Software as a Service
Engineering

Richard Sharp

Director of Studies for Computer Science, Robinson College

What is SaaS?

SaaS (Software as a Service) refers to
software that is

hosted centrally and licensed to customers on
a subscription basis.

Users access SaaS software via thin clients,
(often web browsers).

Traditional software distribution (pre SaaS)

Purchasing Manage/
Software, Fel Decision Deploy upgrade
and updates.
(versioned
binaries)
Build Release Customer_1
versioned
software L
binaries
Software company
_| Purchasing - | Manage/
PEe Degcision Deploy upgrade
Customer_n

Traditional software distribution (pre SaaS)

Software,

and updates.

(versioned

binaries)

. Release
Build)
versioned
software L
binaries

Software company

Expensive duplication

Lack of specialization (cf. The Wealth
of Nations, Adam Smith)

- =
Customer_1

PoC > PBZ:Q:;J:Q /Deploy tﬂsg;%‘z/

: =
Customer_n

SaaS

\

Build
software

> Deploy

Manage/
Upgrade

Access to centrally
managed, on-line
services

Customer_1
PoC Purchqsmg Provision
Decision accounts

Software company

Much less duplication

Better specialization

Plus central management of state so much simpler

|

Customer_n
Purchasing Provision
PoC .
ecision accounts

é

Impact of SaaS on the
Software Engineering
Process

Impact on the ‘'software company’

Binary distribution
Build SOREED
versioned
software L
binaries
Software company

SaaS
Build - Deblo | Manage/
software ploy Upgrade

Software company

Impact on the ‘'software company’

e Now have to worry about building software and running it
e Have to continue evolving/upgrading the software with zero downtime

But the good news:

e ‘Software release’ no longer an all-or-nothing discrete event
o Provides new ways to manage quality and reduce risk

e Continuous visibility into user behavior
o Provides user/commercial insights back into iterative software development process

e State and runtime environment fully controlled by service provider
o Improves quality and makes upgrades a lot less risky (if done right)

Managing Continuous
Deployment Without
Downtime

Continuous Integration (ClI):
short integration cycles lead to greater throughput

Shared |::>

code repo

Build on
every
commit

—

Developers commit to shared
dev ‘mainline’ branch
frequently (e.g. at least once a
day)

Run
automated
unit tests

mediate alerting/feedback

fail condition

<

Built

artifacts

Continuous Deployment (CD):

bring ‘deploy’ into the ‘short cycle’

Continuous Integration

Built

artifacts

Automated
deploy to ‘test
server’
environment

Immediate alerting/feedback

—

Run automated
acceptance
tests

<

on fa|l condition

Automated
deploy to
production (‘live
servers’)

Production monitoring / alertirg

provides immediate feedback| but

no%ilures are visible totustomers...

12

Continuous Deployment (CD):

bring ‘deploy’ into the ‘short cycle’

Continuous Integration

Built

artifacts

Automated
deploy to ‘test
server’
environment

Immediate alerting/feedback

—

on fail condition

<

Run automated
acceptance
tests

Automated
deploy to
production (‘live
servers’)

Productiofy monitoring / alertirg

provides immediate feedback| but

<

no%ilures re visible tocustomers...

How to do this while reducing risk?
How to do this while ‘always on’?

13

Rolling deploy

Load Balancer

25% of traffic ea%\

X.y

X.y

X.y

X.y

Note: these resources are
usually running in a cloud
platform. So virtual
machines, load balancers,
storage, network etc. can
all be provisioned and
configured through the
cloud platform’s APlIs.

14

Rolling deploy: 1) Deploy ‘canary’ (limit exposure/risk)
ONONONON®

Load Balancer

0 ,
24.75% of traffic each to x.y 1% of traffic o x.(y+1)
instances

X.y X.y X.y X.y X.(y+1)

Rolling deploy: 2) Automated monitoring of error rates - OK?

Load Balancer

0 ,
24.75% of traffic each to x.y 1% of traffic o x.(y+1)
instances

X.y X.y X.y X.y X.(y+1)

Automated
alerts

CE—

Centralised logging

Rolling deploy: 3) Move traffic from old instance to new

Load Balancer

o 28% 25% %

X.y X.y X.y X.y X.(y+1)

Automated
alerts

E—

Centralised logging

Rolling deploy: 4) Upgrade 0% instance

Automated
alerts

E—

Load Balancer

o 28% 25%

X.y

X.y

X.y

X.(y+1)

X.(y+1)

Centralised logging

18

Rolling deploy: 5) Move traffic from old instance to new etc.

Load Balancer

Automated
alerts

E—

Centralised logging

Rolling deploy: Repeat {move traffic old->new; upgrade old}

Automated
alerts

E—

Load Balancer

0% 25% 0

X.y

X.(y+1) X.(y+1)

X.(y+1)

X.(y+1)

Centralised logging

20

Rolling deploy: ...

Destroy last x.y instance

Load Balancer

25% o

X.(y+1) x.(y+1)

X.(y+1)

X.(y+1)

Automated
alerts

E—

Centralised logging

(If anything
unexpected
happens then
can pause at any
point; aim to ‘roll
forward’ rather
than ‘rolling
back’...)

21

Rolling deploy with service dependencies

Load Balancer

7 X

X.y

X.y

X.y

X.y

a.b

Challenge:

How do we upgrade the
dependent service while keeping
everything running?

And how do we handle this if we

need to make a ‘breaking change’
to the dependent service’s API?

Dependent service

22

Rolling deploy with service dependencies

CONSTRAINTS:

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

Load Balancer

7 X

X.y

X.y

X.y

X.y

N

a.(b+1)

1. Deploy a.(b+1)

Dependent service

23

Rolling deploy with service dependencies

CONSTRAINTS: 1. Deploy a.(b+1)
2. Start rolling out x.(y+1)

a.(b+1) supports x.y
a.(b+1) supports x.(y+1)

Load Balancer

AN

X.y X.y X.y X.y X.(y+1)

=\

a.(o+1) | Dependent service

Rolling deploy with service dependencies

CONSTRAINTS: 1. Deploy a.(b+1)
2. Start rolling out x.(y+1)
a.(b+1) supports x.y 3. Finish deploy of x.(y+1)

Load Balancer

AN ———

X.(y+1) X.(y+1) X.(y+1) X.(y+1)

N/

a.(o+1) | Dependent service

a.(b+1) supports x.(y+1)

25

Rolling deploy with service dependencies

CONSTRAINTS: Deploy a.(b+1)
Start rolling out x.(y+1)
Finish deploy of x.(y+1)

Deploy (a+1).0

a.(b+1) supports x.y
a_(b+1) supports X.(y+1) Load Balancer

(a+1).0 supports x.(y+1) /N

[(a+1).0 doesn’t have to support x.y]

swnp =

X.(y+1) X.(y+1) X.(y+1) X.(y+1)

We say:

a.(b+1)’'s APl is backwards
compatible (wrt a.b)

(a+1).0’s APl introduces a (@+1).0 | Dependent service
breaking change 26

On Automation: Infrastructure-as-Code

e Problem:
o Manual deployments are time-consuming and error-prone. Subtle environmental differences
cause bugs.
e Solution:

o Write code to automate deployments, using Cloud APIs etc.
o Put deployment code under version control, just like all other code
o Have development teams write:
m Application code
m Code to test the application
m Code to deploy the application and its associated cloud infrastructure
m Code to monitor the application and generate alerts

e Frameworks like Terraform and CloudFormation help with this

27

Review

e Rolling deploy:

o Technique for upgrading and developing SaaS software with zero downtime

o Enables new ways of managing quality/risk, which changes the economics of testing
e |Infrastructure-as-code:

o Foundational technology for managing cloud-based SaaS services
o Developers write code that enables applications to deploy and monitor themselves

28

Behavioural analytics
and experiments

A simple behavioural analytics pipeline

e g — O g Users; often each identified by unique ID

o
o

Behavioural ‘events’ (e.g. At time t, user u, clicked button b)

SaaS company’s infrastructure

Processing/

Analytics collectors

ﬁQ Enrichment Q Reporting

U L/ = Queries run by
analysts

Big time

sequence

of events

for all users 36

What can we learn from the event logs?

e User/growth metrics:
o Monthly Active Unique Users (MAU); Daily Active Unique Users (DAU)
e Engagement:
o Time spent using the service
e Feature usage/growth/engagement metrics:
o X% of users tried feature F at least once in the last month
o Y% of users used feature F2 for at least 5 minutes last week
o Feature F3 usage growing at Z% year-on-year
e Insights based on user segmentation:

o Users who signed up in January 2018 exhibit an average 2% monthly churn
o Female users aged between 20-25 are X% more likely to use feature F at least once

37

What else can we learn from the event logs?

e Correlations
o Usage of feature F2 is correlated with usage of feature F1
o Daily time spent on the platform is correlated with the number of days since sign-up

e But NOT cause and effect... At least not without an experiment framework.

38

How can we move from correlations to cause/effect?

e Run controlled experiments:

@)

O O O O

Determine hypothesis to test

Determine level of exposure, E, (% of users that will go into experiment group)

Bucket users into either experiment group (E%) or control group (100-E)%

Release a change to the experiment group only

Measure relevant metric(s) in both control group and experiment group and determine whether
the observed difference is statistically significant

e By measuring difference between control and experiment groups we can have
some confidence that the only meaningful difference is our ‘change under

test’

e Often pick low E and ramp up (e.g. 1%, 10%, 25%, 50%)

@)

Similar to phased deploy alerting, but measures ‘do users like it’ rather than ‘are there errors’

e Experiment throughput can quickly become limited by traffic volume

39

A/B test architecture

—

SaaS service

IF (hash(UID.EID) mod 100) < E THEN serve experiment variant
_— ELSE serve control variant

Where:
UID = User ID
EID = Experiment ID (one per experiment)

E = size of experiment group for experiment EID

40

A/B test architecture

e Users persistently in a control or

e g e O g Users experiment group; don’t ‘flap’
= e Users in existing experiment group remain

in experiment group as E increased
e Works for multiple concurrent experiments
(but be careful of independence
assumptions)

< E then serve experiment variant

)

—

SaaS service

Where:
UID = User ID
EID = Experiment ID (one per experiment)

E = size of experiment group for experiment EID

41

A/B test architecture

SaaS service

Analytics collectors

Big time-
sequence
of events
for all users

For each experiment, e,
generate reports for metrics
of interest segmented by (i)
‘in EID_e’; and (ii) ‘not in
EID e’. Compare these
results for each metric and
test statistical significance.

42

Summary

Summary

e Putting the manage/deploy/upgrade cycle into the software company is a

profound change with far-reaching consequences:
o Economically:
m Reduces customer TCO and barriers to purchasing
m Leads to better specialisation, and less duplication; creates new business models
o Operationally:
m Enables new ways of doing QA, which changes the economics of testing
m Phased releases (which can take place over days if required, with flexibility to pause and
fix at any time); live monitoring/alerting
o Enables building of higher quality software through increased visibility of user behavior. (N.B.
with great power comes great responsibility!)
m Behavioural analytics
m Experiments

48

