p \vdash \nu X{\tilde{r}}.B)</td>
<td>(\rightarrow) true</td>
<td>if (p \in {\tilde{r}})</td>
</tr>
<tr>
<td>(p \vdash \nu X{\tilde{r}}.B)</td>
<td>(\rightarrow) (p \vdash B[\nu X{p, \tilde{r}}.B/X])</td>
<td>if (p \notin {\tilde{r}})</td>
</tr>
</tbody>
</table>

Can use any sensible reduction technique for \(\text{not}, \text{or} \) and \(\text{and} \).
Examples

Define the pure CCS process

\[P \overset{\text{def}}{=} a.(a.\text{nil} + a.P) \]

Check

\[P \vdash \nu X.(a)X \]

and check

\[P \vdash \mu Y.[-]F \lor (\langle - \rangle Y \equiv \neg \nu Y.\neg([-]F \lor (\langle - \rangle \neg Y))) \]
A binary relation $<$ on a set A is well-founded iff there are no infinite descending chains

$$\cdots < a_n < \cdots < a_1 < a_0$$

The principle of well-founded induction:
Let $<$ be a well-founded relation on a set A. Let P be a property on A. Then

$$\forall a \in A.\ P(a)$$

iff

$$\forall a \in A.\ ((\forall b < a.\ P(b)) \implies P(a))$$
Correctness and termination of the algorithm

Write \((p \models A) = \text{true}\) iff \(p\) is in the set of states determined by \(A\).

Theorem

*Let \(p \in \mathcal{P}\) be a finite-state process and \(A\) be a closed assertion. For any truth value \(t \in \{\text{true, false}\}\),

\[
(p \models A) \rightarrow^* t \iff (p \models A) = t
\]

*
Proof sketch

For assertions A and A', take

A' is a proper subassertion of A

$$A' < A \iff \text{or } A \equiv \nu X \{\bar{r}\} B \land \exists p \ A' \equiv \nu X \{\bar{r}, p\} B \land p \notin \bar{r}$$

Want, for all closed assertions A,

$$Q(A) \iff \forall q \in \mathcal{P}. \forall t. (q \vdash A) \rightarrow^* t \iff (q \vdash A) = t$$

We show the following stronger property on open assertions by well-founded induction:

$$Q^+(A) \iff \forall \text{closed substitutions for free variables } B_1/X_1, \ldots, B_n/X_n: \ Q(B_1) \land \ldots \land Q(B_n) \implies Q(A[B_1/X_1, \ldots, B_n/X_n])$$

The proof (presented in the lecture notes) centrally depends on the reduction lemma.