
Tick 2
Python warmup exercises — not assessed
NumPy warmup exercises — not assessed
Tick 2a — worth 1 mark
Tick 2b — worth 1 mark
Tick 2* — not assessed

Python warmup exercises (not assessed)

These are optional warmup exercises, to get you used to Python coding.

Use the following autograder settings:

import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('notes1')

Each question has a label (in brackets). Call fetch_question  to see a model answer.

q = GRADER.fetch_question('ex1') 
# view the answer 
print(q)

Exercise (ex1) from section 1.2.1. In Python, how do you ...

calculate the base 10 logarithm of 1200
calculate the tangent of 60 degrees
calculate the square root of -20

Exercise (ex2) from section 1.3.1. What is the difference between the two commented lines? Do they give the same result?

a = [1, 2, 'buckle my shoe'] 
b = (a, 3, 4, 'knock at the door') 
# b[0].append('then') 
# b[0] = a + ['then'] 
print(a, b)

Exercise (ex3) from section 1.3.4. If you go overboard with list comprehensions, your code becomes unreadable. What does the
following code do? Here rooms  is from the code in section 1.3.4.

'\n'.join(['Room {r} has {', '.join(occs)}}'  
         for r,occs in rooms.items() if r is not None])

Exercise (ex4) from section 1.3.5. Write a single line of code to sort the names in this list

names = ['adrian', 'chloe', 'guarav', 'shay', 'alexis', 'rebecca', 'zubin']

by length, breaking ties alphabetically, using list comprehension.

Hint: make a list of (len(name), name)  then sort it, where len(s)  gives the length of a string. When Python sorts a list of tuples,
it uses lexicographic ordering (https://en.wikipedia.org/wiki/Lexicographical_order).

Exercise (ex5) from section 1.3.5. Let  be a list of numbers. Give a one-line expression to find the number of unique elements in .
Hint: use a dictionary comprehension to create a dictionary whose keys are elements of .

𝑥 𝑥

𝑥

Exercise (ex6) from section 1.4.1. A simple queue can be simulated by the following equations. Let  be the queue size just before
timestep , let the service rate be , and let  be the amount of work arriving at timestep . Then

This is called Lindley's Recursion. Write a function sim(q0,C,a)  to compute the queue sizes. It should accept an initial queue size 
q0  and a list a  consisting of , and it should return a list . For example,

sim(1, 3, [4, 1, 2, 8, 2, 3, 1])

𝑞𝑡
𝑡 𝐶 𝑎𝑡 𝑡

= max( + − 𝐶, 0).𝑞𝑡+1 𝑞𝑡 𝑎𝑡

[ , ,… , ]𝑎0 𝑎1 𝑎𝑡−1 [ ,… , ]𝑞1 𝑞𝑡

https://en.wikipedia.org/wiki/Lexicographical_order


should produce the answer

[2, 0, 0, 5, 4, 4, 2]

Exercise (ex7) from sections 1.4.1 and 1.4.4. We can represent a tree as a nested list, for example

x = [1,[[2,4,3],9],[5,[6,7],8]]

Define a function maptree(f, x)  which applies a function f  to every leaf of the tree.

NumPy warmup exercises (not assessed)

These are optional warmup exercises, to get you used to numpy. When you submit an answer, you'll also be shown a model
answer. As with the Python warmup exercises, each question has a code (in brackets) which you should use to fetch to see the
model answer.

Use the following autograder settings:

import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('notes2')

Exercise (ex1) from section 2.2.2. Here is some standard Python code:

import math, random 
x = random.uniform(-1, 1) 
y = random.uniform(-1, 1) 
d = math.sqrt(x**2 + y**2)

We'd like to repeat this a million times, and find the mean and standard deviation of the d  values. Implement this using numpy
vectorized code.

Exercise (ex2) from section 2.3. For a numpy matrix a , what is the relationship between a.shape  and len(a) ?

Exercise (ex3) from section 2.3. Look up the numpy help for np.arange
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html) and reshape
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html), and use these functions to produce the 
matrix

Look up the help for np.sum  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html), and compute the length-5
vector of column sums and the length-3 vector of row sums.

3 × 5

𝑏 =








1

6

11

2

7

12

3

8

13

4

9

14

5

10

15








Exercise (ex4) from section 2.3. Find two different ways to use numpy to create the column vector [[1],[2],...,[n]] .

Exercise (ex5) from section 2.3. A permutation matrix (https://en.wikipedia.org/wiki/Permutation_matrix) is a square matrix of 0s and
1s, where each row contains exactly one 1, and each column likewise. (The code snippet in section 2.3 of notes, for 'advanced
indexing', creates a  permutation matrix.)

Write code to generate a random  permutation matrix.

3 × 3

𝑛 × 𝑛

Exercise (ex6) from section 2.2.2. In a previous exercise you wrote a Pythonic simulator for a queue, based on the recursion

It can be proved that another way to get the same answer is with the formula

where

= max( + − 𝐶, 0).𝑞𝑡+1 𝑞𝑡 𝑎𝑡

= + − min(0, )𝑞𝑡 𝑞0 𝑥𝑡 𝑦𝑡

= ( − 𝐶) and = ( + ).𝑥𝑡 ∑
𝑢=0

𝑡−1

𝑎𝑢 𝑦𝑡 min
1≤𝑢≤𝑡

𝑞0 𝑥𝑢

https://docs.scipy.org/doc/numpy/reference/generated/numpy.arange.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.reshape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html
https://en.wikipedia.org/wiki/Permutation_matrix


Given a vector ,

compute  using np.cumsum  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html)
compute  by accumulating
(https://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.accumulate.html) the function np.minimum
compute , and check your answer against your Pythonic code.

𝑎 = [ , ,… , ]𝑎0 𝑎1 𝑎𝑡−1

𝑥 = [ , ,… , ]𝑥1 𝑥2 𝑥𝑡

𝑦 = [ , ,… , ]𝑦1 𝑦2 𝑦𝑡

𝑞 = [ , ,… , ]𝑞1 𝑞2 𝑞𝑡

Exercise (ex7) from section 2.4

When we used numerical optimization in section 2.4, to find the minimum of

we used the initial guess  and found the local minimum at . Now, we'll look for a global minimum. It's good practice
to search the parameter space randomly, to avoid Moiré effects (https://en.wikipedia.org/wiki/Moir%C3%A9_pattern).

Create a vector x  consisting of values randomly chosen in the interval 
Create a vector optx  containing the result of running scipy.optimize.fmin starting at each of the x  values.
Plot your answers with plt.plot(x, optx, marker='o') .

You can turn off the diagnostic output with the option fmin(disp=False) . You'll need to sort the points before plotting, else the line
will go back and forth across the plot.

𝑓(𝑥) = 𝑥 − 3 + ,𝑥2 𝑥4

= 0.5𝑥0 𝑥 = 1.13

[−2, 2]

Tick 2a. Econophysics simulator
This section is worth 1 mark. Use these autograder settings:

import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick2a')

This assignment tests your vectorized thinking. You will be asked to run simulations on a population of hundreds of thousands of
individuals, over many timesteps. YOUR CODE MUST USE NUMPY VECTORIZED OPERATIONS rather than iterating over the
population. You may use Python iteration over timesteps.

Introduction
Economic inequality is one of the defining social issues of our age. Yet we have a poor grasp of the scale of inequality, as described in
Scientific American (https://www.scientificamerican.com/article/economic-inequality-it-s-far-worse-than-you-think/) and nicely shown in
this video (https://www.youtube.com/watch?v=QPKKQnijnsM):

(https://www.youtube.com/watch?v=QPKKQnijnsM)

How does inequality arise? Is it an inevitable outcome of liberal economics, and if so how can it be mitigated by economic policy?
These questions have been studied by economists (https://link.springer.com/article/10.1140/epjst/e2016-60162-3) and more recently
by (https://phys.org/news/2007-04-world-economies-similarities-economic-inequality.html) physicists
(https://arxiv.org/abs/1606.06051). In this assignment you will investigate a simple "econophysics" model of inequality.

Here is a simple model. There are  individuals in the population, each with an initial wealth of £1. Every timestep, we randomly
group them into  pairs. (Assume  is even.) For every pair, we simulate an economic exchange, as follows. Let the two paired
individuals have wealth  and , and update their wealth according to

where  is a random number in , chosen independently for every pair and at every timestep. This model is loosely inspired by
the physics of gases, in which two gas molecules exchange a random amount of energy whenever they collide.

We can measure inequality with the Gini coefficient (https://en.wikipedia.org/wiki/Gini_coefficient),

where  is the smallest value,  the second smallest etc. If everyone has the same wealth then ; if one person has all
the wealth then .

𝑁

𝑁/2 𝑁

𝑣 𝑤

= 𝑅(𝑣 + 𝑤), = (1 − 𝑅)(𝑣 + 𝑤)𝑣new 𝑤new
𝑅 [0, 1]

𝐺 = 2 − (1 + )
𝑖∑𝑁𝑖=1 𝑤(𝑖)

𝑁∑𝑖 𝑤(𝑖)

1

𝑁

𝑤(1) 𝑤(2) 𝐺 = 0

𝐺 = 1 − 1/𝑁

https://docs.scipy.org/doc/numpy/reference/generated/numpy.cumsum.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.accumulate.html
https://en.wikipedia.org/wiki/Moir%C3%A9_pattern
https://www.scientificamerican.com/article/economic-inequality-it-s-far-worse-than-you-think/
https://www.youtube.com/watch?v=QPKKQnijnsM
https://www.youtube.com/watch?v=QPKKQnijnsM
https://link.springer.com/article/10.1140/epjst/e2016-60162-3
https://phys.org/news/2007-04-world-economies-similarities-economic-inequality.html
https://arxiv.org/abs/1606.06051
https://en.wikipedia.org/wiki/Gini_coefficient


Questions
Question 1. The model needs us to randomly group the population into  pairs. We can do this by randomly permuting the vector 

, letting the vector m1  consist of the first  integers and m2  consist of the rest, and interpreting it as " m1[i]  is
paired with m2[i] ".

Write a function pairs(N)  that returns a tuple (m1,m2)  where m1  and m2  are both vectors of length  as described above.
For example, if you run pairs(6) , you might get the output

(array[(3, 0, 1]), array([2, 4, 5]))

To submit your answer,

q = GRADER.fetch_question('q1') 
m1,m2 = pairs(q.n) 
ans = {'n': len(np.unique(np.concatenate([m1,m2]))), 's': np.std(np.abs(m1-m2))} 
GRADER.submit_answer(q, ans)

𝑁/2

[0, . . . ,𝑁 − 1] 𝑁/2

𝑁/2

Question 2. Write a function kinetic_exchange(v,w)  which takes two wealth vectors v  and w , each of length , and returns
a tuple (vnew, wnew)  with two new vectors, according to the kinetic exchange model. To submit your answer,

q = GRADER.fetch_question('q2') 
v,w = np.linspace(1,5,q.n), np.linspace(1,2,q.n)**q.p 
vnew,wnew = kinetic_exchange(v,w) 
ans = {'m1': np.mean(vnew), 's2': np.std(wnew)} 
GRADER.submit_answer(q, ans)

𝑁/2

Question 3. Write a function gini(w)  which takes a vector w  and returns the Gini coefficient. To submit your answer,

q = GRADER.fetch_question('q3') 
w = np.linspace(0,1,q.n)**q.p 
g = gini(w) 
GRADER.submit_answer(q, {'g': g})

Question 4. Write a function sim(N, T)  which runs the kinetic exchange model on a population of  individuals for  timesteps. It
should return a pair (w, gs)  where w  is the wealth vector after  timesteps, and gs  is a length  vector where gs[i]  is the
Gini coefficient at timestep . To submit your answer,

q = GRADER.fetch_question('q4') 
w,gs = sim(q.n, q.t) 
ans = {'gm': np.mean(gs[int(q.t/2):]), 'gs': np.std(gs[int(q.t/2):]), 'ws': np.std(w)} 
GRADER.submit_answer(q, ans)

𝑁 𝑇

𝑇 𝑇

𝑖

Question 5. Simulate a population of 500,000 over 30 iterations. Plot the Gini coefficient as a function of timestep. To be precise, if 
 is the wealth vector after  timesteps then you should plot  on the -axis and  on the -axis. You don't have to submit

your plot, but it may be assessed in the ticking session. Your plot should look something like this:
𝑤𝑡 𝑡 𝗀𝗂𝗇𝗂( )𝑤𝑡 𝑦 𝑡 𝑥

Tick 2b. Economic mobility
This section is worth 1 mark. Use these autograder settings:



import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick2b')

This assignment tests your vectorized thinking. You will be asked to run simulations on a population of hundreds of thousands of
individuals, over many timesteps. YOUR CODE MUST USE NUMPY VECTORIZED OPERATIONS rather than iterating over the
population. You may use Python iteration over timesteps.

Introduction
Some degree of inequality might be acceptable if economic mobility were high, i.e. if everyone had similar chances of reaching either
end of the wealth distribution. Economic mobility is often measured by splitting the population into five equal brackets, and measuring
the chance of moving between brackets. From the Wikipedia article on economic mobility
(https://en.wikipedia.org/wiki/Economic_mobility):

in terms of relative mobility a report (https://www.brookings.edu/research/economic-mobility-of-families-across-
generations/) stated: "contrary to American beliefs about equality of opportunity, a child’s economic position is heavily
influenced by that of his or her parents." 42% of children born to parents in the bottom fifth of the income distribution
("quintile") remain in the bottom, while 39% born to parents in the top fifth remain at the top.

Let's measure economic mobility by recording the wealth distribution at one timepoint, and again some number of timesteps later,
splitting the two distributions into quintiles, and counting what fraction of the population moved by more than one quintile from
beginning to end. (In each timestep a median individual might find their wealth increasing or decreasing by around 50%, so one
timestep corresponds roughly to several years of human life.) For example, if we have a population of 5000 and we draw up a matrix 

 where  is the number of people who start in quintile  and end up in quintile , we might get

(A quick check: the row sums and column sums are all 1000.) The number who moved by more than one quintile is 1148, which is
23% of the population.

𝐴 𝐴𝑖𝑗 𝑖 𝑗

𝐴 =











344

266

212

147

31

313

261

260

143

23

243

302

225

183

47

100

167

272

331

130

0

4

31

196

769











Questions

Question 6. In a perfectly mobile economy, where everyone has equal chance of reaching any quintile, what fraction of people are
expected to move by more than one quintile?

q = GRADER.fetch_question('q6') 
GRADER.submit_answer(q, your_answer)

Question 7. Write a function mobility(v,w)  that returns the proportion of people who moved by more than one quintile, where 
v[i]  and w[i]  measure respectively the wealth of individual  at the beginning and end of a time period. Hint: look up 
np.percentile  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile) and 
np.digitize  (https://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html).

# Submitting your answer: 
q = GRADER.fetch_question('q7') 
v,w = np.arange(q.n)**q.a, np.arange(q.n)**q.a * np.random.random(q.n) 
GRADER.submit_answer(q, mobility(v,w))

𝑖

Question 8. Simulate the kinetic exchange model from Assignment 2a long enough for it to stabilize; call this time , and let the
wealth vector be . Run the model  timesteps further to time , find the wealth vector , and compute 

. It's up to you to decide how to judge stabilization; you don't have to explain your method but you do have to
submit a correct answer.

# Submitting your answer: 
q = GRADER.fetch_question('q8') 
# For a population size q.n, measure mobility over from time T to time T+q.t 
GRADER.submit_answer(q, your_answer)

𝑇

𝑤𝑇 𝑡 𝑇 + 𝑡 𝑤𝑇+𝑡
𝗆𝗈𝖻𝗂𝗅𝗂𝗍𝗒( , )𝑤𝑇 𝑤𝑇+𝑡

Question 9. Plot the social mobility for a population of 500,000 as in Question 8, over a sequence of timesteps. To be precise, plot 
 on the -axis and  on the -axis. You don't have to submit your plot, but it may be assessed in the ticking𝗆𝗈𝖻𝗂𝗅𝗂𝗍𝗒( , )𝑤𝑇 𝑤𝑇+𝑡 𝑦 𝑡 𝑥

https://en.wikipedia.org/wiki/Economic_mobility
https://www.brookings.edu/research/economic-mobility-of-families-across-generations/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.percentile.html#numpy.percentile
https://docs.scipy.org/doc/numpy/reference/generated/numpy.digitize.html


session. Your plot should look something like this:

Tick 2* (not asssessed)

These are optional further investigations into tax policy, using out econophysics simulator.

Use the following autograder settings:

import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick2star')

We will investigate variations on the kinetic exchange model, and alternative metrics. The first step is to rewrite the simulator to be
more modular. Rewrite the simulator as a function

def sim(w0, T, update, metrics):  
   ... 
   return (w, res)

where

w0  is either an integer or an initial wealth vector; if w0  is integer then use initial wealth vector np.ones(w0)
T  is the number of timesteps to simulate
update  is a function to update wealth, with the same signature as kinetic_exchange
metrics  is a list of functions, each with the same signature as gini
w  is the wealth vector after T  timesteps
res  is a T x len(metrics)  matrix, recording the value of each of the metrics at each timestep

Thus the answer to Tick 2a question 5 would be computed by

sim(500000, 30, kinetic_exchange, [gini])

and the answer to Tick 2b question 9 would be computed by

T = ... 
w0,_ = sim(500000, T, kinetic_exchange, []) 
_,r = sim(w0, 30, kinetic_exchange, [lambda w: mobility(w0,w)])

Exercise (ex1). In the kinetic exchange model, the poorest and the richest might swap places after just one transaction, which isn't
very likely. Consider a different model for exchange. As before, suppose that two individuals with wealth  and  respectively are
paired, but now let their wealth be updated by

𝑣 𝑤



where  is now a random number in , chosen independently for every pair at every timestep. The idea is that each party to
the exchange puts up a certain amount of money, but no more than they can afford. Implement an update function to model this.

# Submitting your answer: 
q = GRADER.fetch_question('ex1') 
# your_ans = Gini coefficient after q.t timesteps for a popn of size q.n 
GRADER.submit_answer(q, your_ans)

= 𝑣 + 𝑅min(𝑣,𝑤), = 𝑤 − 𝑅min(𝑣,𝑤)𝑣new 𝑤new
𝑅 [−1, 1]

Exercise (ex2). The Gini coefficient is unfamiliar to many people, and it's easier to communicate "The richest 1% of the population
own % of the wealth." Implement a function

topk(w, p)

which computes what fraction of the total wealth is owned by the top  of the population.

# Submitting your answer 
q = GRADER.fetch_question('ex2') 
# your_ans = fraction of wealth owned by top 1%, after q.t timesteps for a popn of size q.n 
GRADER.submit_answer(q, your_ans)

𝑥

𝑝

Exercise (ex3). The government can intervene to reduce inequality. Suppose it levies a tax of say 40% on every exchange, collects
all the tax revenue every timestep, and distributes it evenly to the entire population. Here's a concrete example, for a population of
size 6.

1. Initial wealth values are 
2. We pair individuals randomly: 
3. Random exchange amounts pre-tax are 
4. Exchange amounts post-tax are 
5. Government revenue is 
6. Government redistributes  to each person
7. Change in wealth is 
8. New wealth vector is 

Implement an update function to model this.

# Submitting your answer 
q = GRADER.fetch_question('ex3') 
# your_ans = fraction of wealth owned by top 1%, at tax rate q.taxrate, 
# after q.t timesteps for a popn of size q.n 
GRADER.submit_answer(q, your_ans)

[0, 2, 5, 3, 1, 2]

(0, 2), (5, 3), (1, 2)

(0, 0), (2.6,−2.6), (−0.4, 0.4)

(0, 0), (2.08,−2.6), (−0.4, 0.32)

(2.6 − 2.08) + (0.4 − 0.32) = 0.6

0.6/6 = 0.1

[0.1, 0.1, 2.18,−2.5,−0.3, 0.42]

[0.1, 2.1, 7.18, 0.5, 0.7, 2.42]

Further investigations.

Is there a tradeoff between inequality and social mobility? Try different tax rates, measure the inequality and the social mobility,
and plot your results.
The economist Thomas Piketty argues (https://en.wikipedia.org/wiki/Capital_in_the_Twenty-First_Century) that we have entered
an age where the return on capital is greater than the growth due to income, and that this leads to higher inequality. We could
incorporate income into the model by assigning each individual  a per-timestep income , where the  are randomly chosen a
priori. We could incorporate return on capital into the model, by multiplying wealth by a growth factor every timestep (and
rescaling income to account for inflation). Investigate what happens when we combine these two extensions. How well correlated
are income and wealth? How does the relationship depend on capital growth rate? Do you agree with Piketty? Does taxation alter
the relationship?

𝑖 𝑔𝑖 𝑔𝑖

https://en.wikipedia.org/wiki/Capital_in_the_Twenty-First_Century


Tick 3
Pandas warmup exercises — not assessed
Tick 3a — worth 1 mark
Tick 3b — worth 1 mark
Tick 3* — not assessed

Pandas warmup exercises (not assessed) ¶

These are optional warmup exercises, to get you used to pandas.

Use the following autograder settings:

import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('notes3')

Each question has a label (in brackets). Call fetch_question  to see a model answer.

q = GRADER.fetch_question('ex1') 
# view the answer 
print(q)

Exercise (ex1) from section 3.5. In pandas, to find the most frequent value (the _mode_) of age_range  in the stopsearch
dataset, we can use

stopsearch['age_range'].mode().values[0]

(The mode()  call returns an object, and .values[0]  extracts just the value itself.)

How would you generate a table showing the most frequent age range for each combination of ethnicity and gender?

Exercise (ex2) from section 3.4 and 3.5. Given the dataframe

df = pandas.DataFrame({'A': [0,0,0,1,1,1], 'B': [0,1,2,0,1,2], 'X': range(6)})

how do you produce a table that has rows for A, columns for B, and shows values of X?

Exercise (ex3) from section 3.6. This code produces a dataframe with columns for ethnicity, outcome, and n:

sscam = stopsearch.loc[stopsearch.force=='cambridgeshire'].copy() 
sscam['outcome'] = np.where(sscam.outcome == 'False', 'nothing', 'find') 
df = sscam.groupby(['officer_defined_ethnicity','outcome']).apply(len).reset_index(name='n')

Take the subtable with outcome=='nothing' , and the subtable with outcome='find' , and merge them; then use the merged
table to compute the percent_find  column from section 3.6 of notes.

Exercise (ex4) from section 3.5. As an alternative to the method in exercise ex3, take the indexed array

sscam.groupby(['officer_defined_ethnicity','outcome']).apply(len)

and convert it to a wide-form dataframe, then use this to compute percent_find .

Tick 3a. Analysis of flood data
This section is worth 1 mark. Use these autograder settings:

import ucamcl 
GRADER = ucamcl.autograder('https://markmy.solutions', course='scicomp').subsection('tick3a')

This assignment tests your skill at manipulating dataframes and indexed arrays. YOUR CODE MUST USE PANDAS AND
NUMPY OPERATIONS FOR DATA MANIPULATION rather than for loops, wherever possible.

Introduction



This assignment asks you to analyse data provided by the UK Environment Agency concerning flooding. The agency offers an API for
near real-time data (http://environment.data.gov.uk/flood-monitoring/doc/reference) covering:

flood warnings and flood alerts
flood areas which to which warnings or alerts apply
measurements of water levels and flows
information on the monitoring stations providing those measurements

In this assignment we will be working with historical data of water level measurements, at several monitoring stations in Cambridge
and on the Cam. The dataset is available as a CSV file at https://teachingfiles.blob.core.windows.net/datasets/flood_20191125.csv
(https://teachingfiles.blob.core.windows.net/datasets/flood_20191125.csv).

Image by N. Chadwick (http://www.geograph.org.uk/photo/4800494).

Questions

Question 1. Import the CSV file and print out a few lines, choosing the lines at random using np.random.choice . The file
mistakenly includes records from a River Cam in Gloucestershire, and another River Cam in Somerset. Remove these rows, and
store what's left as the data frame flood . How many rows are left?

# Submit your answer: 
GRADER.submit_answer(GRADER.fetch_question('q1'), num_rows)

Hint. DataFrame.drop_duplicates  (https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html) may be useful for seeing what's in the file.

Question 2. Complete this table of the number of entries in this dataset for each town and river.

. Cambridge Great Chesterford Great Shelford Milton

Bin Brook 2628 0

River Cam

# Submit your answer 
your_ans = ...  # an unstacked indexed array 
GRADER.submit_answer(GRADER.fetch_question('q2'), your_ans.values)

Question 3. Each water measuring station has a distinct measure_id  and label . Complete this dataframe of the number of
measurement stations for each town and river. Use only the Pandas operations for split-apply-combine, don't use any numpy
operations or Python for  loops or list comprehensions.

town num_stations

Milton 1

Great Shelford 1

# Submit your answer. Row order doesn't matter. 
GRADER.submit_answer(GRADER.fetch_question('q3'), your_dataframe)

Question 4. Each measurement station has low and high reference levels, in columns low  and high . In this dataset, the reference
levels are stored for every measurement, but we can verify that every measure_id  has a unique pair (low,high)  with

http://environment.data.gov.uk/flood-monitoring/doc/reference
https://teachingfiles.blob.core.windows.net/datasets/flood_20191125.csv
http://www.geograph.org.uk/photo/4800494
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.drop_duplicates.html


assert all(flood.groupby(['measure_id','low','high']).apply(len).groupby('measure_id').apply(len) == 
1), "Reference levels non-constant"

Add a column norm_value , by rescaling value  linearly so that value=low  correponds to norm_value=0  and value=high
corresponds to norm_value=1 . Use np.nanquantile  to find the tercile points (https://en.wiktionary.org/wiki/tercile), the two values
that split the entire norm_value  column into three roughly equal parts.

# Submit your answer: 
GRADER.submit_answer(GRADER.fetch_question('q4'), [tercile1, tercile2])

Question 5. Complete the following dataframe, listing the number of observations in each tercile and the total. (When there are
repeated values, it's arbitrary how we assign observations into terciles. To answer this question, use the convention that med  means 
tercile1 <= value < tercile2 .)

label norm_value_tercile n ntot

Bin Brook med 2466 2628

Bin Brook high 162 2628

Cambridge Baits Bite low 2 2813

# Submit your answer. Row order doesn't matter. 
GRADER.submit_answer(GRADER.fetch_question('q5'), your_dataframe)

Question 6. Complete this dataframe, listing the fraction of observations in each tercile per station:

label low med high

Bin Brook 0.000 0.938 0.062

Cambridge Jesus Lock 0.032 0.356 0.612

# Submit your answer. Row order doesn't matter. Don't round. 
GRADER.submit_answer(GRADER.fetch_question('q6'), your_dataframe)

Question 7. Fill in the rest of this indexed array, giving the low  and high  values for each measurement station.

label ref

Bin Brook high 1.000

low 0.057

Cambridge Baits Bite high 0.294

low 0.218

# Submit your answer. Let your_ans be an indexed array. 
GRADER.submit_answer(GRADER.fetch_question('q7'), your_ans.reset_index(name='val'))

Hint. There are many ways to approach this. The cleanest is to use melt  (https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt)

Tick 3b. Plotting
This section is worth 1 mark. There is no automated testing of your answers here, but your code may be assessed in the ticking
session.

For this assignment you will need to figure out matplotlib's myriad options. You will need to spend time searching
(https://stackoverflow.com/questions/tagged/matplotlib) for help. You don't need to be pixel perfect, but you do need to
demonstrate that you can control

aspect ratio
subplots layout and spacing
x and y axis ranges, and colour palette
display of tick labels and gridlines
legend placement
titles

Question 8. Reproduce this plot:

https://en.wiktionary.org/wiki/tercile
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.melt.html#pandas.DataFrame.melt
https://stackoverflow.com/questions/tagged/matplotlib


Question 9. Reproduce this plot:

The light shaded area shows the range from low  to high  for each station. The dark shaded area shows the inter-tercile range, 
low+tercile1*(high-low)  to low+tercile2*(high-low)  where tercile1  and tercile2  are your answers to Question 4.

They can be plotted with ax.axhspan
(https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axhspan.html#matplotlib.axes.Axes.axhspan). Here are some code snippets
that may be useful, for formatting tick labels with dates.

import matplotlib 
# Date-axis control, taken from http://matplotlib.org/examples/api/date_demo.html 
ax.xaxis.set_major_locator(matplotlib.dates.WeekdayLocator(byweekday=matplotlib.dates.MO, tz=pytz.UT
C)) 
ax.xaxis.set_minor_locator(matplotlib.dates.DayLocator(tz=pytz.UTC)) 
ax.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%a %d %b'))

Tick 3* (not assessed)
Question 10. The real story in this dataset is about the Yorkshire floods of 2019 (https://en.wikipedia.org/wiki/2019_Yorkshire_floods).
Using the full dataset of all readings, plot a map showing the peak water level at each measuring station. Here's an illustration.

https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axhspan.html#matplotlib.axes.Axes.axhspan
https://en.wikipedia.org/wiki/2019_Yorkshire_floods


You can download the full dataset in three files,

https://teachingfiles.blob.core.windows.net/datasets/stations_20191125.csv
(https://teachingfiles.blob.core.windows.net/datasets/stations_20191125.csv)
https://teachingfiles.blob.core.windows.net/datasets/measures_20191125.csv
(https://teachingfiles.blob.core.windows.net/datasets/measures_20191125.csv)
https://teachingfiles.blob.core.windows.net/datasets/readings_20191125.csv
(https://teachingfiles.blob.core.windows.net/datasets/readings_20191125.csv)

You will have to merge these files: readings.measure_id  refers to measures.measure_id , and measures.station_uri  refers
to station.uri . You will also have to filter the readings, and only keep those with parameter=='Water Level' .

Question 11. The dataset also includes rainfall measurements. Plot rainfall and water level, for the worst-affected rivers.

https://teachingfiles.blob.core.windows.net/datasets/stations_20191125.csv
https://teachingfiles.blob.core.windows.net/datasets/measures_20191125.csv
https://teachingfiles.blob.core.windows.net/datasets/readings_20191125.csv

	tick2
	tick3

