Python warmup exercises (not assessed)

These are optional warmup exercises, to get you used to Python coding.

Use the following autograder settings:

```python
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('notes1')
```

Each question has a label (in brackets). Call `fetch_question` to see a model answer.

```python
q = GRADER.fetch_question('ex1')
# view the answer
print(q)
```

Exercise (ex1) from section 1.2.1. In Python, how do you ...

- calculate the base 10 logarithm of 1200
- calculate the tangent of 60 degrees
- calculate the square root of -20

Exercise (ex2) from section 1.3.1. What is the difference between the two commented lines? Do they give the same result?

```python
a = [1, 2, 'buckle my shoe']
b = (a, 3, 4, 'knock at the door')
# b[0].append('then')
# b[0] = a + ['then']
print(a, b)
```

Exercise (ex3) from section 1.3.4. If you go overboard with list comprehensions, your code becomes unreadable. What does the following code do? Here `rooms` is from the code in section 1.3.4.

```python
'
'.join(['Room {r} has {}'.format(occs)) for r,occs in rooms.items() if r is not None]
```

Exercise (ex4) from section 1.3.5. Write a single line of code to sort the names in this list

```python
names = ['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin']
```

by length, breaking ties alphabetically, using list comprehension.

Hint: make a list of `(len(name), name)` then sort it, where `len(s)` gives the length of a string. When Python sorts a list of tuples, it uses lexicographic ordering (https://en.wikipedia.org/wiki/Lexicographical_order).

Exercise (ex5) from section 1.3.5. Let `x` be a list of numbers. Give a one-line expression to find the number of unique elements in `x`.

Hint: use a dictionary comprehension to create a dictionary whose keys are elements of `x`.

Exercise (ex6) from section 1.4.1. A simple queue can be simulated by the following equations. Let q_t be the queue size just before timestep t, let the service rate be C, and let a_t be the amount of work arriving at timestep t. Then

$$q_{t+1} = \max(q_t + a_t - C, 0).$$

This is called Lindley's Recursion. Write a function `sim(q0,C,a)` to compute the queue sizes. It should accept an initial queue size q_0 and a list of elements $a_0, a_1, \ldots, a_{t-1}$, and it should return a list $[q_t, \ldots, q_{t+1}]$. For example,

```python
sim(1, 3, [4, 1, 2, 8, 2, 3, 1])
```
Exercise (ex7) from sections 1.4.1 and 1.4.4. We can represent a tree as a nested list, for example

\[
x = [1, [[2, 4, 3], 9], [5, [6, 7], 8]]
\]

Define a function `maptree(f, x)` which applies a function \(f \) to every leaf of the tree.

NumPy warmup exercises (not assessed)

These are optional warmup exercises, to get you used to numpy. When you submit an answer, you'll also be shown a model answer. As with the Python warmup exercises, each question has a code (in brackets) which you should use to fetch to see the model answer.

Use the following autograder settings:

```
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('notes2')
```

Exercise (ex1) from section 2.2.2. Here is some standard Python code:

```python
import math, random
x = random.uniform(-1, 1)
y = random.uniform(-1, 1)
d = math.sqrt(x**2 + y**2)
```

We'd like to repeat this a million times, and find the mean and standard deviation of the \(d \) values. Implement this using numpy vectorized code.

Exercise (ex2) from section 2.3. For a numpy matrix \(a \), what is the relationship between \(a.shape \) and \(len(a) \)?

Exercise (ex3) from section 2.3. Look up the numpy help for `np.arange` and `reshape`, and use these functions to produce the \(3 \times 5 \) matrix

\[
b = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 10 \\
11 & 12 & 13 & 14 & 15
\end{pmatrix}
\]

Look up the help for `np.sum`, and compute the length-5 vector of column sums and the length-3 vector of row sums.

Exercise (ex4) from section 2.3. Find two different ways to use numpy to create the column vector \([1], [2], \ldots, [n]\).

Exercise (ex5) from section 2.3. A permutation matrix (https://en.wikipedia.org/wiki/Permutation_matrix) is a square matrix of 0s and 1s, where each row contains exactly one 1, and each column likewise. (The code snippet in section 2.3 of notes, for ‘advanced indexing’, creates a \(3 \times 3 \) permutation matrix.)

Write code to generate a random \(n \times n \) permutation matrix.

Exercise (ex6) from section 2.2.2. In a previous exercise you wrote a Pythonic simulator for a queue, based on the recursion

\[
q_{t+1} = \max(q_t + a_t - C, 0).
\]

It can be proved that another way to get the same answer is with the formula

\[
q_t = q_0 + x_t - \min(0, y_t)
\]

where

\[
x_t = \sum_{u=0}^{t-1} (a_u - C) \quad \text{and} \quad y_t = \min(0, x_t + x_0).
\]
Given a vector \(a = [a_0, a_1, \ldots, a_{n-1}] \),

- compute \(x = [x_1, x_2, \ldots, x_n] \) using \texttt{np.cumsum}
- compute \(y = [y_1, y_2, \ldots, y_n] \) by accumulating the function \texttt{np.minimum}
- compute \(q = [q_1, q_2, \ldots, q_n] \), and check your answer against your Pythonic code.

Exercise (ex7) from section 2.4

When we used numerical optimization in section 2.4, to find the minimum of

\[
f(x) = x - 3x^2 + x^4,
\]

we used the initial guess \(x_0 = 0.5 \) and found the local minimum at \(x = 1.13 \). Now, we'll look for a global minimum. It's good practice to avoid Moiré effects to randomly search the parameter space, to avoid Moiré effects.

- Create a vector \(x \) consisting of values randomly chosen in the interval \([-2, 2]\).
- Create a vector \(\text{optx} \) containing the result of running \texttt{scipy.optimize.fmin} starting at each of the \(x \) values.
- Plot your answers with \texttt{plt.plot(x, optx, marker='o')}

You can turn off the diagnostic output with the option \texttt{fmin(disp=False)}.

Tick 2a. Econophysics simulator

This section is worth 1 mark. Use these autograder settings:

```python
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick2a')
```

This assignment tests your vectorized thinking. You will be asked to run simulations on a population of hundreds of thousands of individuals, over many timesteps. YOUR CODE MUST USE NUMPY VECTORIZED OPERATIONS rather than iterating over the population. You may use Python iteration over timesteps.

Introduction

Economic inequality is one of the defining social issues of our age. Yet we have a poor grasp of the scale of inequality, as described in Scientific American and nicely shown in this video:

How does inequality arise? Is it an inevitable outcome of liberal economics, and if so how can it be mitigated by economic policy? These questions have been studied by economists and more recently by physicists. In this assignment you will investigate a simple "econophysics" model of inequality.

Here is a simple model. There are \(N \) individuals in the population, each with an initial wealth of £1. Every timestep, we randomly group them into \(N/2 \) pairs. (Assume \(N \) is even.) For every pair, we simulate an economic exchange, as follows. Let the two paired individuals have wealth \(v \) and \(w \), and update their wealth according to

\[
u_{\text{new}} = R(v + w), \quad w_{\text{new}} = (1 - R)(v + w)
\]

where \(R \) is a random number in \([0, 1]\), chosen independently for every pair and at every timestep. This model is loosely inspired by the physics of gases, in which two gas molecules exchange a random amount of energy whenever they collide.

We can measure inequality with the Gini coefficient,

\[
G = 2 \frac{\sum_{i=1}^{N} i w_i}{N \sum_i w_i} - \left(1 + \frac{1}{N}\right)
\]

where \(w_{(1)} \) is the smallest value, \(w_{(2)} \) the second smallest etc. If everyone has the same wealth then \(G = 0 \); if one person has all the wealth then \(G = 1 - 1/N \).
Questions

Question 1. The model needs us to randomly group the population into $N/2$ pairs. We can do this by randomly permuting the vector $[0, \ldots, N-1]$, letting the vector m_1 consist of the first $N/2$ integers and m_2 consist of the rest, and interpreting it as "$m_1[i]$ is paired with $m_2[i]$".

Write a function `pairs(N)` that returns a tuple (m_1, m_2) where m_1 and m_2 are both vectors of length $N/2$ as described above. For example, if you run `pairs(6)`, you might get the output

$$\text{(array([3, 0, 1]), array([2, 4, 5]))}$$

To submit your answer,

```python
q = GRADER.fetch_question('q1')
m_1, m_2 = pairs(q.n)
an = {'n': len(np.unique(np.concatenate([m_1, m_2]))), 's': np.std(np.abs(m_1-m_2))}
GRADER.submit_answer(q, ans)
```

Question 2. Write a function `kinetic_exchange(v,w)` which takes two wealth vectors v and w, each of length $N/2$, and returns a tuple (v_{new}, w_{new}) with two new vectors, according to the kinetic exchange model. To submit your answer,

```python
q = GRADER.fetch_question('q2')
v, w = np.linspace(1, 5, q.n), np.linspace(1, 2, q.n)**q.p
vnew, wnew = kinetic_exchange(v, w)
an = {'m1': np.mean(vnew), 's2': np.std(wnew)}
GRADER.submit_answer(q, ans)
```

Question 3. Write a function `gini(w)` which takes a vector w and returns the Gini coefficient. To submit your answer,

```python
q = GRADER.fetch_question('q3')
w = np.linspace(0, 1, q.n)**q.p
g = gini(w)
GRADER.submit_answer(q, {'g': g})
```

Question 4. Write a function `sim(N, T)` which runs the kinetic exchange model on a population of N individuals for T timesteps. It should return a pair (w, gs) where w is the wealth vector after T timesteps, and gs is a length T vector where $gs[i]$ is the Gini coefficient at timestep i. To submit your answer,

```python
q = GRADER.fetch_question('q4')
w, gs = sim(q.n, q.t)
an = {'gm': np.mean(gs[int(q.t/2):]), 'gs': np.std(gs[int(q.t/2):]), 'ws': np.std(w)}
GRADER.submit_answer(q, ans)
```

Question 5. Simulate a population of 500,000 over 30 iterations. Plot the Gini coefficient as a function of timestep. To be precise, if w_t is the wealth vector after t timesteps then you should plot $\text{gini}(w_t)$ on the y-axis and t on the x-axis. You don't have to submit your plot, but it may be assessed in the ticking session. Your plot should look something like this:

```
Tick 2b. Economic mobility

This section is worth 1 mark. Use these autograder settings:
import ucamcl

GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick2b')

This assignment tests your vectorized thinking. You will be asked to run simulations on a population of hundreds of thousands of individuals, over many timesteps. **YOUR CODE MUST USE NUMPY VECTORIZED OPERATIONS** rather than iterating over the population. You may use Python iteration over timesteps.

### Introduction

Some degree of inequality might be acceptable if economic mobility were high, i.e. if everyone had similar chances of reaching either end of the wealth distribution. Economic mobility is often measured by splitting the population into five equal brackets, and measuring the chance of moving between brackets. From the [Wikipedia article on economic mobility](https://en.wikipedia.org/wiki/Economic_mobility):

> in terms of relative mobility a report ([https://www.brookings.edu/research/economic-mobility-of-families-across-generations/](https://www.brookings.edu/research/economic-mobility-of-families-across-generations/)) stated: "contrary to American beliefs about equality of opportunity, a child’s economic position is heavily influenced by that of his or her parents." 42% of children born to parents in the bottom fifth of the income distribution ("quintile") remain in the bottom, while 39% born to parents in the top fifth remain at the top.

Let’s measure economic mobility by recording the wealth distribution at one timepoint, and again some number of timesteps later, splitting the two distributions into quintiles, and counting what fraction of the population moved by more than one quintile from beginning to end. (In each timestep a median individual might find their wealth increasing or decreasing by around 50%, so one timestep corresponds roughly to several years of human life.) For example, if we have a population of 5000 and we draw up a matrix $A$ where $A_{ij}$ is the number of people who start in quintile $i$ and end up in quintile $j$, we might get

$$
A = \begin{pmatrix}
344 & 313 & 243 & 100 & 0 \\
266 & 261 & 302 & 167 & 4 \\
212 & 260 & 225 & 272 & 31 \\
147 & 143 & 183 & 331 & 196 \\
31 & 23 & 47 & 130 & 769
\end{pmatrix}
$$

(A quick check: the row sums and column sums are all 1000.) The number who moved by more than one quintile is 1148, which is 23% of the population.

### Questions

**Question 6.** In a perfectly mobile economy, where everyone has equal chance of reaching any quintile, what fraction of people are expected to move by more than one quintile?

```python
q = GRADER.fetch_question('q6')
GRADER.submit_answer(q, your_answer)
```

**Question 7.** Write a function $\text{mobility}(v,w)$ that returns the proportion of people who moved by more than one quintile, where $v[i]$ and $w[i]$ measure respectively the wealth of individual $i$ at the beginning and end of a time period. Hint: look up [np.percentile](https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html) and [np.digitize](https://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html).

```python
Submitting your answer:
q = GRADER.fetch_question('q7')
v, w = np.arange(q.n)*q.a, np.arange(q.n)*q.a * np.random.random(q.n)
GRADER.submit_answer(q, mobility(v, w))
```

**Question 8.** Simulate the kinetic exchange model from Assignment 2a long enough for it to stabilize; call this time $T$, and let the wealth vector be $w_T$. Run the model $t$ timesteps further to time $T + t$, find the wealth vector $w_{T+t}$, and compute $\text{mobility}(w_T, w_{T+t})$. It’s up to you to decide how to judge stabilization; you don’t have to explain your method but you do have to submit a correct answer.

```python
Submitting your answer:
q = GRADER.fetch_question('q8')
q.n = 500000
GRADER.submit_answer(q, your_answer)
```

**Question 9.** Plot the social mobility for a population of 500,000 as in Question 8, over a sequence of timesteps. To be precise, plot $\text{mobility}(w_T, w_{T+t})$ on the y-axis and $t$ on the x-axis. You don’t have to submit your plot, but it may be assessed in the ticking...
These are optional further investigations into tax policy, using our econophysics simulator.

Use the following autograder settings:

```python
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick2star')
```

We will investigate variations on the kinetic exchange model, and alternative metrics. The first step is to rewrite the simulator to be more modular. Rewrite the simulator as a function

```python
def sim(w0, T, update, metrics):
 ...
 return (w, res)
```

where

- \( w0 \) is either an integer or an initial wealth vector; if \( w0 \) is integer then use initial wealth vector \( \text{np.ones}(w0) \)
- \( T \) is the number of timesteps to simulate
- \( \text{update} \) is a function to update wealth, with the same signature as \( \text{kinetic_exchange} \)
- \( \text{metrics} \) is a list of functions, each with the same signature as \( \text{gini} \)
- \( w \) is the wealth vector after \( T \) timesteps
- \( \text{res} \) is a \( T \times \text{len(metrics)} \) matrix, recording the value of each of the metrics at each timestep

Thus the answer to Tick 2a question 5 would be computed by

```python
sim(500000, 30, kinetic_exchange, [gini])
```

and the answer to Tick 2b question 9 would be computed by

```python
T = ...
w0, _ = sim(500000, T, kinetic_exchange, [])
_, r = sim(w0, 30, kinetic_exchange, [lambda w: mobility(w0,w)])
```

**Exercise (ex1).** In the kinetic exchange model, the poorest and the richest might swap places after just one transaction, which isn't very likely. Consider a different model for exchange. As before, suppose that two individuals with wealth \( c \) and \( w \) respectively are paired, but now let their wealth be updated by
where \( R \) is now a random number in \([-1, 1]\), chosen independently for every pair at every timestep. The idea is that each party to the exchange puts up a certain amount of money, but no more than they can afford. Implement an update function to model this.

### Exercise (ex1).

The Gini coefficient is unfamiliar to many people, and it’s easier to communicate “The richest 1% of the population own \( x \% \) of the wealth.” Implement a function

\[
\text{topk}(w, p)
\]

which computes what fraction of the total wealth is owned by the top \( p \) of the population.

```python
Submitting your answer
q = GRADER.fetch_question('ex1')
your_ans = Gini coefficient after q.t timesteps for a popn of size q.n
GRADER.submit_answer(q, your_ans)
```

### Exercise (ex2).

The government can intervene to reduce inequality. Suppose it levies a tax of say 40% on every exchange, collects all the tax revenue every timestep, and distributes it evenly to the entire population. Here’s a concrete example, for a population of size 6.

1. Initial wealth values are \([0, 2, 5, 3, 1, 2]\)
2. We pair individuals randomly: \((0, 2), (5, 3), (1, 2)\)
3. Random exchange amounts pre-tax are \((0, 0), (2.6, -2.6), (-0.4, 0.4)\)
4. Exchange amounts post-tax are \((0, 0), (2.08, -2.6), (-0.4, 0.32)\)
5. Government revenue is \((2.6 - 2.08) + (0.4 - 0.32) = 0.6\)
6. Government redistributes \(0.6/6 = 0.1\) to each person
7. Change in wealth is \([0.1, -0.1, 2.18, -2.5, -0.3, 0.42]\)
8. New wealth vector is \([0.1, 2.1, 7.18, 0.5, 0.7, 2.42]\)

Implement an update function to model this.

```python
Submitting your answer
q = GRADER.fetch_question('ex3')
your_ans = fraction of wealth owned by top 1%, at tax rate q.taxrate,
after q.t timesteps for a popn of size q.n
GRADER.submit_answer(q, your_ans)
```

### Exercise (ex3).

Further investigations.

- Is there a tradeoff between inequality and social mobility? Try different tax rates, measure the inequality and the social mobility, and plot your results.
- The economist Thomas Piketty argues [here](https://en.wikipedia.org/wiki/Capital_in_the_Twenty-First_Century) that we have entered an age where the return on capital is greater than the growth due to income, and that this leads to higher inequality. We could incorporate income into the model by assigning each individual \( i \) a per-timestep income \( g_i \), where the \( g_i \) are randomly chosen \text{a priori}. We could incorporate return on capital into the model, by multiplying wealth by a growth factor every timestep (and rescaling income to account for inflation). Investigate what happens when we combine these two extensions. How well correlated are income and wealth? How does the relationship depend on capital growth rate? Do you agree with Piketty? Does taxation alter the relationship?
Tick 3

- Pandas warmup exercises — not assessed
- Tick 3a — worth 1 mark
- Tick 3b — worth 1 mark
- Tick 3* — not assessed

Pandas warmup exercises (not assessed)

These are optional warmup exercises, to get you used to pandas.

Use the following autograder settings:

```python
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('notes3')
```

Each question has a label (in brackets). Call `fetch_question` to see a model answer.

```python
q = GRADER.fetch_question('ex1')
view the answer
print(q)
```

Exercise (ex1) from section 3.5. In pandas, to find the most frequent value (the _mode_) of `age_range` in the `stopsearch` dataset, we can use

```python
stopsearch['age_range'].mode().values[0]
```

(The `mode()` call returns an object, and `.values[0]` extracts just the value itself.)

How would you generate a table showing the most frequent age range for each combination of ethnicity and gender?

Exercise (ex2) from section 3.4 and 3.5. Given the dataframe

```python
df = pandas.DataFrame({'A': [0,0,0,1,1,1], 'B': [0,1,2,0,1,2], 'X': range(6)})
```

how do you produce a table that has rows for A, columns for B, and shows values of X?

Exercise (ex3) from section 3.6. This code produces a dataframe with columns for ethnicity, outcome, and n:

```python
sscam = stopsearch.loc[stopsearch.force=='cambridgeshire'].copy()
sscam['outcome'] = np.where(sscam.outcome == 'False', 'nothing', 'find')
df = sscam.groupby(["officer_defined_ethnicity","outcome"]).apply(len).reset_index(name='n')
```

Take the subtable with `outcome='nothing'`, and the subtable with `outcome='find'`, and merge them; then use the merged table to compute the `percent_find` column from section 3.6 of notes.

Exercise (ex4) from section 3.5. As an alternative to the method in exercise ex3, take the indexed array

```python
sscam.groupby(["officer_defined_ethnicity","outcome"]).apply(len)
```

and convert it to a wide-form dataframe, then use this to compute `percent_find`.

Tick 3a. Analysis of flood data

This section is worth 1 mark. Use these autograder settings:

```python
import ucamcl
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick3a')
```

This assignment tests your skill at manipulating dataframes and indexed arrays. YOUR CODE MUST USE PANDAS AND NUMPY OPERATIONS FOR DATA MANIPULATION rather than for loops, wherever possible.

Introduction
This assignment asks you to analyse data provided by the UK Environment Agency concerning flooding. The agency offers an API for near real-time data covering:

- flood warnings and flood alerts
- flood areas which to which warnings or alerts apply
- measurements of water levels and flows
- information on the monitoring stations providing those measurements

In this assignment we will be working with historical data of water level measurements, at several monitoring stations in Cambridge and on the Cam. The dataset is available as a CSV file at https://teachingfiles.blob.core.windows.net/datasets/flood_20191125.csv.


**Questions**

**Question 1.** Import the CSV file and print out a few lines, choosing the lines at random using `np.random.choice`. The file mistakenly includes records from a River Cam in Gloucestershire, and another River Cam in Somerset. Remove these rows, and store what's left as the data frame `flood`. How many rows are left?

```python
Submit your answer:
GRADER.submit_answer(GRADER.fetch_question('q1'), num_rows)
```

**Hint.** `DataFrame.drop_duplicates` may be useful for seeing what's in the file.

**Question 2.** Complete this table of the number of entries in this dataset for each town and river.

<table>
<thead>
<tr>
<th></th>
<th>Cambridge</th>
<th>Great Chesterford</th>
<th>Great Shelford</th>
<th>Milton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Brook</td>
<td>2628</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>River Cam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

# Submit your answer

```python
your_ans = ... # an unstacked indexed array
GRADER.submit_answer(GRADER.fetch_question('q2'), your_ans.values)
```

**Question 3.** Each water measuring station has a distinct `measure_id` and `label`. Complete this dataframe of the number of measurement stations for each town and river. Use only the Pandas operations for split-apply-combine, don't use any numpy operations or Python for loops or list comprehensions.

<table>
<thead>
<tr>
<th>town</th>
<th>num_stations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milton</td>
<td>1</td>
</tr>
<tr>
<td>Great Shelford</td>
<td>1</td>
</tr>
</tbody>
</table>

# Submit your answer. Row order doesn't matter.

```python
GRADER.submit_answer(GRADER.fetch_question('q3'), your_dataframe)
```

**Question 4.** Each measurement station has low and high reference levels, in columns `low` and `high`. In this dataset, the reference levels are stored for every measurement, but we can verify that every `measure_id` has a unique pair `(low,high)` with
assert all(flood.groupby(['measure_id','low','high']).apply(len).groupby('measure_id').apply(len) == 1), "Reference levels non-constant"

Add a column norm_value, by rescaling value linearly so that value=low corresponds to norm_value=0 and value=high corresponds to norm_value=1. Use np.nanquantile to find the tercile points (https://en.wiktionary.org/wiki/tercile), the two values that split the entire norm_value column into three roughly equal parts.

# Submit your answer:
GRADER.submit_answer(GRADER.fetch_question('q4'), [tercile1, tercile2])

**Question 5.** Complete the following dataframe, listing the number of observations in each tercile and the total. (When there are repeated values, it's arbitrary how we assign observations into terciles. To answer this question, use the convention that med means tercile1 <= value < tercile2.)

<table>
<thead>
<tr>
<th>label</th>
<th>norm_value_tercile</th>
<th>n</th>
<th>ntot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Brook</td>
<td>med</td>
<td>2468</td>
<td>2628</td>
</tr>
<tr>
<td>Bin Brook</td>
<td>high</td>
<td>162</td>
<td>2628</td>
</tr>
<tr>
<td>Cambridge Baits Bite</td>
<td>low</td>
<td>2</td>
<td>2813</td>
</tr>
</tbody>
</table>

# Submit your answer. Row order doesn't matter.
GRADER.submit_answer(GRADER.fetch_question('q5'), your_dataframe)

**Question 6.** Complete this dataframe, listing the fraction of observations in each tercile per station:

<table>
<thead>
<tr>
<th>label</th>
<th>low</th>
<th>med</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Brook</td>
<td>0.000</td>
<td>0.938</td>
<td>0.062</td>
</tr>
<tr>
<td>Cambridge Jesus Lock</td>
<td>0.032</td>
<td>0.356</td>
<td>0.612</td>
</tr>
</tbody>
</table>

# Submit your answer. Row order doesn't matter. Don't round.
GRADER.submit_answer(GRADER.fetch_question('q6'), your_dataframe)

**Question 7.** Fill in the rest of this indexed array, giving the low and high values for each measurement station.

<table>
<thead>
<tr>
<th>label</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin Brook</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>low</td>
</tr>
<tr>
<td>Cambridge Baits Bite</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td>low</td>
</tr>
</tbody>
</table>

# Submit your answer. Let your_ans be an indexed array.
GRADER.submit_answer(GRADER.fetch_question('q7'), your_ans.reset_index(name='val'))

Hint. There are many ways to approach this. The cleanest is to use melt (https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt)

**Tick 3b. Plotting**

This section is worth 1 mark. There is no automated testing of your answers here, but your code may be assessed in the ticking session.

For this assignment you will need to figure out matplotlib’s myriad options. You will need to spend time searching (https://stackoverflow.com/questions/tagged/matplotlib) for help. You don’t need to be pixel perfect, but you do need to demonstrate that you can control

- aspect ratio
- subplots layout and spacing
- x and y axis ranges, and colour palette
- display of tick labels and gridlines
- legend placement
- titles

**Question 8.** Reproduce this plot:
Question 9. Reproduce this plot:

The light shaded area shows the range from low to high for each station. The dark shaded area shows the inter-tercile range, low+tercile1*(high-low) to low+tercile2*(high-low) where tercile1 and tercile2 are your answers to Question 4. They can be plotted with `ax.axhspan` (https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axhspan.html). Here are some code snippets that may be useful, for formatting tick labels with dates.

```python
import matplotlib
Date-axis control, taken from http://matplotlib.org/examples/api/date_demo.html
ax.xaxis.set_major_locator(matplotlib.dates.WeekdayLocator(byweekday=matplotlib.dates.MON, tz=pytz.UTC))
ax.xaxis.set_minor_locator(matplotlib.dates.DayLocator(tz=pytz.UTC))
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%a %d %b'))
```

Tick 3* (not assessed)

Question 10. The real story in this dataset is about the Yorkshire floods of 2019 (https://en.wikipedia.org/wiki/2019_Yorkshire_floods). Using the full dataset of all readings, plot a map showing the peak water level at each measuring station. Here’s an illustration.
You can download the full dataset in three files,

- https://teachingfiles.blob.core.windows.net/datasets/stations_20191125.csv
- https://teachingfiles.blob.core.windows.net/datasets/measures_20191125.csv
- https://teachingfiles.blob.core.windows.net/datasets/readings_20191125.csv

You will have to merge these files: readings.measure_id refers to measures.measure_id, and measures.station_uri refers to station.uri. You will also have to filter the readings, and only keep those with parameter='Water Level'.

**Question 11.** The dataset also includes rainfall measurements. Plot rainfall and water level, for the worst-affected rivers.