Topics in Concurrency Lectures 5

Glynn Winskel

30 January 2020

Logics for specifying correctness properties. We'll look at:

- Basic logics and bisimilarity
- Fixed points and logic
- CTL
- Model checking

Finitary Hennessy-Milner Logic

Assertions:

 $A ::= T \mid F \mid A_0 \land A_1 \mid A_0 \lor A_1 \mid \neg A \mid \langle \lambda \rangle A \mid \langle - \rangle A \mid [\lambda]A \mid [-]A$

Satisfaction: $s \vDash A$

$$s \vDash T \quad \text{always}$$

$$s \vDash F \quad \text{never}$$

$$s \vDash A_0 \land A_1 \quad \text{if} \quad s \vDash A_0 \quad \text{and} \quad s \vDash A_1$$

$$s \vDash A_0 \lor A_1 \quad \text{if} \quad s \vDash A_0 \quad \text{or} \quad s \vDash A_1$$

$$s \vDash \neg A \quad \text{if} \quad \text{not} \quad s \vDash A$$

$$s \vDash \langle \lambda \rangle A \quad \text{if} \quad \text{there exists } s' \text{ s.t. } s \xrightarrow{\lambda} s' \text{ and } s' \vDash A$$

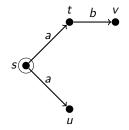
$$s \vDash \langle - \rangle A \quad \text{if} \quad \text{there exists } s', \lambda \text{ s.t. } s \xrightarrow{\lambda} s' \text{ and } s' \vDash A$$

$$s \vDash [\lambda] A \quad \text{iff} \quad \text{for all } s' \text{ s.t. } s \xrightarrow{\lambda} s' \text{ have } s' \vDash A$$

$$s \vDash [-] A \quad \text{iff} \quad \text{for all } s', \lambda \text{ s.t. } s \xrightarrow{\lambda} s' \text{ have } s' \vDash A$$

Alternatively, derived assertions

$$[\lambda]A \equiv \neg \langle \lambda \rangle \neg A \qquad [-]A \equiv \neg \langle - \rangle \neg A$$



⊨	$\langle a \rangle T$?
⊨	[a]T ?
⊨	[-] F ?
⊨	$\langle a \rangle \langle b \rangle T$?
⊨	$[a]\langle b angle T$?
	⊨ ⊨

Generally:

- $\langle a \rangle T$
- [a]F
- <->*F*
- $\langle \rangle T$
- [−]*T*[−]*F*

(Strong) bisimilarity and logic

A non-finitary Hennessy-Milner logic allows an infinite conjunction

 $A ::= \bigwedge_{i \in I} A_i \mid \neg A \mid \langle \lambda \rangle A$

with semantics

$$s \models \bigwedge_{i \in A} A_i$$
 iff $s \models A_i$ for all $i \in I$

Define

 $p \asymp q$ iff for all assertions A of H-M logic $p \vDash A$ iff $q \vDash A$

Theorem

≍ = ~

This gives a way to demonstrate non-bisimilarity of states

Fixed points and model checking

• The finitary H-M logic doesn't allow properties such as

the process never deadlocks

- We can add particular extensions (such as always, never) to the logic (CTL)
- Alternatively, what about defining sets of states 'recursively'? The set of states X that can always do some action satisfies:

 $X=\langle -\rangle T\wedge [-]X$

- A fixed point equation: $X = \varphi(X)$
- But such equations can have many solutions...

Fixed point equations

- In general, an equation of the form $X = \varphi(X)$ can have many solutions for X.
- Fixed points are important: they represent steady or consistent states
- Range of different fixed point theorems applicable in different contexts e.g.

Theorem (1-dimensional Brouwer's fixed point theorem)

Any continuous function $f : [0,1] \rightarrow [0,1]$ has at least one fixed point

(used e.g. in proof of existence of Nash equilibria)

• We'll be interested in fixed points of functions on the powerset lattice ~ Knaster-Tarski fixed point theorem and least and greatest fixed points

Least and greatest fixed points on transition systems: examples

In the above transition system, what are the least and greatest subsets of states X, Y and Z that satisfy:

X = X $Y = \langle - \rangle T \land [-] Y$ $Z = \neg Z$

The powerset lattice

• Given a set \mathcal{S} , its powerset is

$$\mathcal{P}(\mathcal{S}) = \{S \mid S \subseteq \mathcal{S}\}$$

 Taking the order on its elements to be inclusion, ⊆, this forms a complete lattice

We are interested in fixed points of functions of the form

 $\varphi:\mathcal{P}(\mathcal{S})\to\mathcal{P}(\mathcal{S})$

- φ is monotonic if $S \subseteq S'$ implies $\varphi(S) \subseteq \varphi(S')$
- a prefixed point of φ is a set X satisfying $\varphi(X) \subseteq X$
- a postfixed point of φ is a set X satisfying $X \subseteq \varphi(X)$

Knaster-Tarski fixed point theorem for minimum fixed points

Theorem

For monotonic $\varphi : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$, define

 $m = \bigcap \{ X \subseteq \mathcal{S} \mid \varphi(X) \subseteq X \}.$

Then m is a fixed point of φ and, furthermore, is the least prefixed point: **a** $m = \varphi(m)$ **a** $\varphi(X) \subseteq X$ implies $m \subseteq X$

m is conventionally written

 $\mu X.\varphi(X)$

Used for inductive definitions: syntax, operational semantics, rule-based programs, model checking

Knaster-Tarski fixed point theorem for maximum fixed points

Theorem

For monotonic $\varphi : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$, define

$$M = \bigcup \{ X \subseteq \mathcal{S} \mid X \subseteq \varphi(X) \}.$$

Then M is a fixed point of φ and, furthermore, is the greatest postfixed point.

$$M = \varphi(M)$$

2
$$X \subseteq \varphi(X)$$
 implies $X \subseteq M$

M is conventionally written

 $\nu X.\varphi(X)$

Used for co-inductive definitions, bisimulation, model checking

(Strong) bisimilarity as a maximum fixed point [§5.2 p68]

Bisimilarity can be viewed as a fixed point \sim model checking algorithms.

Given a relation R (on CCS processes or states of transition systems) define:

 $p \varphi(R) q$

iff

Lemma

 $R \subseteq \varphi(R)$ iff R is a (strong) bisimulation.

Hence, by Knaster-Tarski fixed point theorem for maximum fixed points:

Theorem

Bisimilarity is the greatest fixed point of φ .

Theorem

Bisimilarity is the greatest fixed point of φ .

Proof.

$$\sim = \bigcup \{ R \mid R \text{ is a bisimulation} \}$$
(1)

$$= \bigcup \{ R \mid R \subseteq \varphi(R) \}$$
 (2)

$$= \nu X.\varphi(X) \tag{3}$$

(1) is by definition of ~
(2) is by Lemma
(3) is by Knaster-Tarski for maximum fixed points: note that φ is monotonic

Question: How is this different from the least fixed point of φ ?

$A ::= T \mid F \mid A_0 \land A_1 \mid A_0 \lor A_1 \mid \neg A \mid \langle \lambda \rangle A \mid \langle - \rangle A \mid X \mid \nu X.A$

To guarantee monotonicity (and therefore the existence of the fixed point), require the variable X to occur only positively in A in $\nu X.A$. That is, X occurs only under an even number of \neg s.

 $s \models \nu X.A \quad \text{iff} \quad s \in \nu X.A \\ \text{i.e.} \quad s \in \bigcup \{S \subseteq \mathcal{P} \mid S \subseteq A[S/X]\} \\ \text{the maximum fixed point of the monotonic} \\ \text{function } S \mapsto A[S/X] \end{cases}$

As before, we take

$$[\lambda]A \equiv \neg \langle \lambda \rangle \neg A \qquad [-]A \equiv \neg \langle - \rangle \neg A$$

Now also take

$$\mu X.A \equiv \neg \nu X.(\neg A[\neg X/X])$$

Consider the process

$$P \stackrel{\text{def}}{=} a.(a.P + b.c.\mathbf{nil})$$

Which states satisfy

- $\mu X.(a)X$
- $\nu X. \langle a \rangle X$
- $\mu X.[a]X$
- $\nu X[a]X$

Approximants

Let $\varphi : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$ be monotonic. φ is \bigcap -continuous iff for all decreasing chains $X_0 \supseteq X_1 \supseteq \cdots \supseteq X_n \supseteq \cdots$

$$\bigcap_{n\in\omega}\varphi(X_n)=\varphi\left(\bigcap_{n\in\omega}X_n\right)$$

If the set of states ${\mathcal S}$ is finite, continuity certainly holds

Theorem If $\varphi : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$ is \cap -continuous:

 $\nu X.\varphi(X) = \bigcap_{n \in \omega} \varphi^n(\mathcal{S})$

Approximants

Let $\varphi : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$ be monotonic. φ is \bigcup -continuous iff for all increasing chains $X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n \subseteq \cdots$

$$\bigcup_{n\in\omega}\varphi(X_n)=\varphi\left(\bigcup_{n\in\omega}X_n\right)$$

If the set of states ${\mathcal S}$ is finite, continuity certainly holds

Theorem If $\varphi : \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$ is \bigcup -continuous:

 $\mu X.\varphi(X) = \bigcup_{n \in \omega} \varphi^n(\emptyset)$

Proposition

 $s \models \mu X . \langle a \rangle T \lor \langle - \rangle X$ in any transition system iff there exists a sequence of transitions from s to a state t where an a-action can occur.

Proposition

 $s \models \nu X . \langle a \rangle X$ in a finite-state transition system iff there exists an infinite sequence of a-transitions from s.

There are infinite-state transition systems where $\varphi(X) = \langle a \rangle X$ is not \bigcap -continuous.

For finite-state processes, modal- μ can be encoded in infinitary H-M logic

if finite-state processes p and q are bisimilar then they satisfy the same modal- μ assertions

Note that logical equivalence in modal- μ does not generally imply bisimilarity (due to the lack of infinitary conjunction)