
Topics in Concurrency
Lectures 6

Glynn Winskel

4 February 2020



CTL: Computation tree logic

A logic based on paths

A ∶∶ = At ∣ A0 ∧A1 ∣ A0 ∨A1 ∣ ¬A ∣ T ∣ F ∣
EX A ∣ EG A ∣ E[A0 U A1]

A path from state s is a maximal sequence of states

π = (π0, π1, . . . , πi . . .)

such that s = π0 and πi Ð→ πi+1 for all i .

s ⊧ EX A iff Exists a path from s along which the
neXt state satisfies A

s ⊧ EG A iff Exists a path from s along which
Globally each state satisfies A

s ⊧ E[A U B] iff Exists a path from s along which
A holds Until B holds



Derived assertions

AX B ≡ ¬EX ¬B

EF B ≡ E[T U B]
AG B ≡ ¬EF ¬B

AF B ≡ ¬EG ¬B

A[B U C ] ≡ ¬E[¬C U ¬B ∧ ¬C ] ∧ ¬EG ¬C

The Until operator is strict



From CTL to µ

Want a modal-µ assertion equivalent to EG A.

Begin by writing a fixed point equation:

X = ϕ(X ) where ϕ(X ) = A ∧ ([−]F ∨ ⟨−⟩X )

Least or greatest fixed point? Consider:

A
s

A

t

µX .A ∧ ([−]F ∨ ⟨−⟩X ) = ∅
νX .A ∧ ([−]F ∨ ⟨−⟩X ) = {s, t}

Alternatively, consider the approximants for finite-state systems.



A translation into modal-µ

EX a ≡ ⟨−⟩A
EG a ≡ νY .A ∧ ([−]F ∨ ⟨−⟩Y )

E[a U b] ≡ µZ .B ∨ (A ∧ ⟨−⟩Z)

Based on this, we get a translation of CTL into the modal-µ calculus.



Proposition

s ⊧ νY .A ∧ ([−]F ∨ ⟨−⟩Y )

in a finite-state transition system iff
there exists a path π from s such that πi ⊧ A for all i .

Proof:
Take ϕ(Y ) def= A ∧ ([−]F ∨ ⟨−⟩Y ).

νY .ϕ(Y ) = ⋂
n∈ω

ϕn(T ) where T ⊇ ϕ(T ) ⊇ ⋯

since ϕ is monotonic and ⋂-continuous due to the set of states being
finite.
By induction, for n ≥ 1

s ⊧ ϕn(T ) iff there is a path of length ≤ n from s along which
all states satisfy A and the final state has no
outward transition

or there is a path of length n from s along which
all states satisfy A and the final state has some
outward transition



Assuming the number of states is k , we have

ϕk(T ) = ϕk+1(T )

and hence νY .ϕ(Y ) = ϕk(T ).
s ⊧ νY .ϕ(Y ) iff s ⊧ ϕk(T )

iff there exists a maxmial A path of length ≤ k from s
or there exists a necessarily looping A path

of length k from s



Model checking modal-µ

Assume processes are finite-state

Brute force (+ optimizations) computes each fixed point

Local model checking [Larsen, Stirling and Walker, Winskel]
“Silly idea”Reduction Lemma

p ∈ νX .ϕ(X )⇐⇒ p ∈ ϕ(νX .{p} ∨ ϕ(X ))



Modal-µ for model checking

Extend the syntax with defined basic assertions and adapt the fixed point
operator:

A ∶∶ = U ∣ T ∣ F ∣ ¬A ∣ A ∧B ∣ A ∨B ∣ ⟨a⟩A ∣ ⟨−⟩A ∣ νX{p1, . . . ,pn}.A

Semantics identifies assertions with subsets of states:

U is an arbitrary subset of states
T = S
F = ∅
¬A = S ∖A
A ∧B = A ∩B
A ∨B = A ∪B
⟨a⟩A = {p ∈ S ∣ ∃q.p

aÐ→ q ∧ q ∈ A}
⟨−⟩A = {p ∈ S ∣ ∃q, a.p

aÐ→ q ∧ q ∈ A}
νX{p1, . . . ,pn}.A = ⋃{U ⊆ S ∣ U ⊆ {p1, . . . ,pn} ∪A[U/X ]}

As before, µX .A ≡ ¬νX .¬A[¬X /X ] and now

νX .A = νX{}.A



The reduction lemma

Lemma

Let ϕ ∶ P(S)→ P(S) be monotonic. For all U ⊆ S,

U ⊆ νX .ϕ(X )
⇐⇒ U ⊆ ϕ(νX .(U ∪ ϕ(X )))

In particular,
p ∈ νX .ϕ(X )

⇐⇒ p ∈ ϕ(νX .({p} ∪ ϕ(X ))).



Model checking algorithm

Given a transition system and a set of basic assertions {U,V , . . .}:

p ⊢ U Ð→ true if p ∈ U
p ⊢ U Ð→ false if p /∈ U
p ⊢ T Ð→ true
p ⊢ F Ð→ false
p ⊢ ¬B Ð→ not(p ⊢ B)
p ⊢ A ∧B Ð→ p ⊢ A and p ⊢ B
p ⊢ A ∨B Ð→ p ⊢ A or p ⊢ B
p ⊢ ⟨a⟩B Ð→ q1 ⊢ B or . . . or qn ⊢ B

{q1, . . . ,qn} = {q ∣ p
aÐ→ q}

p ⊢ νX{r⃗}.B Ð→ true if p ∈ {r⃗}
p ⊢ νX{r⃗}.B Ð→ p ⊢ B[νX{p, r⃗}.B/X ] if p /∈ {r⃗}

Can use any sensible reduction technique for not,or and and.



Examples

Define the pure CCS process

P
def= a.(a.nil + a.P)

Check
P ⊢ νX .⟨a⟩X

and check
P ⊢ µY .[−]F ∨ ⟨−⟩Y

Note:

µY .[−]F ∨ ⟨−⟩Y ≡ ¬νY .¬([−]F ∨ ⟨−⟩¬Y ))



Well-founded induction

A binary relation ≺ on a set A is well-founded iff there are no infinite
descending chains

⋯ ≺ an ≺ ⋯ ≺ a1 ≺ a0

The principle of well-founded induction:
Let ≺ be a well-founded relation on a set A. Let P be a property on A.
Then

∀a ∈ A. P(a)
iff

∀a ∈ A. ((∀b≺a. P(b)) Ô⇒ P(a))



Correctness and termination of the algorithm

Write (p ⊧ A) = true iff p is in the set of states determined by A.

Theorem
Let p ∈ P be a finite-state process and A be a closed assertion. For any
truth value t ∈ {true, false},

(p ⊢ A)Ð→∗ t ⇐⇒ (p ⊧ A) = t



Proof sketch

For assertions A and A′, take

A′ ≺ A ⇐⇒
A′ is a proper subassertion of A

or A ≡ νX{r⃗}B &
∃p A′ ≡ νX{r⃗ ,p}B & p /∈ r⃗

Want, for all closed assertions A,

Q(A) ⇐⇒ ∀q ∈ P.∀t.(q ⊢ A)Ð→∗ t ⇐⇒ (q ⊧ A) = t

We show the following stronger property on open assertions by
well-founded induction:

Q+(A) ⇐⇒
∀closed substitutions for free variables
B1/X 1, . . . ,Bn/X n ∶
Q(B1)& . . .&Q(Bn) Ô⇒ Q(A[B1/X 1, . . . ,Bn/X n])

The proof (presented in the lecture notes) centrally depends on the
reduction lemma.


