
IA Scientific Computing 2019 / 2020

Damon Wischik, Computer Science, Cambridge University



ii CONTENTS

Contents

1 Using Python 1
1.1 A first session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Python expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Maths and logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Strings and formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Collections and control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Lists and tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.4 Control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.5 Comprehensions * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Python as a programming language * . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.1 Functions and functional programming . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.3 None and Maybe, and Enumeration types . . . . . . . . . . . . . . . . . . . 8
1.4.4 Dynamic typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.5 Object-oriented programming . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Numerical computation 11
2.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Vectorized thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 A first session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Vectorized library routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 ‘for’ loops considered harmful . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Numerical optimization and fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Working with data 19
3.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 What data looks like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Importing, exporting, and creating dataframes . . . . . . . . . . . . . . . . . . . . . 21
3.4 Selecting and modifying data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Tabulations and indexed arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Dataframe → indexed array . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Indexed array → dataframe . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Database-style joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.1 Basic principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7.2 Plot gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

November 28, 2019 at 11:43:00



1

1. Using Python
1.1. A first session
We can use Python interactively like a calculator. Here are some simple expressions and their values.
Try entering these yourself, in your own notebook, then press shift+enter or choose Cell | Run Cells
from the menu.

3 + 8

1.618 * 1e5

x = 3
y = 2.2
z = 1
x * y + z

(x,y,z) = (3, 2.2, 1) # We can assign multiple values at once

x,y,z = 3, 2.2, 1 # (brackets are optional)

x * y + z # long lines can be split

If we want to type in a very long line, we can split it using a backslash.
”Few things are more distressing to a well regulated mind ” \
+ ”than to see a boy who ought to know better, ” \
+ ”disporting himself at improper moments.”

Jupyter will only show the output from the last expression in a cell. If we want to see multiple values,
print them explicitly.

print(x * y + z)
print(x * (y + z))

Python does its best to print out helpful error messages. When something goes wrong, look first at
the last line of the error message to see what type of error it was, then look back up to see where it
happened.

x = ’hello’
y = x + 5
y

1 x = ’hello’
----> 2 y = x + 5

3 y

TypeError: must be str, not int



2 1.2 Basic Python expressions

1.2. Basic Python expressions
1.2.1. MATHS AND LOGIC

All the usual mathematical operators work, though watch out for division which uses different syntax
to Java.

7 / 3 # floating point division

7 // 3 # integer division (rounds down)

min(3,4), max(3,4)
abs(-10), abs(3+4j) # 3+4j is a complex number

round(7.4), round(-7.4), round(3.4567, 2)
3**2 # power

5 << 1, 5 >> 2 # bitwise shifting

7 & 1, 6 | 1 # bitwise operations

(3+4j).real, (3+4j).imag # complex numbers

The usual logical operators work too, though the syntax is wordier than other languages. Python’s
truth values are True and False.

(x,y,z) = (5, 12, False)
x < y or y < 10 # precedence: (x < y) or (y < 10)
x < y and not y < 15 # precedence: (x < y) and (not (y < 15))
(x == y) == z
’lower’ if x < y else ’higher’ # same as Java’s (x < y) ? ’lower’ : ’higher’

Some useful maths functions are found in the maths module. To use them you need to run import
math. (It’s common to put your import statements at the top of the notebook, as they only need to be
run once per session, but they can actually appear anywhere.)

import math
math.floor(-3.4), math.ceil(-3.4)
math.pow(9, 0.5), math.sqrt(9)
math.exp(2), math.log(math.e), math.log(101, 10)
math.sin(math.pi*1.3), math.atan2(3,4)

import cmath # for functions on complex numbers

cmath.sqrt(-9)
cmath.exp(math.pi * 1j) + 1

import random # for generating random numbers

random.random(), random.random()

1.2.2. STRINGS AND FORMATTING

Python strings can be enclosed by either single quotes or double quotes. Strings (like everything else
in Python) are objects, and they have methods for various string-processing tasks. See the String
Methods documentation1 for a full list.

”shout”.upper() # ”SHOUT”

”hitchhiker”.replace(’hi’, ’ma’) # ”matchmaker”

’i’ in ’team’ # False

x = ’’’
Also, a multi-line string can be
entered with triple-quotes.
’’’

To control how values are printed, use f-strings i.e. strings with f before the opening quote. Each

1https://docs.python.org/3/library/stdtypes.html#string-methods

https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods
https://docs.python.org/3/library/stdtypes.html#string-methods


1.2 Basic Python expressions 3

chunk of the string enclosed in {·} is evaluated, and the result is spliced back into the string.
name,age = ’Zaphod’, 27
f”My name is {name} and I will be {age+1} next year”

The replacement chunk can specify the output format. The documentation2 describes more format
specifiers.

f”The value of π to 3 significant figures is {math.pi:.3}”

If you do any serious data processing in Python, you will likely find yourself needing regular expres-
sions3. The appendix illustrates using regular expressions for data cleanup.

import re
s = ’In 2019 there will be an election’
re.search(’(\d+)’, s)[0] # ’2019’

re.sub(’a(n?) (\w+)ion’, ’calamity’, s) # ’In 2019 there will be calamity’

2https://docs.python.org/3/reference/lexical_analysis.html#f-strings
3https://docs.python.org/3/library/re.html

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/re.html
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/library/re.html


4 1.3 Collections and control flow

1.3. Collections and control flow
Python has four common types for storing collections of values: tuples, lists, dictionaries, and sets.

In IA courses on OCaml and Java we learnt about lists versus arrays. In those courses, and in
IA Algorithms, we study the efficiency of various implementation choices. In Python, you shouldn’t
think about these things, at least not in the first instance. The Pythonic style is to just go ahead and
code, and only worry about efficiency after we have working code. As the famous computer scientist
Donald Knuth said,

Programmers waste enormous amounts of time thinking about, or worrying about, the
speed of noncritical parts of their programs, and these attempts at efficiency actually have
a strong negative impact when debugging and maintenance are considered. We should
forget about small efficiencies, say about 97% of the time: premature optimization is the
root of all evil. Yet we should not pass up our opportunities in that critical 3%.

Only when we have special requirements should we switch to a dedicated collection type, such as a
deque4 or a heap5 or the specialized numerical types we’ll learn about in section 2.

1.3.1. L ISTS AND TUPLES

Python lists and Python tuples are both used to store sequences of elements. They both support iterat-
ing over the elements, concatenation, random access, and so on. They’re a bit like lists, and a bit like
arrays.

a = [1, 2, ’buckle my shoe’] # a list

b = (3, 4, ’knock at the door’) # a tuple

len(a), len(b)
a[0], a[1], b[2] # indexes start at 0

a[-1], a[-2] # negative indexes count from the end

[a, ’then’, b]
3 in a, 3 in b # is this item contained in the collection?

a + list(b) # ℓ1+ℓ2 concatenates two lists

tuple(a) + b # t1+t2 concatenates two tuples

list(zip(a,b)) # zip(ℓ1,ℓ2) gives [(ℓ1[0],ℓ2[0]), (ℓ1[1],ℓ2[1]), ...]

As you see, both lists and tuples can hold mixed types, including other lists or tuples. You can convert
a list to a tuple and vice versa, and extract elements. The difference is that lists are mutable

a[0] = 5
a.append(’then’)
a.extend(b)
a

[5, 2, ’buckle my shoe’, ’then’, 3, 4, ’knock at the door’]

whereas tuples are immutable.
b[0] = 5

4 print(a)
5

----> 6 b[0] = 5 # error
7 print(b)

TypeError: ’tuple’ object does not support item assignment

To sort a list, we have a choice between sorting in-place or returning a new sorted list without changing
the original.

names = [’bethe’, ’alpher’, ’gamov’]

4https://docs.python.org/3/library/collections.html#collections.deque
5https://docs.python.org/3/library/heapq.html

https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/heapq.html
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/heapq.html


1.3 Collections and control flow 5

sorted(names) # [’alpher’, ’bethe’, ’gamov’], returns a new list

names # [’bethe’, ’alpher’, ’gamov’], unchanged from before

names.sort()
names # [’alpher’, ’bethe’, ’gamov’], sorted in-place

Another common operation is to concatenate a list of strings. Python’s syntax for this is unusual:
’, ’.join(names) + ’ wrote a famous paper on nuclear physics’

’alpher, bethe, gamov wrote a famous paper on nuclear physics’

1.3.2. SL ICING

We can pick out subsequences using the slice notation, x[start:end:sep].
x = list(range(10)) # [0,1,2,3,4,5,6,7,8,9]

x[1:3] # start is inclusive and end is exclusive, so x[1:3] == [x[1],x[2]]

x[:2] # first two elements

x[2:] # everything after the first two

x[-3:] # last three elements

x[:-3] # everything prior to the last three

x[::4] # every fourth element

We can assign into slices.
x[::4] = [None, None, None]
x

[None, 1, 2, 3, None, 5, 6, 7, None, 9]

1.3.3. DICTIONARIES

The other very useful data type is the dictionary, what Java calls a Map or HashMap.
room_alloc = {’Adrian’: None, ’Laura’: 32, ’John’: 31}
room_alloc[’Guarav’] = 19 # add or update an item

del room_alloc[’John’] # remove an item

room_alloc[’Laura’] # get an item

room_alloc.get(’Alexis’, 1) # get item if it exists, else default to 1

’Alexis’ in room_alloc # does this dictionary contain the key ’Alexis’?

To iterate over items in a dictionary, see the next example…

1.3.4. CONTROL FLOW

Python supports the usual control flow statements: for, while, continue, break, if, else.

To iterate over items in a list,
for item in list:

... # do something with item

To iterate over items and their positions in the list together,
for i, name in enumerate([’bethe’, ’alpher’, ’gamov’]):

print(f”Person {name} is in position {i}”)

To just do something a number of times, if we don’t care about the index, it’s conventional to call the
loop variable _.

x = 2



6 1.3 Collections and control flow

for _ in range(5):
x *= 2

To iterate over two lists simultaneously, zip them.
for x,y in zip([’apple’,’orange’,’grape’], [’cheddar’,’wensleydale’,’brie’]):

print(f”{x} goes with {y}”)

We can also iterate over (key,value) pairs in a dictionary. Suppose we’re given a list of room allocations,
and we want to find the occupants of each room.

room_alloc = {’adrian’: 10, ’chloe’: 5, ’guarav’: 10, ’shay’: 11,
’alexis’: 11, ’rebecca’: 10, ’zubin’: 5}

occupants = {}
for name, room in room_alloc.items(): # iterate over keys and values

if room not in occupants:
occupants[room] = []

occupants[room].append(name)

for room, occupants_here in occupants.items():
ns = ’, ’.join(occupants_here)
print(’Room {r} has {ns}’.format(r=room, ns=ns))

We can also iterate over just the keys (for name in room_alloc), or just the values (for room in
room_alloc.values()).

1.3.5. COMPREHENSIONS *

Python has a distinctive piece of syntax called a comprehension for creating lists. It’s a very common
pattern to write code that transforms lists, e.g.

ℓ = ... # start with some list [ℓ0, ℓ1, . . . ]

f = ... # some function we want to apply, to get [f(ℓ0), f(ℓ1), . . . ]

res = []
for i in range(len(ℓ)):

x = ℓ[i]
y = f(x)
res.append(y)

This is so common that Python has special syntax for it,
res = [f(x) for x in ℓ]

There’s also a version which only keeps elements that meet a criterion,
res = [f(x) for x in ℓ if t]

Here’s a concrete example:
xs = range(10)
[x**2 for x in xs if x % 2 == 0]

We can also use comprehension to create dictionaries and sets. Here’s a dictionary:
{x: x**2 for x in xs}



1.4 Python as a programming language * 7

1.4. Python as a programming language *
This section of the notes is to compare and contrast the Python language to what you have learnt in the
courses so far using OCaml and Java. This section of the course is here for your general interest, and
it’s not needed for the Scientific Computing course, apart from section 1.4.1 on defining functions.

The development of the Python language is documented in Python Enhancement Proposals
(PEPs)6. Significant changes in the language, or in the standard libraries, are discussed in mailing lists
and written up for review as a PEP. They typically suggest several ways a feature might be implemented,
and give the reason for choosing one of them. If consensus is not reached to accept the PEP, then the
reasons for its rejection are also documented. They are fascinating reading if you are interested in
programming language design.

1.4.1. FUNCTIONS AND FUNCTIONAL PROGRAMMING

The code snippet below shows how we define a function in Python. There are several things to note:

• The function is defined with a default argument, c=0. You can invoke it by either roots(2,3,1)
or roots(2,3).

• Functions can be called with named arguments, roots(b=3, a=2), in which case they can be
provided in any order.

In scientific computing, we’ll come across many functions that accept 10 or more arguments, all of
them with sensible defaults, and typically we’ll only specify a few of the arguments. This is why
defaulting and named arguments are so useful.

import math

def roots(a, b, c=0):
”””Return a list with the real roots of c*(x**2) + b*x + a == 0”””
if b == 0 and c == 0:

raise Exception(”This polynomial is constant”)
if c == 0:

return [-a/b]
elif a == 0:

return [0] + roots(b=c, a=b)
else:

discr = b**2 - 4*c*a
if discr < 0:

return []
else:

return [(-b+s*math.sqrt(discr))/2/c for s in [-1,1]]

Some more notes:

• This function either returns a value, or it throws an exception i.e. generates an error message
and finishes. If your function finishes without an explicit return statement, it will return None.
Unlike Java, it’s possible for different branches of your function to return values of different
types — at risk to your sanity.

• This function returns a single variable, namely a list. If you want to return several variables,
return them in a tuple, and unpack the tuple using multiple assignment as shown in section 1.1.

• It’s conventional to document your function by providing a documentation string as the first line.
You can see help for a function with ?. If we run ?roots we’re shown
Signature: roots(a, b, c=0)
Docstring: Return a list with the real roots of c*(x**2) + b*x + a == 0
File: /path_to_notebook/<ipython-input-53-6cf3a0af9585>
Type: function

In Python as in OCaml, functions can be returned as results, assigned, put into lists, passed as argu-
See OCaml lecture 8

ments to other functions, and so on.

6https://www.python.org/dev/peps/

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/
https://www.python.org/dev/peps/


8 1.4 Python as a programming language *

import random

def noisifier(σ):
def add_noise(x):

return x + random.uniform(-σ, σ)
return add_noise

fs = [noisifier(σ) for σ in [0.1, 1, 5]]

[f(1.5) for f in fs]

[1.5041, 1.0309, 6.0885]

In this example above, noisifier is a function that returns another function. The inner function ‘remem-
bers’ the value of σ under which it was defined; this is known as a closure.
We can use lambda to define anonymous functions, i.e. functions without names. This often used to
fill in arguments.

def illustrate_func(f, xs):
for x in xs:

print(f”f({x}) = {f(x)}”)

illustrate_func(lambda b: roots(1,b,2), range(5))

f(0) = []
f(1) = []
f(2) = []
f(3) = [-1.0, -0.5]
f(4) = [-1.70710, -0.29289]

1.4.2. GENERATORS

A generator (or lazy list, or sequence) is a list where the elements are only computed on demand. This
lets us implement infinite sequences. In Python, we can create them by defining a function that uses
the yield statement:

def fib():
x,y = 1,1
while True:

yield x
x,y = (y, x+y)

fibs = fib()
[next(fibs) for _ in range(10)]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

When we call next(fibs), the fib code runs through until it reaches the next yield statement, then it
emits a value and pauses. Think of fibs as an execution pointer and a call stack: it remembers where
it is inside the fib function, and calling next tells it to resume executing until the next time it hits yield.
We can also transform generators using syntax a bit like list comprehension:

even_fibs = (x for x in fib() if x % 2 == 0)
[next(even_fibs) for _ in range(10)]

[2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040]

1.4.3. NONE AND MAYBE, AND ENUMERATION TYPES

It’s often handy for functions to be able to return either a value, or a marker that there is no value.
For example, head(list) should return a value unless the list is empty in which case there’s nothing to
return. A common pattern in a language like OCaml is to have a datatype that explicitly supports this,
for example we’d define head to return an enumeration datatype with a constructor function, None |
Some[’a]. This forces everyone who uses head to check whether or not the answer is None.



1.4 Python as a programming language * 9

In Python, the return type of a function isn’t constrained. It’s a common convention to return
None if you have nothing to return, and a value otherwise, and to trust that the person who called you
will do the appropriate checks.

Enumeration types are also used for type restriction, e.g. to limit what can be placed in a list.
When we actually do want to achieve this, Python isn’t much help. It does have an add-on library for
enumeration types7 but it’s a lot of work for little benefit.

One situation where enumeration types are very useful is when working with categorical values
in data. When working with data, the levels of the enumeration are decided at runtime (by the contents
of the data we load in), so pre-declared types are no use anyway.

1.4.4. DYNAMIC TYPING

Python uses dynamic typing, which means that values are tagged with their types during execution
and checked only then. To illustrate, consider the functions

def double_items(xs):
return [x*2 for x in xs]

def goodfunc():
return double_items([1,2,[3,4]]) + double_items(”hello world”)

def badfunc():
return double_items(10)

We won’t be told of any errors until badfunc() is invoked, even though it’s clear when we define it that
badfunc will fail.

Python programmers are encouraged to use duck typing, which means that you should test values
for what they can do rather than what they’re tagged as. “If it walks like a duck, and it quacks like a
duck, then it’s a duck”. In this example, double_items(xs) iterates through xs and applies *2 to every
element, so it should apply to any xs that supports iteration and whose elements all support *2. These
operations mean different things to different types: iterating over a list returns its elements, while
iterating over a string returns its characters; doubling a number is an arithmetical operation, doubling
a string or list repeats it. Python does allow you to test the type of a value with e.g. if isinstance(x,
list): ..., but programmers are encouraged not to do this.

Python’s philosophy is that library designers are providing a service, and programmers are
adults. If a library function uses comparison and addition, and if the end-user programmer invents
a new class that supports comparison and addition, then why on earth shouldn’t the programmer be
allowed to use the library function? (I’ve found this useful for simulators: I replaced ‘numerical
timestamp’ with ‘rich timestamp class that supports auditing, listing which events depended on which
other events’, and I didn’t have to change a single line of the simulator body.) Some statically typed
languages like Haskell and Scala support this via dynamic type classes, but their syntax is rather heavy.

To make duck typing useful, Python has a long list of special method names8 so that you can
create custom classes supporting the same operations as numbers, or as lists, or as dictionaries. For
example, if you define a new class with the method __iter__9 then your new class can be iterated
over just like a list.

Example: trees. Suppose we want to define a tree whose leaves are integers and whose branches can
have an arbitrary number of children. Actually, in Python, there’s nothing to define: we can just start
using it, using a list to denote a branch node.

x = [1,[[2,4,3],9],[5,[6,7],8]]

To flatten a list like this we can use duck typing: given a node n, try to iterate over its children, and if
this fails then the node must be a leaf so just return [n].

def flatten(n):
try:

return [y for child in n for y in flatten(child)]
except TypeError as e:

return [n]
flatten(x)

7https://docs.python.org/3/library/enum.html
8https://docs.python.org/3/reference/datamodel.html#special-method-names
9https://docs.python.org/3/reference/datamodel.html#object.__iter__

https://docs.python.org/3/library/enum.html
https://docs.python.org/3/library/enum.html
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#object.__iter__
https://docs.python.org/3/library/enum.html
https://docs.python.org/3/reference/datamodel.html#special-method-names
https://docs.python.org/3/reference/datamodel.html#object.__iter__


10 1.4 Python as a programming language *

[1, 2, 4, 3, 9, 5, 6, 7, 8]

This would work perfectly well for trees containing arbitrary types — unless the end-user programmer
puts in leaves which are themselves iterable, in which case the duck typing test doesn’t work — unless
that is the user’s intent all along, to be able to attach new custom sub-branches …

A solution is to define a custom class for branch nodes, and use isinstance to test each element
to see if it’s a branch node. This is not very different to the OCaml solution, which is to declare nodes
to be of type ‘either leaf or branch’ — except that Python would still allow leaves of arbitrary mixed
type.

1.4.5. OBJECT‐ORIENTED PROGRAMMING

Python is an object-oriented programming language. Every value is an object. You can see the class
of an object by calling type(x). For example,

x = 10
type(x) # reports int

dir(x) # gives a list of x’s methods and attributes

It supports inheritance and multiple inheritance, and static methods, and class variables, and so on. It
doesn’t support interfaces, because they don’t make sense in a duck typing language.

Here’s a quick look at a Python object, and at how it might be used for the flatten function earlier.
class Branch(object):

def __init__(self, children):
self.children = children

def flatten(n):
if isinstance(n, Branch):

return [y for child in n.children for y in flatten(child)]
else:

return [n]

x = Branch([10,Branch([3,2]),”hello”])
flatten(x)

Every method takes as its first argument a variable referring to the current object, ‘this’ in Java. Python
doesn’t support private and protected access modifiers, except by convention: the convention is that
attributes and functions whose name beings with an underscore are considered private, and may be
changed in future versions of the library.

The next lines of code are surprising. You can ‘monkey patch’ an object, after it has been created,
to change its attributes or give it new attributes. Like so many language features in Python, this is
sometimes tremendously handy, and sometimes the source of infuriating bugs.

y = Branch([])
y.my_label = ”added an attribute”



11

2. Numerical computation
Working with numbers is central to almost all scientific and engineering computing, from deep learn-
ing to image processing to climate simulation.

We learnt about Python lists in section 1. We could just use lists to store numbers: a list to store
a vector, a list of lists to store a matrix, and so on. Python lists can store mixed data types e.g. integers
mixed with strings and sublists and even functions — and this flexibility comes with a price:

• Flexible lists are slow. For scientific computing, it’s better to use specialised classes for numeric
datatypes. If the machine knows what datatypes to expect, it can compute faster.

• Flexible lists are cumbersome. Mathematicians have good notation for vector algebra, and if
we can write code to match then it’ll be more concise and easier to debug.

• Putting these two points together… there are many carefully-optimized low-level libraries for
doing all the numerical heavy lifting. We’d like to be able to write code at a high level, and
rely on the machine to use whatever resources it has to compute efficiently. It might be a GPU,
or it might be a cluster of machines in the cloud: we should be able to express our high-level
intention, and leave the machine to figure out the best way to achieve it. In effect, we’re using
Python just as ‘glue’ to link together high-level syntax with low-level libraries.

The core skill is vectorized thinking, which means writing our code in terms of functions that operate
on entire vectors (or arrays) at once. Once you get the hang of it, you will write code that is more
concise and faster.

2.1. Preamble
There are two main Python libraries for numerical work, NumPy10 and SciPy11. It’s vital to be familiar
with these, especially NumPy, for almost any work in machine learning. At the top of almost every
piece of scientific computing work, we’ll import these standard modules. We’ll also give them short
aliases so we can write e.g. np.foo rather than numpy.foo.

import numpy as np
import matplotlib.pyplot as plt

# and some others, not quite so universally used

import math, random
import scipy
import scipy.optimize

2.2. Vectorized thinking
2.2.1. A FIRST SESSION

x = np.array([1,2,5,3,2]) # [1, 2, 5, 3, 2]

y = np.ones(5) # [1.,1.,1.,1.,1.]

z = np.arange(5) # [0, 1, 2, 3, 4]

# We can do maths on vectors, applying the operations elementwise

# We can mix vectors and scalars

(x + 1) * 2 # [4, 6, 12, 8, 6]

(x + y) * z # [0., 3.,12.,12.,12.]

x >= 3 # [False, False, True, True, False]

np.where(x>=3, x, 3) # [3, 3, 5, 3, 3]

# Python slicing and indexing notation works

x[:3] # [1, 2, 5]

x[x>=3] = -10 # x is now [1, 2, -10, -10, 2]

10http://www.numpy.org/
11https://www.scipy.org/

http://www.numpy.org/
https://www.scipy.org/
http://www.numpy.org/
https://www.scipy.org/


12 2.2 Vectorized thinking

All the elements of a numpy vector have to be the same type. It can be integer, or floating point, or
boolean. To see the type of a vector, x.dtype. To cast to another type, (y>=3).astype(int).

2.2.2. VECTORIZED LIBRARY ROUTINES

To be good at writing vectorized code, we need to know what sorts of calculations we can do on
vectors. Here are some useful routines12:

To create vectors,

• np.array([1,2,3]) creates a numpy vector from a Python list
• np.zeros(n), np.ones(n), numpy.full(n,fill_value)
• numpy.ones_like(a) creates a vector of the same shape as a
• np.arange is like Python’s range
• np.linspace(start,stop,n) creates n evenly-spaced points between start and stop inclusive, very

useful for plotting
• np.random.random(n), np.random.choice(a,n), and other random number generators13

• see also the many other array creation routines14

For maths,

• Normal mathematical expressions work on vectors, and you can mix vectors and scalars
• np.sin, np.exp, np.floor, …
• x y gives the dot product, np.linalg.norm(x) is the norm
• np.sum, np.mean, and np.prod; also np.cumsum(x) gives [x0, x0 + x1, x0 + x1 + x2, . . . ]

• np.min and np.max for the overall min and max; np.minimum(x,y) for [min(x0, y0),min(x1, y1), . . . ]

• and many other maths15 and statistics16 functions.

Here’s a more elaborate example: computing the correlation coefficient17 between two vectors x and
y,

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2)
√∑

i(yi − ȳ)2

where x and y have the same length N , and

x̄ =
1

N

∑
i

xi, ȳ =
1

N

∑
i

yi.

Here are two implementations, one written in Python-style, one written in scientific computing style18,
to compute ρ. The latter is roughly 15 times faster. (The magic command19 %%time at the start of a
cell makes the notebook print out the execution time.)

# Set up some parameters.

# We’ll seed the random number generators so our test is reproducible.

N = 10000000
rand_seed = 1618033988

%%time
# Python-style code

random.seed(rand_seed)

12https://docs.scipy.org/doc/numpy/reference/routines.html#routines
13https://docs.scipy.org/doc/numpy/reference/routines.random.html
14https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#array-creation-routines
15https://docs.scipy.org/doc/numpy/reference/routines.math.html#mathematical-functions
16https://docs.scipy.org/doc/numpy/reference/routines.statistics.html
17https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
18Of course, if we really knew our way round numpy, we’d just use np.corrcoef, https://docs.scipy.org/doc/numpy/

reference/generated/numpy.corrcoef.html#numpy.corrcoefnp.corrcoef
19http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time

https://docs.scipy.org/doc/numpy/reference/routines.html#routines
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#array-creation-routines
https://docs.scipy.org/doc/numpy/reference/routines.math.html#mathematical-functions
https://docs.scipy.org/doc/numpy/reference/routines.statistics.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time
https://docs.scipy.org/doc/numpy/reference/routines.html#routines
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html#array-creation-routines
https://docs.scipy.org/doc/numpy/reference/routines.math.html#mathematical-functions
https://docs.scipy.org/doc/numpy/reference/routines.statistics.html
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef
https://docs.scipy.org/doc/numpy/reference/generated/numpy.corrcoef.html#numpy.corrcoef
http://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-time


2.2 Vectorized thinking 13

# Create two lists of random numbers, xs and ys

xs = [random.random() for i in range(N)]
ys = [xs[i] + random.random() for i in range(N)]
# Compute the various terms involved in the formula

xbar = sum(xs) / N # sum(list) is built into Python

ybar = sum(ys) / N
sxy = sum([(x-xbar)*(y-ybar) for x,y in zip(xs,ys)])
sxx = sum([(x-xbar)**2 for x in xs])
syy = sum([(y-ybar)**2 for y in ys])
ρ = sxy / math.sqrt(sxx) / math.sqrt(syy)
print(ρ)

0.707063527537949
CPU times: user 5.34 s, sys: 2.78 s, total: 8.12 s
Wall time: 8.25 s

%%time
# Vectorized code

np.random.seed(rand_seed)
# Create two random vectors x and y

x = np.random.random(N)
y = x + np.random.random(N)
# Compute the terms in the formula. Note: @ means ”dot product”

xbar = np.sum(x) / N
ybar = np.sum(y) / N
ρ = ((x-xbar) @ (y-ybar)) / math.sqrt(np.sum((x-xbar)**2) * np.sum((y-ybar)**2))
print(ρ)

0.707201664199036
CPU times: user 359 ms, sys: 797 ms, total: 1.16 s
Wall time: 899 ms

2.2.3. ‘FOR’ LOOPS CONSIDERED HARMFUL

Vectorized thinking isn’t just for mathematical formulae—there are all sorts of programming con-
structs that can be vectorized also. In general, whenever you find yourself writing a for loop or a
Python list comprehension, stop and see if you can vectorize your code. You’ll usually end up with

list comprehension
page 6something more flexible for scientific computing.

Functions for indexing:

• the usual slice notation works on numpy vectors, e.g. x[:10] or x[10:] or x[:-3]
Slice notation, page 5

• np.where(b) gives a vector of indexes at which the boolean vector b is True
• index a vector using a vector of booleans, e.g. x[y>5]
• index a vector using a vector of integers, e.g. i=np.where(y>5); x[i]
• update part of a vector, e.g. x[x<3] = x[x<3] + 10
• np.concatenate([v1,v2]) concatenates two or more vectors

General programming functions:

• len(x) gives the length of a vector
• np.any, np.all, and other logic functions20

• np.unique returns the unique elements of a vector
• ∼x is logical negation, the equivalent of Python’s not x; also (x & y) and (x | y) both work
• np.count_nonzero(x) counts the number of entries where x is True or non-zero
• x.sort() sorts a vector in-place, and np.sort(x) creates a new vector which is a sorted version of
x

20https://docs.scipy.org/doc/numpy/reference/routines.logic.html#logic-functions

https://docs.scipy.org/doc/numpy/reference/routines.logic.html#logic-functions
https://docs.scipy.org/doc/numpy/reference/routines.logic.html#logic-functions


14 2.3 Arrays

• np.argsort(x) gives the vector of indexes that would put x in order, i.e. it produces an integer
vector i such that x[i] is sorted; also see other sorting functions21

• np.argmax and other search functions22

• np.where(cond,x,y) is the vectorized version of Python’s x if cond else y
• np.vectorize(f) is a vectorized version of an arbitrary Python function f

String functions:

• numpy does have some string functions—but as its name suggests the library is oriented around
numbers not strings, and I recommend using Python strings and list comprehensions, and just
wrapping your answer up as a vector with np.array.

Here’s an example. Suppose we want to sort a vector of strings by length, breaking ties alphabetically.

1. Get a vector with the length of each string. I won’t bother looking for numpy routines to handle
strings, I’ll just use Python.

2. Work out how to put lengths in order, breaking ties alphabetically by names. Digging around
the documentation for sorting, we find np.lexsort([y,x]), which returns sorting indexes like
np.argsort(x), but breaks ties in x by another vector y. This is called lexicographical sorting.

3. Pick out the names in the order specified by these indexes.

names = np.array([’alexis’,’chloe’,’guarav’,’shay’,’adrian’,’rebecca’])
lengths = np.array([len(x) for x in names]) # or np.vectorize(len)(names)

i = np.lexsort([names, lengths])
names[i]

2.3. Arrays
NumPy supports matrices and higher-dimensional arrays. To enter a 2d array (i.e. a matrix) like

a =

[
2.2 3.7 9.1
−4 3.1 1.3

]
we type in

a = np.array([[2.2, 3.7, 9.1], [-4, 3.1, 1.3]])

Use a.shape to find the dimensions of an array. In fact, vectors are nothing other than one-dimensional
arrays, and their shape is a tuple of length 1.

a.shape # (2,3)

x = np.array([5,6,4])
x.shape # (2,)

NumPy doesn’t have any concept of ‘row vector’ versus ‘column vector’. It’s only 2d arrays that can
be described in that way.

np.array([[5,6,4]]).shape # (1,3), i.e. a row

np.array([[5],[6],[4]]).shape # (3,1), i.e. a column

To refer to a subarray, we can use an extended version of Python’s slice notation.
a[:, :2] # all rows, first two columns

a[1, :] # second row (indexes start at 0), all columns

a[1] # another way to fetch the second row

a[:2, :2] = [[1,2],[3,4]] # assign to a submatrix

There are two ways to refer to an arbitrary set of elements inside the array, both called advanced
indexing23.

21https://docs.scipy.org/doc/numpy/reference/routines.sort.html#sorting
22https://docs.scipy.org/doc/numpy/reference/routines.sort.html#searching
23https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing

https://docs.scipy.org/doc/numpy/reference/routines.sort.html#sorting
https://docs.scipy.org/doc/numpy/reference/routines.sort.html#searching
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing
https://docs.scipy.org/doc/numpy/reference/routines.sort.html#sorting
https://docs.scipy.org/doc/numpy/reference/routines.sort.html#searching
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing


2.4 Numerical optimization and fitting 15

a = np.zeros((3,3))

# Boolean advanced indexing

i = np.array([[False,True,False],[True,False,False],[False,False,True]])
a[i] = [6,7,8]

# Integer advanced indexing

ix,iy = [0,1,2], [1,0,2]
a[ix,iy] = [6,7,8]

# Both produce the same result:
array([[0., 6., 0.],

[7., 0., 0.],
[0., 0., 8.]])

For 1d vectors the only reshaping operations are slicing and concatenating, but for higher dimensional
arrays there is a whole variety of reshaping functions24 such as stacking, tiling, transposing, etc. The
most useful operation is adding a new dimension, for example to turn a one-dimensional vector into
a column vector. The second most useful is stacking vectors to form an array.

x = np.array([1,2,3])
x[:, np.newaxis]

array([[1],
[2],
[3]])

np.column_stack([[1,2], [3,4], [5,6]])

array([[1, 3, 5],
[2, 4, 6]])

NumPy also has a powerful tool called broadcasting25 which generalizes ‘add a scalar to a vector’,
and which is used a lot in more advanced array-manipulating code. It’s more advanced than we need
for this course, but it’s used a lot in machine learning and it’s worth reading about. Here’s a simple
example, normalizing a matrix so the columns sum to 1.

a = np.array([[3,2,8],[2,6,2]])
colsums = np.sum(a, axis=0)
a / colsums

array([[0.6 , 0.25, 0.8 ],
[0.4 , 0.75, 0.2 ]])

In Easter term you will study linear algebra in the Maths for Natural Sciences course. If you want to
try out the maths, you’ll find relevant functions in np.linalg26 and np.dual27.

2.4. Numerical optimization and fitting
A common task in science and in machine learning is to find the minimum value of a function, which
may have one or more variables. For example, we might have a collection of points that more or less
follow a straight line, and we might want to use the equation y = mx + c. In this case, we’d like to
tune the values of m and c so that the equation lies close to the data. We can achieve this by defining
a function L(m, c) that measures how far the points are from the straight line, and then choosing m
and c to minimize L(m, c).

!△WARNING! The methods we discuss here sometimes work brilliantly, but sometimes are
unstable. This is not the fault of Python or the libraries we are using. It’s just the case that sometimes
the equations in the algorithm and numerical issues in the data are not well balanced. This is something

24https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#array-manipulation-
routines

25https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
26https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
27https://docs.scipy.org/doc/numpy/reference/routines.dual.html

https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#array-manipulation-routines
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.dual.html
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#array-manipulation-routines
https://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#array-manipulation-routines
https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/numpy/reference/routines.dual.html


16 2.4 Numerical optimization and fitting

we need to bear in mind every time we use these methods, and we should check the output, for example
by plotting graphs.

Let’s start by minimizing a simple function of one variable. We could use calculus to find the
minimum for a simple example like this, but let’s do it with computer power instead.

def f(x, a, b, c):
return a*x + b*(x**2) + c*(x**4)

We’ll plot this function first, to get a rough idea of where the minimum should be. Visualisation is a
crucial part of scientific computing, and we’ll cover it in much more detail in section 3, but for present
purposes we’ll just use some very simple plotting commands. The pyplot tutorial28 explains more
options.

x = np.linspace(-2,2,40) # 40 equally spaced points in the range [-2,2]

y = f(x, a=1, b=-3, c=1) # f is a vectorized expression … it works on vector x

plt.plot(x, y, linestyle=’-’, linewidth=1, color=’red’)
plt.show()

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2

0

2

4

6

The scipy.optimize.fmin function finds where the function achieves its minimum value, starting from
an initial guess x0. The first argument is the function to optimize. In the snippet below we’re giving
it an anonymous function that is a version of f with the parameters a, b, and c filled in.

scipy.optimize.fmin(lambda x: f(x,a=1,b=-3,c=1), x0=0.5)

Optimization terminated successfully.
Current function value: -1.070230
Iterations: 16
Function evaluations: 32

array([1.13085938])

It found a local minimum, not the global minimum. This is often a problem with numerical optimiza-
tion routines, and it’s why it’s helpful to look at the data first.

Here is an example of a function of two variables. We’ll try to fit the straight line y = mx+ c
through a set of points. We’ll define the loss function

L(m, c) =
∑
i

(mxi + c− yi)
2

and look for m and c to minimize it.
# synthetic set of points

x = np.linspace(-3,3,40)
y = np.sin(x) + 2 * np.random.random(x.shape)

def loss(m,c):
return np.sum((m*x+c - y)**2)

# To optimize a function of several several variables, provide them as an array

# of the appropriate length.

optpars = scipy.optimize.fmin(lambda params: loss(params[0], params[1]),
x0 = [0,0])

28https://matplotlib.org/users/pyplot_tutorial.html

https://matplotlib.org/users/pyplot_tutorial.html
https://matplotlib.org/users/pyplot_tutorial.html


2.5 Simulation 17

# Plot the datapoints, together with the fitted straight line.

plt.scatter(x, y, facecolor=’white’, edgecolor=’black’)
def fit(x): return optpars[0] * x + optpars[1]
plt.plot([-3,3], [fit(-3),fit(3)],

linestyle=’--’, color=’lightblue’, linewidth=2)
plt.show()

3 2 1 0 1 2 3

0.5

0.0

0.5

1.0

1.5

2.0

2.5

2.5. Simulation
Simulation is a mainstay of scientific computing. A common style with numpy is to predefine an vector
or array to store the results, one row per timestep, and then iterate over timesteps gradually filling in
the array. (This is the one case where for loops are appropriate.) Here’s an example, a differential
equation simulation. A model that has been proposed for TCP29 is

dxt

dt
=

1

RTT2 − pt−RTTxt−RTT
xt

2
, pt =

max(xt − C, 0)

xt

where xt is the transmission rate of a sender at time t measured in packets per second, RTT is the
round trip time, pt is the packet drop probability, and C is the link capacity. We might simulate this
as follows.

x0 = 1 # initial transmission rate, in pkt/sec

C = 10 # link capacity, in pkt/sec

T = 20 # simulated duration in seconds

RTT = 0.2 # round trip time in seconds

dt = 0.01 # timestep size

def P(x): return max(x-C,0) / x

# Initialization

num_iterations = np.ceil(T/dt).astype(int)
res = np.zeros((num_iterations, 3)) # a matrix to store t,x,p

res[0,1:] = [x0, P(x0)]
steps_back = int(RTT/dt)

# Loop

for i in range(1, num_iterations):
(t,x,p),(xold,pold) = res[i-1], res[max(i-1-steps_back,0),1:]
dx = 1/(RTT**2) - pold*xold*x / 2
x = x + dx * dt
p = P(x)
res[i] = (t + dt, x, p)

# Plot the output (see section 3 for more about plotting)

fig,(ax1,ax2) = plt.subplots(2, 1, sharex=True)
ax1.plot(res[:,0], res[:,1])
ax2.plot(res[:,0], res[:,2], color=’orange’)
ax1.set_ylabel(’x’)
ax2.set_ylabel(’p’)
ax2.set_xlabel(’t’)

29https://en.wikipedia.org/wiki/Transmission_Control_Protocol

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol


18 2.5 Simulation

plt.show()

5

10

15

x

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t

0.0

0.2

0.4

p

This simulation is simple and naive.

• From a mathematical point of view it’s naive, because there are much more sophisticated nu-
merical methods for solving differential equations30.

• From a computer science point of view this isn’t ideal, because the code tangles together the
iteration logic with the logging logic. It should really be rewritten with lazy lists.

lazy lists, page 8

• But from a scientific computing point of view, simulations like this are so easy to put together
and learn from, that they are invaluable.

What we have coded is called a discrete-time simulation, because time advances in fixed increments.
In IA Algorithms you will study the ‘heap’ data structure, which is good simulation in which time is
pegged to changes in state, called event-driven simulation.

30https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html

https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html
https://docs.scipy.org/doc/scipy-0.13.0/reference/generated/scipy.integrate.ode.html


19

3. Working with data
3.1. Preamble
In this section we’ll use Pandas31, a library which is ubiquitous for all Python data science. We’ll look
at the two standard ways of arranging data, data frames and indexed arrays. We’ll also see some more
advanced plotting with matplotlib32.

import numpy as np
import pandas
import matplotlib.pyplot as plt

The running example for this section is a dataset of stop-and-search records, made available by the
UK home office33. As it’s a moderate-sized file (172MB) I like to download it to disk, so it’s fast to
reread it each time I restart the notebook. Here’s how we can fetch a file from a url, using the Unix
command-line tool wget. (The exclamation mark is called a Jupyter magic34, and it means “Treat this
line as though it were executed at the command prompt”. In IB Unix Tools you’ll learn more about
the Unix command line.)

# Execute a unix command to download a file (if it’s not already
# downloaded), and show download progress
import os.path
if os.path.exists(’stop-and-search.csv’):

print(”file already downloaded”)
else:

!wget ”https://teachingfiles.blob.core.windows.net/datasets/stop-and-search.csv”

When using Pandas and Matplotlib you will often hit your head against the wall and exclaim “that’s
crazy! who would design a library like this?” A comment from a recent discussion on Hacker News35

explains it well: Pandas “is designed for scientists who know nothing about how a library should be
designed or how a program should be structured. There’s a lot of dynamic stuff in Pandas that while
making things easier for scientists make things a lot more difficult for CS people.” In my opinion,
Pandas does have some ugly library design; but it also serves a need which computer scientists don’t
really get until they’ve tried working with data; and furthermore Pandas has some rather innovative
thinking around indexing, which might better have been left to an experimental package rather than
the mainstream.

3.2. What data looks like
We almost always work with data in the form of a spreadsheet-like table, referred to as a dataframe.
A dataframe is a collection of named columns. Each column has the same length, and all entries in a
column have the same type, though different columns may have different types. Pandas uses numpy
to store columns, so it’s reasonably fast.

Here’s how to load a dataframe from a file using pandas.read_csv, and how to inspect it. (This
dataframe will be used as a running example in the rest of section 3.) The Pandas library is full of
handy utilities like read_csv.

# Import a dataframe using the pandas library

stopsearch = pandas.read_csv(’stop-and-search.csv’)

# How many rows are there?

print(f”This dataset has {len(stopsearch)} rows”)

# What are the columns?

stopsearch.columns

31http://pandas.pydata.org/
32https://matplotlib.org/
33https://data.police.uk/data/
34http://ipython.readthedocs.io/en/stable/interactive/magics.html
35https://news.ycombinator.com/item?id=21550516

http://pandas.pydata.org/
https://matplotlib.org/
https://data.police.uk/data/
https://data.police.uk/data/
http://ipython.readthedocs.io/en/stable/interactive/magics.html
http://pandas.pydata.org/
https://matplotlib.org/
https://data.police.uk/data/
http://ipython.readthedocs.io/en/stable/interactive/magics.html
https://news.ycombinator.com/item?id=21550516


20 3.2 What data looks like

This dataset has 1013915 rows

Index([’force’, ’month’, ’age_range’, ’datetime’, ’gender’, ’involved_person’,
’legislation’, ’location’, ’location_latitude’, ’location_longitude’,
’location_street_id’, ’location_street_name’, ’object_of_search’,
’officer_defined_ethnicity’, ’operation’, ’operation_name’, ’outcome’,
’outcome_linked_to_object_of_search’, ’outcome_object_id’,
’outcome_object_name’, ’removal_of_more_than_outer_clothing’,
’self_defined_ethnicity’, ’type’],
dtype=’object’)

# Display the first 5 rows. iloc[:5] means ”select the first five rows”

# (not all columns fit on this page)

stopsearch.iloc[:5]

force month age_range datetime gender involved_person legislation

0 bedfordshire 2019-08 18-24 2019-08-01T00:30:00+00:00 Male True Misuse of Drugs Act 1971 (section 23)
1 bedfordshire 2019-08 18-24 2019-08-03T16:28:00+00:00 Male True Misuse of Drugs Act 1971 (section 23)
2 bedfordshire 2019-08 NaN 2019-08-08T16:36:00+00:00 Male True Misuse of Drugs Act 1971 (section 23)
3 bedfordshire 2019-08 10-17 2019-08-08T18:20:00+00:00 Male True Misuse of Drugs Act 1971 (section 23)
4 bedfordshire 2019-08 18-24 2019-08-08T20:50:26+00:00 Male True Misuse of Drugs Act 1971 (section 23)

3.2.1. MISSING VALUES

Missing values (as in the third entry in the age_range column above) are a fact of life in data science.
They should really be supported by Python itself, but they aren’t, so Pandas adopts its own conventions:
it uses either np.nan (the IEEE floating point for ‘Not A Number’), or None (the built-in Python value
commonly used to denote ‘no return value’). It’s best to use np.nan when the underlying column is a
numpy vector of floating point values, but for other column types it doesn’t matter which is used. To
determine whether values are missing, use pandas.isna.

pandas.isna(stopsearch.age_range[:5]) # returns [False,False,True,False,False]

sum(pandas.isna(stopsearch.age_range)) # count number of missing values



3.3 Importing, exporting, and creating dataframes 21

3.3. Importing, exporting, and creating dataframes
It’s very easy to import data from a simple comma-separated value (CSV) file. A CSV file looks like
this:

”Sepal.Length”,”Sepal.Width”,”Petal.Length”,”Petal.Width”,”Species”
5.1,3.5,1.4,0.2,”setosa”
4.9,3,1.4,0.2,”setosa”
4.7,3.2,1.3,0.2,”setosa”
4.6,3.1,1.5,0.2,”setosa”
5,3.6,1.4,0.2,”setosa”

i.e. a header line, then one line per row of the data frame, with values separated by commas. We’ve
already seen how to import a CSV, using pandas.read_csv36. If your file is nearly a CSV but has some
quirks such as comments or a missing header row, experiment with that function’s 55 options. We can
use the same function to read CSV files from remote urls37

url = ’https://teachingfiles.blob.core.windows.net/datasets/iris.csv’
iris = pandas.read_csv(url)

In my experience, around 70% of the time you spend working with data will be fighting to import it
and clean it up. See the online notebooks for a collection of recipes for web scraping, reading from a
database, and parsing log files.

To write a CSV file38,
iris.to_csv(’iris.csv’, index=False)

To create a dataframe from scratch, pass in a dictionary of columns. Python dictionaries are unordered,
so you can optionally specify the column order you want with the columns argument.

iris = pandas.DataFrame({
’species’: [’setosa’, ’virginica’, ’virginica’, ’setosa’, ’versicolor’],
’Petal.length’: [1.0, 5.0, 5.8, 1.7, 4.2],
’Petal.width’: [0.2, 1.9, 1.6, 0.5, 1.2]
},
columns = [’species’, ’Petal.length’, ’Petal.width’])

Or you can create a dataframe from a list of tuples. Now the columns argument is needed to say what
the column names are.

iris = pandas.DataFrame([
(’setosa’, 1.0, 0.2), (’virginica’, 5.0, 1.9), (’virginica’, 5.8, 1.6),
(’setosa’, 1.7, 0.5), (’versicolor’, 4.2, 1.2)
],
columns = [’species’, ’Petal.length’, ’Petal.width’])

36https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
37though if you’re using Azure Notebooks, be aware that Azure only permits you to connect to Azure web servers.
38If you’re running this notebook with Azure Notebooks, you would then use the Data | Download menu to download the

file from Azure Notebooks to your local machine.

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html


22 3.4 Selecting and modifying data

3.4. Selecting and modifying data
Data frames have a triple identity:

• they’re like a dictionary, where the keys are column names and the values are numpy vectors,
and we can add, modify, or remove entire columns

• they’re like a database table, and we can select subtables by row and/or column
• they’re like an array, and we can select parts of the dataframe based on row indexes.

Like a dictionary. We can access entire columns as though the dataframe is a dictionary.
stopsearch.columns # get a list of column names

stopsearch.keys() # … and another way to do the same

x = stopsearch[’outcome’] # get a single column

x = stopsearch.outcome # … and another way to do the same

del stopsearch[’location’] # delete a column

# add or modify a column

stopsearch[’outcome_N’] = np.where(stopsearch.outcome == ’False’, 0, 1)

Like a database table. We can obtain a new dataframe by selecting a subset of rows and/or columns,
using .loc.

stopsearch.loc[:, [’force’,’datetime’,’outcome’]] # all rows, some cols

stopsearch[[’force’,’datetime’,’outcome’]] # … the same thing

stopsearch.loc[stopsearch.force==’cambridgeshire’] # some rows, all cols

stopsearch.loc[stopsearch.force==’cambridgeshire’, # some rows, some cols

[’force’,’datetime’,’outcome’]]

If we want to select rows by row number, rather than by a boolean condition as above, we need .iloc.
stopsearch.iloc[:3] # the first 3 rows

stopsearch[:3] # … and another way to do the same

stopsearch.iloc[[0,3,5]] # select several rows

stopsearch.iloc[[5]] # returns a one-row dataframe

stopsearch.sample(4) # select 4 rows at random

Row and column selectors can be combined.
wantcols = [’force’,’datetime’,’outcome’]
stopsearch.loc[stopsearch.force==’cambridgeshire’, wantcols]
stopsearch[wantcols].iloc[:3]
stopsearch.loc[stopsearch.force==’cambridgeshire’, wantcols].iloc[:3]

To pull out a single row as a tuple, or to pull out a single value as a scalar, there is different syntax.
stopsearch[’force’].iat[5] # a scalar for the specified column and row

stopsearch.iloc[5] # a tuple containing the values for row 5

We can use these indexing operations to update a specific element in the dataframe—but (depending
how exactly we do it) Pandas will tell us off, warning us that the operation may be inefficient. I think
it’s cleaner to modify data using dictionary indexing, replacing an entire column, rather than hacking
at individual elements.

stopsearch[’outcome_N’][0] = 2

SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation:
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

To suppress this warning, take a copy of the dataframe with df=stopsearch.copy(), and then modify
the copy.



3.4 Selecting and modifying data 23

Like an array. There is a third way to select rows from a dataframe, which in my experience is the
source of endless confusion: selecting by row index. When you see a Pandas dataframe printed out,
there is a column at the left without a column name. These aren’t row numbers, they are row indexes,
which behave like the keys in a dictionary. In all the examples we’ve seen so far the indexes happen
to be numbers, but they could be any other Python object. Row indexes are there for the same reason
database tables have indexes: they’re vital for efficient lookup. But we won’t be using them in this
course.

Pandas remembers row indexes, even when you pull out a single column, and it always tries
to match indexes. This is usually not what we want. I recommend that you generally use .values

!△when you are working with subsets of rows. This gives you the actual numpy vector behind the
column, not the confusing Pandas vector-plus-index object. We won’t be taking advantage of row
indexes in this course, but it’s worth knowing they exist so you can understand the cryptic errors and
error messages you will undoubtedly come across.

df = pandas.DataFrame({’x’: [3,3,4,8,2]}, index=[’a’,’b’,’c’,’d’,’e’])

x

a 3
b 3
c 4
d 8
e 2

# This looks like it should add [3,3,4] and [4,8,2] … but it doesn’t!

df[’x’][:3] + df[’x’][2:]

x

a NaN
b NaN
c 8.0
d NaN
e NaN

# To get the answer we were probably expecting,

df[’x’][:3].values + df[’x’][-3:].values

array([ 7, 11, 6])



24 3.5 Tabulations and indexed arrays

3.5. Tabulations and indexed arrays
The pattern behind much data processing is split-apply-combine-join: split your data into pieces, apply
a transformation to each piece, combine the pieces, and join results from different datasets together.
We could code this explicitly with a ‘for’ loop, but it would involve lots of boilerplate code — and I
hope you have been persuaded by section 2.2.3 that ‘for’ loops are considered harmful. Instead, let’s
see how to do it with Pandas.

3.5.1. DATAFRAME → INDEXED ARRAY

The following line of code performs a cross-tabulation: it splits the data into a separate dataframe
for each combination of officer-defined ethnicity and gender, applies the len function to each sub-
dataframe to get the number of rows it contains, and combines the results into a single indexed object.

# Select cambridgeshire records, then tabulate by ethnicity and gender

df = stopsearch.loc[stopsearch.force==’cambridgeshire’].copy()
x = df.groupby([’officer_defined_ethnicity’, ’gender’]).apply(len)

officer_defined_ethnicity gender
Asian Female 7

Male 179
Other 1

Black Female 10
Male 257

Other Female 6
Male 28

White Female 253
Male 1465
Other 5

dtype: int64

We can also apply more elaborate functions. Here are two equivalent ways to apply np.mean to a year
column in each sub-dataframe.

# First define the year column

df[’year’] = [int(yyyymm[:4]) for yyyymm in df[’month’]]

groupcols = [’officer_defined_ethnicity’, ’gender’]
df.groupby(groupcols).apply(lambda sub_df: np.mean(sub_df[’year’]))
df.groupby(groupcols)[’year’].apply(np.mean)

officer_defined_ethnicity gender
Asian Female 2017.714286

Male 2017.324022
Other 2017.000000

Black Female 2017.300000
Male 2017.408560

Other Female 2017.833333
Male 2017.285714

White Female 2017.454545
Male 2017.326962
Other 2017.200000

Name: year, dtype: float64

For this course, we will only apply functions that return simple Python values. It’s possible but more
complicated39 to apply functions that return dataframes or Pandas columns or indexed arrays.

The groupby/apply commands have produced an indexed array. An indexed array is a cross between a
normal numpy array and a dataframe. We access elements and sub-arrays by dimension, like a numpy
array — but the indexes aren’t integer positions, they’re values from the underlying column. Also, the
array might be ‘incomplete’, as in the example above which has no entry for [’Black’,’Other’].

x.loc[’Asian’] # select the sub-array of ethnicity Asian

x.loc[:, ’Other’] # select the sub-array of gender Other

x.loc[[’Black’,’White’]] # select two ethnicities, all genders

39http://pandas.pydata.org/pandas-docs/stable/groupby.html

http://pandas.pydata.org/pandas-docs/stable/groupby.html
http://pandas.pydata.org/pandas-docs/stable/groupby.html
http://pandas.pydata.org/pandas-docs/stable/groupby.html


3.5 Tabulations and indexed arrays 25

The index labels can be accessed with x.index.levels[0].values and x.index.levels[1].values.
To pretty-print an indexed array, use unstack40. It will by default fill in any missing values with NaN
(not a number), and you can override this with fill_value.

x.unstack(fill_value=0)

gender Female Male Other
officer_defined_ethnicity

Asian 7 179 1
Black 10 257 0
Other 6 28 0
White 253 1465 5

3.5.2. INDEXED ARRAY → DATAFRAME

There are two ways to convert an indexed array to a dataframe, depending on the shape of the dataframe
you want to end up with.

# Convert an indexed array into a long-form dataframe

x[[’Black’,’White’]].reset_index(name=’count’)

officer_defined_ethnicity gender count

0 Black Female 10
1 Black Male 257
2 White Female 253
3 White Male 1465
4 White Other 5

# Convert an indexed array into a wide-form dataframe.

x[[’Black’,’White’]].unstack(fill_value=0).reset_index() \
.rename_axis(None, axis=1)

officer_defined_ethnicity Female Male Other

0 Black 10 257 0
1 White 253 1465 5

When you first start working with data, I recommend you do all your calculations on dataframes rather
than indexed arrays. If you want to do calculations on an indexed array, first turn it into a dataframe.
As you get deeper into working with data, you’ll discover that the skill in working with data is knowing
which representation works best for your task, dataframe or indexed array. Also,

• Pandas blurs the boundary between dataframes and indexed arrays
• Both rows and columns can have hierarchical indexes, called multi-indexes41

• For clever tricks with higher-dimensional indexed arrays, read the documentation for unstack42

and rename_axis43.
• When you read the documentation or look for help, please note that what I’m calling an indexed

array, Pandas calls a Series44.

40https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.unstack.html
41https://pandas.pydata.org/pandas-docs/stable/advanced.html
42https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
43https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename_axis.html
44https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.unstack.html
https://pandas.pydata.org/pandas-docs/stable/advanced.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename_axis.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.unstack.html
https://pandas.pydata.org/pandas-docs/stable/advanced.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.unstack.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename_axis.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html


26 3.6 Database-style joins

3.6. Database‐style joins
When processing data we often want to combine data at different levels of aggregation. For example,
we might like to compare the frequency of false stops (i.e. where the police stopped someone and found
nothing suspicious) across different ethnicities. Here’s how we prepare the first three columns …but
what about the ntot column and n/ntot?

df = stopsearch.loc[stopsearch.force==’cambridgeshire’].copy()
df[’outcome’] = np.where(df.outcome == ’False’, ’nothing’, ’find’)
x = df.groupby([’officer_defined_ethnicity’, ’outcome’]).apply(len)
x.reset_index(name=’n’)

officer_defined_ethnicity outcome n ntot n / ntot

0 Asian find 116 }
192

60%
1 Asian nothing 76 40%
2 Black find 170 }

270
63%

3 Black nothing 100 37%
4 Other find 28 }

37
76%

5 Other nothing 9 24%
6 White find 1060 }

1740
61%

7 White nothing 680 39%

The database answer is to create a smaller table with two columns, officer_defined_ethnicity and ntot,
and then to join this to x using the key officer_defined_ethnicity.

y = x.groupby(’officer_defined_ethnicity’)[’n’].apply(sum).reset_index(name=’ntot’)

officer_defined_ethnicity ntot

0 Asian 192
1 Black 270
2 Other 37
3 White 1740

z = x.merge(y, on=’officer_defined_ethnicity’)
p = z.n / z.ntot
z[’percent_find’] = np.round(p * 100, 1)
# Also compute a margin for error; see IB Data Science for the theory

z[’err’] = np.round(1.96 * np.sqrt(p*(1-p)/z.ntot) * 100, 1)

officer_defined_ethnicity outcome n ntot percent_find err

0 Asian find 116 192 60.4 6.9
1 Asian nothing 76 192 39.6 6.9
2 Black find 170 270 63.0 5.8
3 Black nothing 100 270 37.0 5.8
4 Other find 28 37 75.7 13.8
5 Other nothing 9 37 24.3 13.8
6 White find 1060 1740 60.9 2.3
7 White nothing 680 1740 39.1 2.3

# Show only the interesting bit of the summary table

z.loc[z.outcome==’nothing’, [’officer_defined_ethnicity’,’percent_find’,’err’]]

officer_defined_ethnicity percent_find err

1 Asian 39.6 6.9
3 Black 37.0 5.8
5 Other 24.3 13.8
7 White 39.1 2.3

Pandas also lets us join indexed arrays on their common indices, and that would be a more natural way
to write this calculation; but that counts as more advanced Pandas usage than we will cover here.



3.7 Plotting 27

3.7. Plotting
Matplotlib is a huge and not very coherent45 plotting library for Python, inspired by decades-old
plotting from MATLAB. There are some alternatives, but they are mostly too restrictive, or just thin
wrappers over Matplotlib, or immature, so Matplotlib is the one to learn at least for the time being.

3.7.1. BASIC PRINCIPLES

Here is the general structure of plot code. I find it helpful to build up my plot step by step, adding
pieces in the order listed here, and checking at each step what the plot looks like. If you add everything
all in one go, chances are it won’t work and you won’t know which bit went wrong.

# First, prepare the data and put it into a dataframe

# Set figure size and other style parameters

with plt.rc_context({’figure.figsize’: (4,3)}):
# Get the overall Figure object (used for some overall customization)

# and Axes objects, one for each subplot (used for the actual plotting)

fig,ax = plt.subplots(...)

# 1. Draw data points / bars / curves etc. onto ax

# 2. Configure limits and colour scales

# 3. Add annotations, text, arrows, etc.

# 4. Configure the format of the ticks

# 5. Legend, axis labels, titles

# Save as pdf or svg or png, depending on the destination

# (On Azure, use the Data | Download menu to download the saved plot.)

plt.savefig(’myplot.pdf’, transparent=True, bbox_inches=’tight’, pad_inches=0)

plt.show()

A plot consists of one or more subplots, as in the example below. To create this plot, we start by
specifying the subplot layout we want,

fig,(ax1,ax2,ax3) = plt.subplots(nrows=1,ncols=3, sharey=True)

This gives us three objects of class Axes46, one for each subplot. The rest of the plot is made by calling
various methods on these objects, for example ax1.barh to draw a bar plot, and so on.

0 20000

40000

Anything to threaten or harm anyone
Article for use in theft

Articles for use in criminal damage
Controlled drugs

Crossbows
Detailed object of search unavailable

Evidence of offences under the Act
Evidence of wildlife offences

Firearms
Fireworks

Game or poaching equipment
Goods on which duty has not been paid etc.

Offensive weapons
Psychoactive substances

Seals or hunting equipment
Stolen goods

Female

0 200000

400000

Male

0 500

1000

Other

You’ll also see plenty of code samples which use commands like plt.barh or plt.yticks. That’s old-
style ‘stateful’ code, where matplotlib tries to work out which subplot you’re currently drawing on—it
works fine if you only have one subplot, but it’s confusing when you have multiple subplots. Matplotlib
documentation advises that for more complex plots you should get the Axes object first and then use
ax.barh or ax.set_yticks. Even if you only have one plot, I advise starting with

# get an Axes object for a plot with a single subplot, default is nrows=ncols=1

fig,ax = plt.subplots()

45Another Hacker News comment: “Matplotlib belongs to the worst category of software: very powerful and very awful.
Nothing makes any sense and it’s so profoundly unintuitive it almost feels like I’m being pranked. But, of course, use it I must.
Pandas also comes off as an unintuitive joke, but my displeasure with it has mostly worn off. Matplotlib however makes me
feel angry pretty much everyday.” https://news.ycombinator.com/item?id=21550516

46https://matplotlib.org/api/axes_api.html#the-axes-class

https://matplotlib.org/api/axes_api.html#the-axes-class
https://news.ycombinator.com/item?id=21550516
https://matplotlib.org/api/axes_api.html#the-axes-class


28 3.7 Plotting

and then using the Axes interface. You need to know how to use it anyway, and there’s no point
learning two interfaces.

Most of the customization methods are duplicated between the two styles, but with niggling
differences: for example plt.yticks is equivalent to ax.set_xticks combined with ax.set_xticklabels.
All of the plt commands have documentation that explains what the Axes equivalent is, so if you find
a code sample online that uses plt then it’s easy enough to translate it to Axes.

3.7.2. PLOT GALLERY

The best way to learn Matplotlib is to browse through galleries until you find something you like, and
copy it, remembering the basic principles above. To customize your plots you’ll need to make frequent
use of Google, Stack Overflow47, the matplotlib gallery48, and maybe if things get desperate look at
the documentation for plt.*49 commands, and for the Axes50 class. Here’s a starting gallery. Just look
at the pictures, and use this section for reference if you find yourself wondering how to produce a
similar plot.

Basic plot skeleton. Here’s the code behind our first plot, shown above. Note the line
fig,(ax1,ax2,ax3) = plt.subplots(nrows=1,ncols=3, sharey=True)

which asks for three subplots in a row, and says that their y scales are to be shared. Matplotlib picks
scales automatically to fit the objects drawn onto a subplot, and sharey=True means that all three
subplots get their scales adjusted. It also means that the tick marks are only shown on one of the three
subplots.

# Prepare the data, and put it into a dataframe

x = stopsearch.groupby([’object_of_search’,’gender’]).apply(len)
df = x.unstack(fill_value=0).reset_index().rename_axis(None, axis=1)

# Set figure size, no other style parameters

with plt.rc_context({’figure.figsize’:(6,3)}):
# we want three subplots in a row,

# so request three Axes objects on which to draw

fig,(ax1,ax2,ax3) = plt.subplots(nrows=1,ncols=3, sharey=True)

# 1. draw a horizontal barplot, one for each subplot / ethnicity

for (ax,eth) in zip([ax1,ax2,ax3], [’Female’,’Male’,’Other’]):
ax.barh(np.arange(len(df)), df[eth])

# 2. we’ve already specified, via sharey=True, that the three plots

# share a y-axis. No other axis limits to set.

# 4. configure the ticks

ax1.set_yticks(np.arange(len(df)))
ax1.set_yticklabels(df.object_of_search)

# 5. final tweaks

for ax,eth in zip([ax1,ax2,ax3], [’Female’,’Male’,’Other’]):
ax.set_title(eth)

plt.show()

Simple bar chart. Here is an elementary bar chart.
# Prepare the data, and put the rows in the order we want for plotting
x = stopsearch.groupby(’age_range’).apply(len)
x = x[[’under 10’,’10-17’,’18-24’,’25-34’,’over 34’]]

47https://stackoverflow.com/questions/tagged/matplotlib
48https://matplotlib.org/2.1.0/gallery/index.html
49https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
50https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes

https://stackoverflow.com/questions/tagged/matplotlib
https://matplotlib.org/2.1.0/gallery/index.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes
https://stackoverflow.com/questions/tagged/matplotlib
https://matplotlib.org/2.1.0/gallery/index.html
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.html#module-matplotlib.pyplot
https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes


3.7 Plotting 29

df = x.reset_index(name=’n’)

fig,ax = plt.subplots()
ax.bar(np.arange(len(df)), df.n)
ax.set_xticks(np.arange(len(df)))
ax.set_xticklabels(df.age_range, rotation=-30, ha=’left’)
ax.set_ylabel(’count’)

plt.show()

under 10
10-17

18-24
25-34

over 34

0

50000

100000

150000

200000

250000

300000

co
un

t

Histogram and density plot. This plot shows two graphics superimposed, a histogram (i.e. a bar
chart based on binned counts), and a smooth curve for the density. To produce the smooth curve we
can use a generic smoother such as scipy.stats.gaussian_kde, which takes the underlying data and
returns a function, and then apply this function to evenly-spaced values along the x-axis to generate
the points to be plotted.

x = stopsearch.location_latitude
x = x[~pandas.isna(x)] # remove missing values
import scipy.stats
# Smoothing is slow, and it produces just as good results on a subset
density = scipy.stats.gaussian_kde(np.random.choice(x,50000))

fig,ax = plt.subplots()
ax.hist(x, bins=30, density=True, alpha=0.2, edgecolor=’steelblue’)
xsample = np.linspace(50,55,200)
ax.plot(xsample, density(xsample), color=’steelblue’)

ax.set_xlabel(’latitude’)
ax.set_title(’Distribution of latitude’)

plt.show()

Scatter plot. A scatter plot, with explicit control of the colour scale and the coordinate scales.
# There’s no point plotting more data than there are pixels on the output
df = stopsearch.iloc[np.random.choice(len(stopsearch), size=100000)]

fig,ax = plt.subplots()

cols = plt.get_cmap(’Set2’, len(np.unique(df.force)))

for i,police_force in enumerate(np.unique(df.force)):



30 3.7 Plotting

want_rows = (df.force == police_force)
x,y = df.location_longitude[want_rows], df.location_latitude[want_rows]
# Set the size, alpha, and colour of the points
ax.scatter(x, y, s=1, alpha=.1, color=cols(i))

# Set the aspect ratio, based on the UK’s average latitude
ax.set_aspect(1/np.cos(54/360*2*np.pi))

# Pick coordinates to show (based on viewing the plot)
ax.set_xlim([-5,2])
ax.set_ylim([50.2, 55.8])

# Get rid of the tick marks and the outer frame
ax.set_xticks([])
ax.set_yticks([])
ax.axis(’off’)

plt.show()

Time series. There are several techniques being used in this example.

• The dataset as loaded stores the datetime as a string, which isn’t very useful. Here I convert it
to Python datetime51, and Matplotlib knows how to display it sensibly.

• The two plot commands both have a label. Matplotlib remembers the styling that was applied
for each label, and can generate an appropriate legend.

• I set figure.figsize to be (5, 1.5). Technically the units are in inches, but the output gets stretched
anyway when it’s included in these printed notes—so why does it help? Matplotlib measures
text size in inches too, so when we tell it to generate a small plot, the text will be larger with
respect to the plot size. That’s why this plot has legible text, compared to the plots on earlier
pages where the text was tiny.

df = stopsearch.loc[stopsearch.force==’cambridgeshire’, [’datetime’,’outcome’]].copy()
df[’outcome’] = np.where(df.outcome==’False’,’nothing’,’find’)

import datetime, pytz
def as_datetime(s):

return datetime.datetime.strptime(s[:10], ’%Y-%m-%d’).replace(tzinfo=pytz.UTC)
df[’t’] = np.vectorize(as_datetime)(df.datetime)

df = df.groupby([’t’,’outcome’]).apply(len).unstack(fill_value=0).reset_index()
df = df.iloc[np.argsort(df.t)]

with plt.rc_context({’figure.figsize’:(5,1.5)}):
fig,ax = plt.subplots()

ax.plot(df.t, df.find + df.nothing, label=’stops’, linewidth=3)
ax.plot(df.t, df.find, label=’find’, linewidth=1)

ax.legend()

51https://docs.python.org/3/library/datetime.html#datetime.datetime

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/datetime.html#datetime.datetime


3.7 Plotting 31

# Some magic to improve tick labels for an entire figure
fig.autofmt_xdate(bottom=0.2, rotation=-30, ha=’left’)

plt.show()

Panel plot. Our final plot is called a facet plot or a small multiples plot. According to the plotting
guru Edward Tufte52,

At the heart of quantitative reasoning is a single question: Compared to what? Small
multiple designs, multivariate and data bountiful, answer directly by visually enforcing
comparisons of changes, of the differences among objects, of the scope of alternatives.
For a wide range of problems in data presentation, small multiples are the best design
solution.

Our very first plot on page 27 was also a facet plot. There are actually two types of facet plot:

• We might want a grid of plots, either 1d or 2d. To get a grid of Axes objects, use
fig,axes = plt.subplots(nrows,vncols).

This will return either a vector of axes or an array of axes, according to nrows and ncols.
• We might want a sequence of plots which is allowed to wrap over several lines. For this, decide

how many rows and columns we’ll want in total, then call add_subplot to add each facet one
by one.
fig = plt.figure()
ax = fig.add_subplot(nrows, ncols, i) # i starts at 1

One other thing worth mentioning in this code: I first convert all the datetimes into Unix timestamps
(integers, counting the number of seconds since Thursday 1970-01-01 00:00:00), and then I do simple
integer arithmetic to get dates and weekdays. I find this easier than wading through library documen-
tation about datetime utility functions, and it’s also much faster because it’s simple vectorized numpy
expressions.

import datetime, pytz
def as_timestamp(s):

t = datetime.datetime.strptime(s[:10], ’%Y-%m-%d’).replace(tzinfo=pytz.UTC)
return int(t.timestamp())

df = stopsearch.loc[stopsearch.force==’cambridgeshire’].copy()
df[’t’] = np.vectorize(as_timestamp)(df.datetime)
df[’date’] = df.t // (24*3600)
df[’weekday’] = (df.t // (24*3600) - 4) % 7
df2 = df.groupby([’date’,’weekday’]).apply(len).reset_index(name=’n’)

with plt.rc_context({’figure.figsize’: (8,5), ’figure.subplot.hspace’: 0.35}):
fig = plt.figure()

for i, weekday in enumerate(range(7)):
ax = fig.add_subplot(3, 3, i+1)

# 1. Draw the data
ax.hist(df2.loc[df2.weekday==weekday,’n’].values, bins=range(15), alpha=.3)
# 2. Configure limits
ax.set_ylim([0,30])

52https://en.wikipedia.org/wiki/Small_multiple

https://en.wikipedia.org/wiki/Small_multiple


32 3.7 Plotting

# 3. Add annotations
ax.axvline(x=np.median(df2.n), linestyle=’dotted’, color=’black’)
# 4. Configure ticks
if i < 4: ax.set_xticklabels([])
if (i % 3) != 0: ax.set_yticklabels([])
# 5. Legend, axis, titles
weekday_names = [’Mon’,’Tue’,’Wed’,’Thu’,’Fri’,’Sat’,’Sun’]
ax.set_title(weekday_names[weekday])

fig.suptitle(’Number of stops’)
plt.show()


	Using Python
	A first session
	Basic Python expressions
	Maths and logic
	Strings and formatting

	Collections and control flow
	Lists and tuples
	Slicing
	Dictionaries
	Control flow
	Comprehensions *

	Python as a programming language *
	Functions and functional programming
	Generators
	None and Maybe, and Enumeration types
	Dynamic typing
	Object-oriented programming


	Numerical computation
	Preamble
	Vectorized thinking
	A first session
	Vectorized library routines
	`for' loops considered harmful

	Arrays
	Numerical optimization and fitting
	Simulation

	Working with data
	Preamble
	What data looks like
	Missing values

	Importing, exporting, and creating dataframes
	Selecting and modifying data
	Tabulations and indexed arrays
	Dataframe  indexed array
	Indexed array  dataframe

	Database-style joins
	Plotting
	Basic principles
	Plot gallery



