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ABSTRACT

We introduce Neuro.ZERO—a co-processor architecture consist-

ing of a main microcontroller (MCU) that executes scaled-down

versions of a deep neural network1 (DNN) inference task, and an

accelerator microcontroller that is powered by harvested energy

and follows the intermittent computing paradigm [76]. The goal

of the accelerator is to enhance the inference performance of the

DNN that is running on the main microcontroller. Neuro.ZERO

opportunistically accelerates the run-time performance of a DNN

via one of its four acceleration modes: extended inference, expe-

dited inference, ensemble inference, and latent training. To enable

these modes, we propose two sets of algorithms: (1) energy and

intermittence-aware DNN inference and training algorithms, and

(2) a fast and high-precision adaptive fixed-point arithmetic that

beats existing floating-point and fixed-point arithmetic in terms

of speed and precision, respectively, and achieves the best of both.

To evaluate Neuro.ZERO, we implement low-power image and au-

dio recognition applications and demonstrate that their inference

speedup increases by 1.6× and 1.7×, respectively, and the inference

accuracy increases by 10% and 16%, respectively, when compared

to battery-powered single-MCU systems.

CCS CONCEPTS

•Computer systems organization→Neural networks; •Hard-

ware→ Hardware accelerators; Power and energy.
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1The DNN, by definition, refers to neural networks having more than one hidden
layers [23, 44, 55, 75]. Thus, a wide variety of networks qualify as a DNN in the existing

literature. DNNs considered in this paper have up to 105 neurons andweights combined.
They fit into 256KB memory of an MCU; have convolutional, ReLU, pooling, and fully-
connected structures as regular DNNs; and perform on-device inference [34, 35].
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Figure 1: Neuro.ZERO: The batteryless accelerator, powered by

harvested energy, opportunistically enhances the run-time perfor-

mance of DNN execution without consuming power from the main

system. The main MCU (microcontroller unit) guarantees seamless

execution of DNN by using a stable power source such as a battery.
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1 INTRODUCTION

In recent years, deep neural networks (DNN) [69, 101] have shown

stellar performance in solving problems in machine learning and

related fields [13, 26, 27, 38, 49, 64, 102, 121]. Following the trend,

embedded systems have started to implement lightweight versions

of DNNs [33, 114, 120], primarily focused on inference or general-

ization tasks [66]. The de facto approach to enable deep inference on

resource-constrained systems is to obtain a pre-trained model from

some other sources and then to compress and/or prune the network

until it fits the memory and computing capacity of the embedded

platform [37, 42, 43, 80, 123]. Needless to say, such compression and

pruning hacks inevitably degrade the performance, and many large-

sized DNNs are quite challenging to port on resource-constrained

embedded platforms even after compression and pruning.

The performance of DNNs running on an embedded system [10,

15, 33] is limited by the platform’s CPU, memory, and battery-size;

and their scope is limited to inference tasks only. To overcome this,

special-purpose co-processors, called DNN accelerators, have been

proposed and productized [4, 94], primarily targeted to smartphone-

grade mobile systems. Although especially architected hardware in

these accelerators enables faster execution of DNNs, they have some

major practical limitations. First, DNN computations are power-

hungry. The power consumption of these accelerators remains as a

fundamental bottleneck—prohibiting them to be used in battery-

powered systems. Second, existing accelerators primarily focus on

speeding up the execution of an offline-trained DNN inference task.

In general, there is a lack of research on how to facilitate run-time

adaptation so that the inference accuracy increases over time as

resources become available or newly sampled sensor data can be

used to fine-tune the performance. Third, while application-specific



SenSys ’19, November 10–13, 2019, New York, NY, USA Seulki Lee and Shahriar Nirjon

hardware accelerators of different types such as FPGAs and ASICs

are effective, their lack of standardization, unavailability to system

developers, and excessive price are slowing down the development

of engineered systems that could leverage DNN acceleration in

their embedded sensing and inference applications.

In this paper, we introduce Neuro.ZERO—a novel co-processor

architecture consisting of two microcontroller units (MCUs): (1) a

battery-powered main MCU that executes a scaled-down1 DNN

inference task, and 2) a batteryless (energy-harvesting) accelerator

MCU that enhances the performance of DNN inference that runs on

themainMCU. A high-level architectural diagram of Neuro.ZERO is

shown in Figure 1. Unlike existing DNN accelerators that primarily

focus on improving the inference speed [36, 112], the accelerator in

Neuro.ZERO improves the run-time performance of the DNN on the

main MCU by increasing inference accuracy or by enabling on-device

training. Since the accelerator does not draw power from the main

system, we call it a zero-energy accelerator. By having two MCUs,

one powered by a battery and one powered by harvested energy,

Neuro.ZERO guarantees sensing and inference for all sensor data

while enjoying opportunistic run-time performance gain without

spending system’s energy. Neuro.ZERO is implemented on off-

the-shelf, low-power, low-cost MCUs [107], and its source code

is open [52]–which helps developers build low-power, intelligent

sensing, and inference systems faster and at a lower cost.

The architecture of Neuro.ZERO falls into the general category

of energy-aware heterogeneous multi-core systems such as ARM’s

big.LITTLE [5, 59] and application-specific systems [74, 85]. How-

ever, Neuro.ZERO takes this to an extremity where one of the cores

runs completely on harvested energy. It flips a common practice of

energy-aware heterogeneous multi-core systems where typically

a lower-power core remains active, and it controls the sleep/wake

cycles of a higher-power core based on the computational demand.

Instead, a new execution paradigm is introduced in Neuro.ZERO,

where the main MCU executes sensing and basic inference tasks

as programmed by a developer to meet its timing and energy con-

straints, and when the batteryless MCU harvests enough energy to

execute a task by itself, it uses up that energy to improve the main

MCU’s performance in executing its accelerated inference task.

The proposed zero-energy accelerator follows standard prac-

tices of intermittently-powered systems. Its core framework is built

upon existing work on intermittent computing that address impor-

tant problems such as atomicity [19, 79], consistency [19, 77, 79],

programmability [51], timeliness [51], and energy-efficiency [12,

20, 50] to enable efficient code execution of general-purpose tasks.

Neuro.ZERO complements existing literature and solves new and

higher-level system challenges resulting from the heterogeneous

execution pattern of Neuro.ZERO cores as well as fundamental chal-

lenges in executing accelerated inference and training on resource-

constrained and intermittently-powered systems.

Neuro.ZERO opportunistically accelerates the run-time perfor-

mance of a DNN via one of its four acceleration modes: extended

inference, expedited inference, ensemble inference, and latent training

which facilitates execution of larger sized networks, splits the given

DNN for parallel execution, improves confidence of inference via

ensembling [65], and updates the DNN weights via online training,

respectively. To enable these modes, two sets of algorithms have

been developed. First, energy and intermittence-aware algorithms

have been developed that steps-up the DNN inference by scaling

up the size of DNN based on the current energy level and skips-out

back-propagation [117] of some weights during online training as

the amount of harvested energy fluctuates at run-time. Second, a

fast and high-precision adaptive fixed-point arithmetic has been

proposed that beats existing floating-point and fixed-point arith-

metic in terms of speedup and precision, respectively, and achieves

the best of both. To demonstrate the efficacy of Neuro.ZERO, we

implement two applications that use camera and microphone to rec-

ognize certain images (i.e., traffic signs) and audio events (i.e., voice

commands). These systems have been tested extensively using both

standard datasets, i.e., MNIST [70], CIFAR-10 [63], SVHN [86], and

Fashion MNIST [118], as well as in real-world experiments.

2 OVERVIEW OF NEURO.ZERO

2.1 System Design

The goal of Neuro.ZERO is to increase the run-time performance

of DNN on resource-constrained, MCU-based systems by having

a low-power energy-harvesting MCU as an accelerator, that op-

portunistically improves the accuracy or speed of DNN inference,

without drawing any power from the battery. Figure 2a shows an

architectural diagram of Neuro.ZERO, which depicts how a DNN is

converted to one of four different architectures at compile time. At

run-time, the shaded part of the generated network run on the main

MCU, while the rest run on the accelerator only when it is active.

The algorithms enabling these modes are shown on the right.

Basic Working Principle. Neuro.ZERO comes with a compile-

time tool and a run-time system. The compile-time tool takes a

baseline DNN architecture, a training dataset, and an acceleration

mode as an input. Depending on the chosen acceleration mode,

Neuro.ZERO creates two network architectures, trains them using

the given training dataset, and generates two DNNs as the output

(one for each MCU)—which are ready to be executed on the two-

MCU hardware platform designed for Neuro.ZERO. The DNN for

the main MCU is generated based on the baseline DNN by append-

ing the necessary architecture for acceleration without changing

the baseline DNN. It ensures that the standalone execution of the

main MCU is self-sufficient in satisfying the desired application-

level performance goals (e.g., achieving the same accuracy and

speed of the original baseline DNN). When the accelerating DNN

is executed on the accelerator, the two networks combinedly are

expected to achieve a better inference accuracy and/or speed.

The run-time system of Neuro.ZERO is responsible for executing

the two DNNs by managing the coordination between the two

MCUs. The run-time system also keeps track of the status of the

two MCUs and provides APIs to know whether the accelerator is

active or involved in the inference as well as APIs to turn ON/OFF

the accelerator (e.g., for debugging or experiment purposes). To

ensure the consistent execution of DNN, the accelerator executes

the DNN only when the energy harvester accrues enough energy

to complete a full pass of feed-forward (from input to output layer).

Four Modes of Acceleration. To improve the run-time perfor-

mance of DNNs, Neuro.ZERO supports four modes of acceleration.

Each mode takes advantage of the intermittently-powered accelera-

tor in a unique manner. The extended inference mode improves the

inference accuracy by extending the DNN’s structure and running
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Figure 2: Neuro.ZERO’s four modes accelerate a DNN in terms of accuracy, speed, multi-model, and training by extending, expediting, ensem-

bling, and training the DNN on the accelerator. They are enabled by energy-aware acceleration (step-up inference and skip-out training) and

numerical acceleration (adaptive-scale fixed-point).

the extended part on the accelerator. The expedited inference mode

increases the inference speed by offloading some part of the orig-

inal DNN to the accelerator. The ensembled inference mode runs

a different DNN model on the accelerator as a second DNN and

combines the output of the two independent DNNs to increase the

inference accuracy. The latent training mode enables an intermit-

tent on-device training of the baseline DNN for unseen data on the

accelerator while allowing the main MCU to keep executing the

inference task. The details of these modes are discussed in Section 3.

AlgorithmsEnablingAcceleration.The four accelerationmodes

of Neuro.ZERO are enabled by a set of algorithms that accelerate

the DNN inference and training on an intermittently-powered sys-

tem and expedite floating-point arithmetic. Since the accelerator

runs on sporadically harvested energy, tasks running on it execute

intermittently. Such an intermittent execution pattern makes both

the inference and the training of a DNN challenging. To address

this, we propose two novel algorithms, namely the step-up infer-

ence and the skip-out training, which accelerate the inference and

training of DNNs in proportion to the harvested energy (Section 4).

Despite these accelerations, we observe that the execution of

DNN, in general, is extremely slow on low-power, low-cost MCUs

that do not have hardware support for floating-point operations [2].

To address this well-known issue, most low-power embedded sys-

tems use fixed-point arithmetic [88], which is computationally effi-

cient but numerically inaccurate than floating-point. In Neuro.ZERO,

we rethink the implementation of fixed-point operations and pro-

pose adaptive-scale fixed-point number representation that provides

both the numerical correctness of floating-point arithmetic and the

speed-up of fixed-point arithmetic. This is described in Section 5.

2.2 Design Rationale

We compare three alternative choices of processors for the accel-

erator in terms of their power consumption, CPU performance

(measured in Dhrystone MIPS [116]), and cost in Table 1. Consid-

ering the low price and ultra-low power consumption, an MCU

is the most suitable choice for an energy harvesting system like

Neuro.ZERO as they can be run intermittently on harvested en-

ergy and wake-up more frequently due to shorter charge-discharge

cycles, and enable large scale deployment due to low-cost. For ex-

ample, when an RF harvester [91, 92] (generating 0.2mW–2.0mW)

is used, an FPGA or an SoC would take several minutes to hours

to harvest enough energy before they can execute any workload.

Such a long delay is not suitable for Neuro.ZERO, as the accelerator

is more likely to miss sensor data during its long charging time and

the value of processing the data may be lost (e.g., in time-sensitive

applications) after such long delay. Although large energy har-

vesters and huge capacitors as energy storage could be a makeshift

solution, such systems will be bulky and expensive, and thus are

not suitable for most embedded sensing systems.

Accelerator/Processor Type Power Performance Cost

MCU – TI MSP430 [107] 3.8-6.2mW 13 DMIPS $3-$5
FPGA – Xilinx Spartan 6 [103, 119] 24-109mW 166 DMIPS $30-$33
SoC – Qualcomm Snapdragon [95] 2.1-4.8W 13,860 DMIPS $70-$199

Table 1: Comparison of processor choices for the accelerator.

Having an MCU as the choice for the accelerator, Table 2 com-

pares four co-processor designs for up to two MCUs. The first two

rows show single-MCU systems, and the rest show two-MCU sys-

tems.We observe that only when the mainMCU is battery-powered,

and the accelerator is energy-harvesting, we achieve seamless ex-

ecution of tasks (on the main MCU) and energy-savings and in-

creased performance (due to the energy-harvesting accelerator).

Main Accelerator Timely/ Energy Performance

MCU’s MCU’s Seamless Harvesting Increase by

Power Source Power Source Execution (Accelerator) Accelerator

Battery - � - �
Harvesting - � - �
Battery Battery � � �

Harvesting Harvesting � � �
Battery Harvesting � � �

Table 2: Comparison of MCU-based architectural choices.

Extensibility and Cost. Neuro.ZERO is developed as a two-MCU

system. However, its design principles and algorithms are appli-

cable to many-MCU systems where a subset of MCUs are battery-

powered, and the rest are powered by harvested energy. Having

additional MCUs in a system adds a one-time cost, but considering

their small form-factor and the low cost (<$5 per unit), the benefit

of increased accuracy and speedup clearly outweighs the cost.
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2.3 Example Application Scenarios

We describe two example applications of Neuro.ZERO: (1) a traf-

fic sign recognizer, and (2) a voice command recognizer, which

classifies traffic sign images and voice audio data, respectively. In

Section 8, we describe their implementation and evaluation results.

Wearables for Pedestrian and Biker’s Safety. Pedestrians and

bikers are often not fully aware of their surroundings, which is

causing their lives [1]. To augment perception and cognition of

pedestrians and bikers, wearable systems have been proposed that

recognize imminent dangers on the road, alert the user on time,

and help them avoid injury and death [16, 48, 104]. We propose to

augment the ability of pedestrians and bikers to see and recognize

traffic signs by enabling road-sign recognition on camera-based

low-power wearable systems. These battery-powered systems need

to process camera images in real-time and produce accurate classi-

fication results. Using Neuro.ZERO, we can improve the accuracy

and confidence, and lower the execution time of the image recog-

nition applications for such wearable systems. As these systems

are expected to be used outdoors, solar energy can be harvested

to power the accelerator. In this application, Neuro.ZERO can be

operated (1) in the extended inference mode when the user enters

an environment that requires higher-resolution images to detect ob-

jects, (2) in the expedited mode when the user is in a busy area, (3) in

the ensemble mode when there are multiple cameras or a different

sensor (e.g., microphone) to independently detect the same event,

or (4) in the training mode when environment-specific parameter

tuning is necessary to obtain better classification results.

Voice Commands for Smarter Things. Voice-based communi-

cation with everyday objects in natural languages is becoming a

reality. Today, devices like Amazon Echo acts as a “middle-man”

to enable voice communication with smart devices such as home

appliances, remote controllers, thermostats, light bulbs, switches,

speakers, clocks, and many more. We envision that, in a few years,

voice-communication capability will be directly built into every

smart object. In order to realize this vision, building low-power, low-

cost, MCU-grade systems that recognize voice commands are essen-

tial. Neuro.ZERO enables the development of these next-generation

smart objects that are able to sense and interpret voice commands

on-device and in real-time, and opportunistically improve their in-

ference performance at runtime by leveraging the harvested power

from ambient RF energy at indoor environments. In this application,

Neuro.ZERO can be operated (1) in the extended inference mode

when the environmental noise level is high or the device is far,

(2) in the expedited mode when the user interacts with the device

more frequently or when there are many users issues commands

to the device, (3) in the ensemble mode when there are multiple

microphones and each can be specialized on detecting different

subset of voice commands, or (4) in the training mode when person

or environment-specific parameter tuning is necessary to achieve

more accurate classification results.

3 ACCELERATION MODES

In this section, we describe the four modes of zero-energy accelera-

tion in Neuro.ZERO, of which, only one mode is active at a time, as

configured by the application developer.

3.1 Extended Inference

A larger network having more neurons, in general, is a better

classifier [67, 68, 113]. Although there are studies showing that

the accuracy of a DNN drops when its size grows beyond a cer-

tain limit [32, 53], for resource-constrained embedded systems like

Neuro.ZERO, we safely assume that more neurons and connections

are likely to improve its inference accuracy. The memory of an

MCU being small, a DNN residing in the main MCU of Neuro.ZERO

is benefited by additional neurons in the accelerator since some

DNNs cannot be stored in a single MCU even after compression.

For example, SqueezeNet (470KB) [58] is a compressed version of

AlexNet [64], but it is still too large to fit in the main MCU (256KB

for MSP430). In such cases, an accelerator becomes necessary for

the system to achieve desirable performance.

Based on this assumption, given the baseline DNN, Neuro.ZERO

generates an extended version of it by adding additional neurons

to each layer. The newly added neurons are identical in numbers

and types for each layer. Figure 2b shows an example of an ex-

tended DNN that has three extended convolutional (Conv) and two

extended fully-connected (FC) layers having the same dimensions as

in the baseline DNN. To avoid creating a dependency between the

two MCUs which requires extensive communication between them

at run-time, we intentionally regularize (remove) the connections

between convolutional filters running on the two MCUs and exe-

cute all fully connected layers on the main MCU. The benefit of this

are two-fold: first, the main MCU independently makes inferences,

and second, execution of half of the convolutional filters, which ac-

count for 45% of the total energy consumption, are offloaded to the

accelerator. For example, scaled-down versions of popular DNNs

like ResNet [49] can be divided into two networks and accelerated

by using parallel algorithms for DNNs such as [40].

The accelerator executes the convolutional filters in an energy-

aware manner by selecting a subset of them for execution based

on the current level of harvested energy. We call this step-up infer-

ence since the accelerator’s effort toward increasing the inference

accuracy increases proportionally with the harvested energy. The

details of the algorithm are described in Section 4.1.

3.2 Expedited Inference

Exploiting the inherent parallelism in DNN architecture is a com-

mon technique to increase the speedup of DNN execution. We

leverage this parallelism in Neuro.ZERO by executing a subset of

the convolutional filters of the baseline DNN on the accelerator.

Like the extended inference mode, the fully connected layers run on

the main MCU to ensure that the main MCUmakes inferences with-

out requiring frequent communication with the accelerator. Since

executing convolutional layers take as much as 90% of the total

execution time, the expedited mode cuts down the inference time

approximately by 45%. Figure 2b shows an example of expedited

DNN having three convolutional layers offloaded from the baseline

DNN. Although this mode looks similar to the extended inference,

the main difference between the two is that unlike the extended

mode, the expedited mode trades off accuracy for speedup.

3.3 Ensembled Inference

Unlike the above two modes, the ensembled inference mode exe-

cutes an independent DNN on the accelerator, which is given as an
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additional input to Neuro.ZERO. This mode enables execution of a

different DNN that performs the same inference task and provides

a second opinion on the inference result. It also allows execution

of a different inference task that may complement inference results

on the main MCU. Furthermore, the accelerator may choose to use

a different sensor than the main MCU to perform the same or a

different inference task than the main MCU. Thus, this mode offers

the most flexibility, but it does not necessarily improve the speedup.

However, by carefully choosing a suitable combination of sensors

and inference tasks, novel multi-modal, multi-objective sensing

and inference systems can be developed with this mode—which

may effectively increase the accuracy and speedup of inference.

Figure 2b shows an example of an ensembled DNN. Unlike the base-

line DNN having a convolutional architecture, the accelerator runs

a fully-connected DNN that learns non-spatial features. When the

accelerator is available, the output of the accelerator is combined

with that of the main MCU to generate the final inference result.

Although Neuro.ZERO is a minimalistic system that has only

one main MCU and one accelerator, the design can be extended

to support many-MCU systems that run more complicated tasks

and ensembles of many networks. Outputs of these networks can

be combined using existing techniques such as concatenation and

averaging [45, 109].

3.4 Latent Training

Real-time training of machine learning classifiers is a desirable

feature formanymobile and embedded systems [31]. In recent years,

we see a growing trend of online training of embedded classifiers in

commercial products such as iPhone’s face recognition [4], Google

Clip’s image capturing [39], and Android smartphone’s key-press

learning features [46]. To future-proof Neuro.ZERO, we introduce

a fourth acceleration mode that enables retraining of the DNN

on the accelerator. We call this latent training since the training

process gradually progresses over time as the accelerator harvests

energy. Training happens separately on the accelerator while the

main MCU independently executes inference tasks. The two MCUs

asynchronously communicate with each other only when the DNN

model has been updated via training. Then, the main MCU fetches

the newly updated model and uses it from then on.

Unlike the DNNs that have several millions of parameters, re-

quiring thousands of training examples to train, and are meant to

run on high-end processors, the DNNs in Neuro.ZERO are much

smaller in size and training happens online, i.e., only one example

at a time to perform a back-propagation algorithm. However, even a

single round of back-propagation is difficult on a small system that

is powered intermittently. To solve this challenge, we propose an

energy-aware back-propagation algorithm that updates the weight

parameters of a DNN in proportion to the amount of harvested

energy. The details of the algorithm are in Section 4.2.

One caveat of on-device training is that the system requires

labeled data. To handle this, we propose several solutions: (1) apply-

ing semi-supervised learning principles that do not require labeled

data [71, 90, 124], (2) relying on an external, high-accuracy infer-

ence system to obtain the labels at run-time, and (3) in a distributed

sensor network or ensemble scenario, aggregating (e.g., voting)

neighboring nodes’ inference results and treat it as the label. In our

demonstration, we use (2) for the simplicity of implementation.

4 ENERGY-AWARE ACCELERATION

In this section, we introduce energy-aware acceleration algorithms

called step-up inference and skip-out training, which enable inter-

mittent inference and training of DNN based on the energy level.

4.1 Step-Up Inference

The step-up inference enables flexible inference acceleration of

DNNs on the unpredictable harvested-energy. It dynamically ad-

justs acceleration in proportion to the run-time energy level by

stepping up and down the size of DNN executed on the accelera-

tor with multiple steps. Since the network size grows along with

steps, e.g., step four has a larger DNN than step three, etc., a higher

step is expected to achieve better performance acceleration (i.e.,

higher accuracy) than a lower one. Every execution of inference,

the highest step that can be executed with the current energy level

is selected among total n steps and executed on the accelerator.

Step 1 Step 2 Step 3

Step 4

3x3x1x2
3x3x2x1
3x3x1x2

3x3x1x2
3x3x2x2
3x3x2x4

3x3x1x2
3x3x2x3
3x3x3x6

3x3x1x2
3x3x2x4
3x3x4x8

3

3

3

3

3

CNN dimension

CNN filter (layer 1)

CNN filter (layer 2)

CNN filter (layer 3)

3

Figure 3: An example of step-up inference: The number of CNN fil-

ters running on the accelerator incrementally increase along with

steps, and only one step is executed based on the energy level.

A set of n steps can be expressed as a set S = {S1, S2, ..., Sn } and
the amount of energy required to execute each step is given by

another setC = {c1, c2, ..., cn }, where Si is the set of CNN filters of

i-th step, and ci is the energy consumption of the i-th step. Figure 3

depicts an example of four steps having different numbers of CNN

filters that incrementally increase along with the steps. Starting

from the baseline DNN, each step grows by adding a set of new

filters to the previous step. Thus, Si+1 = Si ∪{new CNN filters} and

Si ⊂ Si+1. The step Si+1 is obtained by training {new CNN filters}

step-by-step until n while freezing Si . In this way, the filters of the

previous steps are reused without changes, and they are prevented

from learning redundant features. While the total number of steps,

n can be arbitrarily set at compile-time based on energy harvesting

pattern, the total number of accelerating filters,
∑n
i=1 |Si | is limited

to the same number of filters as the baseline DNN in the main MCU.

For every inference acceleration, Neuro.ZERO determines a step

to be executed by the accelerator based on the currently-available

energy at run-time. The step to be executed at the k-th inference

execution, sk is determined by sk = argmaxi≤n ci subject to ci ≤
ek where ek is the current energy level at the k-th inference.

4.2 Skip-Out Training

The skip-out training enables intermittent training of DNN on the

irregular energy harvesting pattern. It accelerates a train by ensur-

ing the completion of one execution of back-propagation regardless

of the amount of currently-available energy.
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Skip-Out Back-Propagation. Unlike conventional training, the

skip-out algorithm skips a back-propagation step for some of the

weights with the skip-out rate, rk at the k-th iteration of training:

rk = 1 −
1

n
min

(⌊
ek

ef + eb

⌋
, n

)
(1)

where n is a total number of weights in a DNN, ek is the current

energy level at the k-th iteration, ef is the amount of energy needed

for feed-forward of one weight, and eb is the amount of energy

needed for back-propagation of one weight. Given the skip-out rate,

rk and a total number of weights,n in a DNN, the number of weights

to be trained at the k-th iteration, nrk is given by nrk = �n(1− rk )�.
For each k-th iteration, the skip-out rate, rk is obtained from the

current energy level, ek ; and only nrk weights are trained by back-

propagation. Therefore, a different number of weights are trained

every iteration, increasing the speed of training by guaranteeing

the completion of one back-propagation regardless of the current

energy level. Figure 4 shows back-propagation with skip-out.

…… …

Not skipped-out weight

…

Skip-out back-propagation:
skip some weights with prob of 

Skipped-out weight

…… ……

Skip-out feed-forward:
activation with

×
××

×
×× ××

: Average skip-out rate

Figure 4: Skip-out back-propagation: Some weights are skipped

with skip-out rate rk for every k-th iteration. Skip-out feed-forward:

All neurons are multiplied with the average skip-out rate ak .

The weights to be skipped are selected using Bernoulli distribu-

tion [110] with probability, rk with no other considerations such

as their current values. This kind of skipping is effective and is

known as drop-out [105] since it not only increases the training

accuracy but also mitigates the overfitting problem [47]. More-

over, the Bernoulli distribution is one of the best choices for our

system as any other selection algorithm, e.g., sorting or scoring,

consumes more energy, which would not leave enough energy for

back-propagation. The difference between skip-out and drop-out is

that the skip-out rate changes at every iteration while the drop-out

rate stays the same for the entire training (e.g., 0.5). Another differ-

ence is that the skip-out algorithm leaves the selected weights as

they are without training, so they are used in back-propagation for

the survived weights while drop-out completely removes them by

setting their values to zero.

Skip-Out Feed-Forward. The skip-out-based feed-forward acti-

vation computation at the k-th iteration of training is given by:

o
(l )
j =

∑
i

w
(l )
i, j · φ(o

(l−1)
i ) · ak and ak =

1

k

k∑
i=1

ri (2)

where o
(l )
j is the j-th neuron in the l-th layer, wi, j is the (i, j)-th

weight in the l-th layer, φ(·) is an activation function, ri is the skip-
out rate at the i-th iteration, and ak is the average skip-out rate until

the k-th iteration. Unlike the skip-out back-propagation that skips

some weights, the skip-out feed-forward does not skip any weights

for activation computation. Instead, the average skip-out rate, ak
until the k-th iteration in Equation 2 is applied to the activation of

all neurons. Figure 4 shows feed-forward with skip-out.

Skip-out trains a DNN with a different number and combination

of weights for each iteration. Since weights are trained with the

probability of 1 − rk for k-th iteration in the back-propagation, it is

averaged by ak in the feed-forward. Hence, any weight trained for

a specific DNN does not dominate feed-forward. In general, an aver-

aged feed-forward of different DNNs results in a better performance

than a feed-forward based on one particular DNN [105].

Convergence of ak. The average skip-out rate ak used for feed-

forward converges after a number of training iterations. By using

Equation 1, ak in Equation 2 can be re-written as:

ak �
1

k

k∑
i=1

(
1 −

ei
n(ef + eb )

)
=

1

k

k∑
i=1

1 −
μek

n(ef + eb )
(3)

where μek =
1
k

∑k
i=1 ei is the mean of ei . Since n, ef , and eb are

constants and μek tends to converge to a constant ask → ∞, ak also

converges. If we consider ei as an independent random variable, its

distribution tends toward a normal distribution as ei ∼ N(μek ,σek )
where μek is mean, and σek is variance regardless of its original

distribution as i → ∞ based on the Central Limit theorem [98].

5 NUMERICAL ACCELERATION

In this section, we present an underlying numerical acceleration

of Neuro.ZERO called Adaptive-Scale Fixed-Point (ASFP) arithmetic

that adjusts the scaling factor of fixed-point (FP) numbers during

arithmetic operations. It produces more reliable numerical results

than fixed-point while being faster than floating-point operations.

5.1 Fixed-Point Numbers

The standard 32-bit IEEE-754 floating-point numbers are either not

supported or computationally very slow in embedded systems that

do not have an on-board Floating Point Unit (FPU) [2]. For these

reasons, most embedded systems that have no hardware support

for floating-point operations, use fixed-point (FP) arithmetic [88]

which is numerically less accurate than floating-point.

Given totaln bit-width, a number x is represented with FP format

using xf number of fractional bits (Qxf ), i.e., x = xb2
−xf for 1 ≤

xf ≤ n − 1 where xb is the integer base ranging from −2n−1 to

2n−1−1 for a signed number, e.g., 1.625 is represented as 1664 ·2−10

with Q10. Increasing the scaling factor increases the range and

reduces precision. On the contrary, reducing it reduces the range

and increases precision. Hence, FP is a number format having a

unique shared fixed exponent with a trade-off between the range

and precision. Since the scaling factor is fixed for every number,

overflow and precision loss occurs in compute-intensive DNN tasks.

5.2 Adaptive-Scale Fixed-Point Arithmetic

To overcome the limitations of fixed-point (FP), we propose adaptive-

scale fixed-point (ASFP) numbers that adjust the scaling factor

when performing the four fundamental arithmetic operations. An

ASFP-based DNN can be trained with significantly less error by

mitigating the overflow and precision loss problem of FP. Here, we

describe adaptive-scale Multiply-Accumulate (MAC) operation that
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lost drop adaptfixed

Actual FP ASFP Integer base

Number of 
fractional bits

Figure 5: For addition of two binary number 10.11 (Q2) and 01.10

(Q2), FP produces 00.01 using the fixed scaling factor (-2). On the

other hand, ASFP produces 100.0 by adapting the integer base (1000)

and the scaling factor (-1) which is closer to the actual result 100.01.

is frequently performed in DNNs. To understand it, the two parts

of MAC, i.e., addition and multiplication are first discussed.

ASFP Addition. Addition of two FP number x = xb2
−xf and

y = yb2
−yf (xf ≥ yf ) given total n bit-width is given by:

x + y = xb2
−xf + yb2

−yf = (xb2
yf −xf + yb )2

−k2−(yf −k ) (4)

where (xb2
yf −xf + yb )2

−k is new integer base and (yf − k) is new

number of fractional bits for the addition result. If (xb2
yf −xf +

yb )2
−k does not fit into the maximum integer base range between

−2n−1 to 2n−1 − 1, the result will overflow and end up being inac-

curate. On the other hand, if it is too small, it will not overflow but

end up being too coarse with relatively small fractional bits, which

scarifies its precision. Hence, to provide the most fine-grained preci-

sion without overflow, new integer base |xb2
yf −xf +yb |2

−k needs

to be maximized by finding minimum k such that:

k ≥ �log2 |xb2
yf −xf + yb | − (n − 1); and, k ≥ yf − (n − 1) (5)

�log2(·) is computed by finding the most significant bit (MSB).

It is efficiently obtained either using bit-shifting operations, which

is extremely fast or using a near constant-time algorithm such as

De Bruijn sequence [25]. As an example, adaptive-scale addition of

two binary FP number 10.11 (Q2) and 01.10 (Q2) with 4 bit-widths

is given in Figure 5, which shows ASFP produces more accurate

result than FP by preventing overflow.

ASFPMultiplication.Multiplication of two FP numberx = xb2
−xf

and y = yb2
−yf given total n bit-width is given by:

xy = xb2
−xf · yb2

−yf = xbyb2
−k2−(xf +yf −k ) (6)

where xbyb2
−k is new integer base and (xf +yf −k) is new number

of fractional bits for the multiplication result. The integer base and

scaling factor of the multiplication result are adjusted by finding

minimum k such that:

k ≥ �log2 |xb | + �log2 |yb | − (n − 1); and, k ≥ xf + yf − (n − 1)

(7)

Same as the addition, the calculation of �log2(·) and k can be

efficiently performed. Once a multiplication is performed, the log

value of the multiplication result does not need to be computed any

more since it stays as (n − 1) from then on, which results in the

even faster computation for future multiplications.

ASFP MAC. By combining the adaptive-scale addition and multi-

plication, the MAC computation is effectively performed with nu-

merical accuracy similar to floating-point, which provides a more

reliable result than FP. Also, it is computationally more efficient

than floating-point since its basic format is based on FP.

Given two vectors, it first performs element-wise multiplication

and updates the scaling factor and the integer base for each multi-

plication result using Equation 7. After all the results are added up,

the final summation is obtained by finding the best integer base and

the scaling factor based on Equation 5. By providing a unified MAC

operation, its computational efficiency is further improved when

compared to performing individual multiplication and addition.

6 IMPLEMENTATION

The Neuro.ZERO platform consists of two MCUs, memory space,

sensors, and energy storage, which is shown in Figure 6a.

Accelerator

FRAM:
Memory 

Space

Microphone: 
Sensor

Main MCU

(a) Neuro.ZERO prototype platform

“yes”, “no”,
“on”, “off”,

“up”, “down”,

“go”, “stop”,
“left”, “right”

(b) Voice command recognition

Figure 6: Neuro.ZEROhardware platform: a custom-built dual-MCU

prototype for zero-energy acceleration.

The Main MCU and Accelerator. The Neuro.ZERO platform

has two microcontrollers (MSP430FR5994 [107]), serving as the

main MCU and the accelerator, which can operate with low power

(118μA–1.8mA) supplied from an energy harvester. Two power con-

nectors dedicated to each MCU allow separate power supplies, i.e.,

stable power (battery) and energy-harvesting power (batteryless).

Memory Space. A memory module is connected to both the main

MCU and the accelerator. It works as a common data storage for the

shared data, e.g., intermediary data or sensor readings. A FRAM [11]

is chosen to be placed between two MCUs since it is a nonvolatile

memory performing read/write operation in nanoseconds with

high energy efficiency [24]. These attributes of FRAM minimize

data sharing overhead between the main MCU and the accelerator.

Sensors. Sensors are connected to both the main MCU and the

accelerator so that the data is accessible by both without any lag.

They are powered from the battery for reliable and timely data

collection. They are connected through the pin-headers on the

below surface, e.g., we connect a camera and microphone for the

traffic sign and voice command recognizer, respectively.

Energy Storage.A capacitor charged by an energy harvesterworks

as the energy buffer for the accelerator. When the energy level of

the capacitor exceeds the required energy level for acceleration, the

system gets accelerated. The amount of energy needed for acceler-

ation is statistically obtained from multiple energy measurements.

7 ALGORITHM EVALUATION

Prior to describing the performance of Neuro.ZERO in real-world

scenarios (Section 8), we conduct dataset-driven experiments to

evaluate the two core algorithms of Neuro.ZERO, i.e., energy-aware

acceleration (step-up inference and skip-out training) and adaptive-

scale fixed-point (ASFP). The evaluation of the step-up and skip-out

algorithms is conducted on a GPUmachine (GTX 1080 Ti) using four

datasets, i.e., MNIST [70], CIFAR-10 [63], SVHN [86], and Fashion
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MNIST [118]. We use a variation of LeNet architecture [70] as the

baseline DNN, which is also used later in the traffic sign recognizer

(Section 8.1). The performance of ASFP is evaluated on an MCU.

7.1 Energy-Aware Acceleration

Evaluation of Step-up Inference. To evaluate the effectiveness

of the step-up inference, we measure the inference accuracy of the

extended inference mode by varying the step from step 1 to step 5

for each of the four datasets. For training, we use a learning rate

of 10−3 with Adam optimizer [62], L2 regularization parameter of

10−6, and a mini-batch size of 96. A separate test dataset (different

from the training data) is used to evaluate the accuracy of each

network. The test accuracy, along with the size of the DNN and the

number of CNN filters for each step are shown in Figure 7.
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Figure 7: Performance of step-up inference for different steps.

For all datasets, the accuracy increases as steps are increased, i.e.,

from 92.7% to 99.0%, 67.7% to 77.1%, 74.5% to 90.2%, and 91.7% to

98.9% for MNIST, CIFAR-10, SVHN, and Fashion MNIST dataset, re-

spectively. However, the increment in accuracy is relatively smaller

as the network grows. For example, the delta in accuracy for SVHN

dataset is initially 7% from step 1 to step 2, but later it drops to 1%

from step 4 to step 5. Since the gain in accuracy tends to maximize

during the first few steps of the step-up algorithm, executing ex-

tended inference for smaller steps is an effective strategy to improve

the inference performance.

Evaluation of Skip-out Training. We compare the inference ac-

curacy of the skip-out algorithm running at different skip-out rates

against two baseline solutions: DNNs that do not implement skip-

out (no skip-out) and thus it is expected to set the upper limit for

skip-out; and DNNs that implement drop-out (sets 50% weights

to zero). These DNNs are trained and tested on different, non-

overlapping subsets of the dataset. Figure 8 shows how the accu-

racy (evaluated on the test dataset) varies as the number of training

iteration (on the training dataset) is increased.

We observe that for every dataset, the accuracy of skip-out con-

verges to no skip-out. For instance, a skip-out rate between 0.0–0.4

results in a similar accuracy to no skip-out with a negligible (0.4%-

0.9%) loss in accuracy for any dataset. Furthermore, skip-out yields

a similar or higher accuracy to drop-out given similar skip-out rates.

In general, the performance of skip-out depends on its rate; as the

rate gets closer to zero, its accuracy gets closer to no skip-out.
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Figure 8: Performance of skip-out at different skip-out rates.

We also observe that skip-out requires a shorter training time

to achieve comparable accuracy to no skip-out (not shown in the

figure). For instance, skip-out (0.0-0.6) reaches 80% of accuracy

about 100 iterations earlier than no skip-out. This is because the

number of weights trained at each iteration in skip-out algorithm

is flexibly changed based on the energy, which is usually much

smaller than the total number of weights. Although the gain in

accuracy after each training iteration in skip-out is generally smaller

than no skip-out, larger training iterations, given the same time,

compensates for the sluggish increase in accuracy, and sometimes

it slightly increases the overall accuracy. Skip-out saves training

time and energy consumption and guarantees the completion of an

iteration regardless of the energy level. This incremental and quick

pace of training is more suitable for intermittent online learning.

7.2 Numerical Acceleration

To evaluate the effectiveness of adaptive-scale fixed-point (ASFP),

its MAC operation error and execution time are compared against

fixed-point (FP). Figure 9a shows the MAC operation errors of

ASFP, and four FP formats (Q19, Q17, Q13, Q1) for two randomly

generated 64×1 vectors having 20 bit-widths. Here, Qx denotes

that x number of bits are used to represent the fractional part. The

error is calculated as |(f − x)/f | × 100, where f is MAC result of

floating-point (32bit) and x is the MAC result of ASFP or FP. As

shown in the figure, ASFP provided average 0.71% error, which is

ten times less than the best-performing FP (Q7, 7.32%). The errors of

other FPs are numerically intolerable (more than 100%). Although

the execution time (measured in clock cycles) of ASFP is 1.5 times

slower than fixed-point, it is 3.4 times faster than floating-point

with only 0.71% numerical difference, which is shown in Figure 9b.

To investigate the results further, we measure the overflow and

precision errors separately. The overflow error is measured by

multiplying two random numbers ranging from -128 to 128 and the

precision error is measured by the multiplication of two random

numbers between -2 and 2. Among FPs, Figure 9c and 9d show

that Q7 yields the smallest error of 0.009% in the overflow test,

whileQ19 achieves the smallest error of 0.005% in the precision test.

The overflow and precision errors of ASFP are 0.005% and 0.123%,
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Figure 9: The MAC error, MAC execution time, overflow error, and

precision error of ASFP and four FPs (Q1, Q7, Q13, and Q19).

respectively. It demonstrates that unlike ASFP, a single fixed-point

format can only provide either a small overflow error (Q7) or a
small precision error (Q19), but not both. Hence, ASFP achieves

better numerical correctness regarding both overflow and precision

at the same time, which a fixed-point format cannot.

8 APPLICATION EVALUATION

8.1 Traffic Sign Recognizer

We implement a traffic sign recognizer, which uses a camera to

capture and classifies 43 different types of traffic signs, as shown

in Figure 10b. The system is powered by a 5V@40mA solar energy

harvester. The camera first takes a 64×48 image with RGB565. The

MCU converts the image into a grayscale image (32×32) and passes

it to the DNN. The baseline DNN running on themainMCU consists

of seven layers including the input and the output layers: 32×32×1

(input), 3×3×1×2 (Conv), 3×3×2×4 (Conv), 3×3×4×8 (Conv), 64

(FC), 128 (FC), 43 (output), which is a variant of the LeNet archi-

tecture [70] with an additional conv layer. Table 3 describes the

network architecture during acceleration. We use ASFP with 16

bit-width for all numerical operations.

Traffic sign

Neuro.ZERO
with a 

camera

(a) Traffic sign photoshoot (b) Example images taken by the camera

Figure 10: Traffic sign recognizer: (a) Traffic signs are captured using

a camera. (b) Examples of images taken.

Performance of the Accelerator.We evaluate the performance

of four acceleration modes of Neuro.ZERO. We take photos of

traffic signs from the GTSRB dataset [106] using the setup shown in

Figure 10a.We capture 39,209 training images and 12,630 test images

from 43 classes using a camera sensor connected to Neuro.ZERO

as the images appear on the screen of a laptop. We also evaluate

Main MCU Accelerator

Extended baseline1 step 1: 3×3×1×2, 3×3×2×1, 3×3×1×2

step 2: 3×3×1×2, 3×3×2×2, 3×3×2×4

step 3: 3×3×1×2, 3×3×2×3, 3×3×3×6

step 4: 3×3×1×2, 3×3×2×4, 3×3×4×8

Expedited step1: baseline2 step 1: 3×3×1×2, 3×3×2×1, 3×3×1×8

step2: baseline3 step 2: 3×3×1×2, 3×3×2×2, 3×3×2×8

Ensembled baseline 32×32×1, 64, 128, 128, 64, 43 (FC DNN)

Latent Train baseline baseline with skip-out rate (0.0–0.4)

* Baseline1: 32×32×1, 3×3×1×2, 3×3×2×4, 3×3×4×8, 96, 192, 43

* Baseline2: 32×32×1, 3×3×1×2, 3×3×2×3, 3×3×3×8, 64, 128, 43

* Baseline3: 32×32×1, 3×3×1×2, 3×3×2×2, 3×3×2×8, 64, 128, 43

Table 3: The DNN architecture of the traffic sign recognizer

the performance of the traffic recognizer using the original traffic

sign images from the GTSRB dataset as the input and compare it to

the performance of the camera-taken images.

Figure 11a shows the recognition accuracy of the extended in-

ference with four steps of incremental extension. Every two hours,

a different set of 3,000 traffic signs (43 classes) is classified by the

baseline DNN as well as the four steps to measure the accuracy. It

shows that higher accuracy is achieved with further steps providing

more extension of DNN. For instance, the baseline accuracy is im-

proved from 80% to 83%, 86%, 87%, and 88% on average by each step

with the camera-taken traffic sign images. Figure 11b shows the

execution time of the expedited inference measured by clock cycle

of the main MCU and the accuracy given two steps of incremental

offloading. Compared to the baseline DNN, the execution time is

decreased by 25% and 38%, accelerating the execution speed by 1.3×

and 1.6× for step one and two, respectively. Both the camera-taken

and original images experience only 1% of accuracy degradation

by the maximum for the speed acceleration. Figure 11c shows the

recognition accuracy of the ensembled inference with the second

DNN consisting of six FC layers. The output of the two DNNs in

the ensemble are combined using a fully-connected layer as done

in [83]. By ensembling the FC DNN, the accuracy is improved from

80% to 85% and from 87% to 93% on average for the camera-taken

and original GTSRB images, respectively.

Figure 11d shows the training accuracy over time for 20 classes

of traffic signs performed by the latent training on the accelerator.

Each single training example is trained online using SGD (Stochastic

Gradient Descent [60, 97]) with the momentum algorithm [99].

As shown in the figure, the latent training keeps improving the

accuracy over time up to 65% and 70% for the camera-taken and

original GTSRB images, respectively. However, their accuracy is

about 15% lower than the offline-trained DNNs (80% and 85%) on

average since it uses SGD and ASFP instead of mini-batch and

floating-point which usually provide better training performance.

Execution Pattern of the Accelerator. We evaluate the execu-

tion pattern of four accelerations regarding the available energy of

the accelerator. We measured the run-time energy level of the ca-

pacitor charged from a solar-harvesting panel (5V@40mA) for three

hours (9 am - 12 pm) while executing each mode of acceleration

every ten seconds which consume the energy in the capacitor.

Figure 12 shows the remaining energy level of the capacitor

(harvesting minus consuming) over time and the amount of energy

required by each step of four accelerations, i.e., the extended, expe-

dited, ensembled inference, and the latent training. The horizontal

lines on the figures indicate theminimum energy threshold required
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Figure 11: The inference accuracy of the traffic sign recognizer for all four modes of acceleration.

Results are shown for both camera-taken images as well as the original GTSRB images.
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Figure 12: Energy level of the capacitor dur-

ing the execution of traffic sign recognizer.

for executing the acceleration with each step. When the current

energy level is above one of the thresholds, the corresponding step

is executed accordingly. For instance, as shown in Figure 12a, the

extended inference with step 3 is executed at hour one since the

energy level (7.35mJ) is larger than the step 3 threshold (6.29mJ)

but smaller than the step 4 threshold (8.54mJ). Unlike the extended

and expedited inference, the ensemble inference has only one en-

ergy threshold since the second DNN running on the accelerator

is executed not in an energy-aware manner. Without the step-up

inference algorithm, it is either executed or not. The latent train

also has one energy threshold (train or not), but it runs with the

skip-out that provides better utilization of energy. When the energy

level is above the training threshold, it spends all the energy by

training a portion of DNN proportionate to the current energy level.

The execution pattern of accelerations depends on the avail-

able energy (harvesting) and the energy required for acceleration

(consuming). Table 4 shows the execution pattern of accelerations

with each step out of total 1,080 executions. The baseline column

indicates the standalone execution of main MCU (no acceleration)

whereas the rests indicate the step-up accelerations on the acceler-

ator. For the ensembled inference and latent training, we put their

accelerations (ensembling/training) in the step 1 column. The exe-

cution patterns are different from each other since each acceleration

with a different step consumes a different amount of energy.

Mode Baseline Step 1 Step 2 Step 3 Step 4

Extended 42 (3.8%) 56 (5.1%) 140 (12.9%) 729 (67.5%) 113 (10.4%)

Expedited 195 (18.0%) 169 (15.6%) 716 (66.2%) - -

Ensembled 172 (15.9%) 908 (84.0%) - - -

Latent Training 862 (79.8%) 218 (20.1%) - - -

Table 4: The execution pattern of accelerations (traffic sign)

8.2 Voice Command Recognizer

We implement a limited-vocabulary speech recognition system

that recognizes ten voice commands sensed through a microphone

(Figure 6): {yes, no, on, off, up, down, go, stop, left, right} by using

an RF energy harvester [91, 92]. To generate input for the DNN, the

microphone first samples voice data at 8kHz. Then, it is divided into

small frames consisting of 256 samples having an overlap of 128

samples between two frames. Frequency information is obtained

for each frame using FFT with the help of the DSP module [107]

in the MCU. Finally, MFCCs are generated as input data for the

DNN by filling Mel-filter banks. The baseline DNN consists of total

six layers including input and output: 61×13×1 (input), 12×6×1×4

(Conv), 6×3×4×8 (Conv), 64 (FC), 96 (FC), 10 (output), which is

based on the small-footprint keyword spotting architecture [100].

Table 5 describes the detailed network architecture for acceleration.

We apply the proposed adaptive-scale fixed point (ASFP) with 16

bit-width for all numerical operations.

Mode Main MCU Accelerator

Extended baseline1 step 1: 12×6×1×1, 6×3×1×2

step 2: 12×6×1×2, 6×3×2×4

step 3: 12×6×1×3, 6×3×3×6

step 4: 12×6×1×4, 6×3×4×8

Expedited step1: baseline2 step 1: 12×6×1×1, 6×3×1×8

step2: baseline3 step 2: 12×6×1×2, 6×3×2×8

Ensembled baseline 61×13×1, 64, 128, 128, 64, 10 (FC DNN)

Latent Training baseline baseline with skip-out rate (0.0–0.4)

* Baseline1: 61×13×1, 12×6×1×4, 6×3×4×8, 96, 144, 10

* Baseline2: 61×13×1, 12×6×1×3, 6×3×3×8, 64, 96, 10

* Baseline3: 61×13×1, 12×6×1×2, 6×3×2×8, 64, 96, 10

Table 5: The DNN architecture of the voice command recognizer



Neuro.ZERO: A Zero-Energy Neural Network Accelerator for Embedded Sensing and Inference Systems SenSys ’19, November 10–13, 2019, New York, NY, USA

1 2 3 4
Time (Hours)

70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

Baseline Step 1 Step 2 Step 3 Step 4 Step avg

1 2 3 4
Time (Hours)

0
1
2
3
4
5

C
lo

ck
 c

yc
le

 (1
e+

07
) Baseline Step 1 Step 2 Step-up avg

80%
79%

77%

77%
79%

79%

80%
83%

81%

80%
79%

79%

2 4 6 8
Time (Hours)

60
65
70
75
80
85
90

Ac
cu

ra
cy

 (%
)

Baseline Step 1 Step 2 Step 3 Step 4 Step-up avg

(a) Extended inference with the microphone-captured
words (up) and the GSC dataset (down)

2 4 6 8
Time (Hours)

0
1
2
3
4
5

C
lo

ck
 c

yc
le

 (1
e+

07
) Baseline Step Step Step-up avg

71%
71%

72%

71%
72%

71%

71%
72%

73%

70%
71%

70%

(b) Expedited inferencewith themicrophone-captured
words (up) and the GSC dataset (down)

1 2 3 4
Time (Hours)

65
70
75
80
85

Ac
cu

ra
cy

 (%
)

Baseline ANN (CNN) Second ANN (FC) Ensembled

0 20 40 60 80 100
Time (Hours)

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 (%
)

10 classes of voice commands

2 4 6 8
Time (Hours)

60
65
70
75
80

Ac
cu

ra
cy

 (%
)

Baseline ANN (CNN) Second ANN (FC) Ensembled

(c) Ensembled inference with the microphone-
captured words (up) and the GSC dataset (down)

0 10 20 30 40 50 60 70 80 90 100
Time (Hours)

0
10
20
30
40
50
60
70
80

Ac
cu

ra
cy

 (%
)

16 classes of GSC commands

(d) Latent training with the microphone-captured
words (up) and the GSC dataset (down)

Figure 13: The inference accuracy of the voice command recognizer for all four modes of accel-

eration. Results are shown for both microphone-captured utterances as well as the GSC dataset.

0 1 2 3
Time (Hours)

4
6
8

10
12
14
16
18

En
er

gy
 (m

J)

Energy Step 1 Step 2 Step 3 Step 4

(a) Extended inference

0 1 2 3
Time (Hours)

0
2
4
6
8

10
12
14
16
18
20

En
er

gy
 (m

J)

Energy Step 1 Step 2

(b) Expedited inference

0 1 2 3
Time (Hours)

0
5

10
15
20
25
30

En
er

gy
 (m

J)

Energy Ensemble

(c) Ensembled inference

0 1 2 3
Time (Hours)

0
5

10
15
20
25
30
35
40
45

En
er

gy
 (m

J)

Energy Latent training

(d) Latent training

Figure 14: Energy level of the capacitor dur-

ing voice command recognition.

Performance of the Accelerator.We evaluate the performance

of four accelerations by collecting voice commands from four peo-

ple. In total, 10,000 commands (8,000 for train and 2,000 for test)

from ten-word classes were captured through the microphone on

our voice command recognizer. We also evaluate the performance

with GSC dataset (Google Speech Command) [115] (84,843 training

words in 35 classes and 11,005 test words) with the same experimen-

tal setup and compare it with the microphone-captured commands.

Figure 13a shows the recognition accuracy of the extended infer-

ence with four steps of incremental extension. For the microphone-

captured commands, a different set of 500 commands (10 classes)

is classified by the baseline DNN as well as the four steps to mea-

sure the accuracy every hour. For GSC dataset, a different set of

2,500 commands (35 classes) is classified every two hours. For both

datasets, the accuracy is improved along with the steps from 76%

to 92% (microphone) and from 68% to 77% (GSC) by the maximum.

Figure 13b shows the execution time of the expedited inference

measured by clock cycle of the main MCU and the accuracy given

two steps of incremental offloading. Compared to the baseline DNN,

the execution time is decreased by 21% and 43%, accelerating the

execution speed by 1.2× and 1.7× for step one and two, respectively.

Both the microphone-captured and GSC commands experience only

1.3% of accuracy degradation for the speed acceleration. Figure 13c

shows the recognition accuracy of the ensembled inference with the

second DNN consisting of six FC layers. By ensembling, the accu-

racy is improved from 77% to 80% and from 68% to 75% on average

for the microphone-captured and GSC commands, respectively.

Figure 13d shows the training accuracy over time performed by

the latent training. Based on SGD and momentum algorithm, 10

and 16 classes of voice command are trained for the microphone-

captured and GSC commands system, respectively. The accuracy

keeps improving over time and converges to 65% and 60% for the

microphone-captured and GSC commands, which are about 11%

and 8% lower than the offline-trained DNNs (76% and 68%).

Execution Pattern of the Accelerator. We evaluate the execu-

tion pattern of four accelerations regarding the available energy

of the accelerator. We measured the run-time energy level of the

capacitor charged from an RF energy harvester [91, 92] for three

hours while executing each mode of acceleration every ten seconds

which consume the energy in the capacitor. Figure 14 show the

remaining energy level of the capacitor (harvesting minus consum-

ing) over time and the amount of energy required by each step

of four accelerations. For instance, as shown in Figure 14b, the

expedited inference with step 2 is executed at hour two since the

energy level (10.27mJ) is larger than the step 2 threshold (8.34mJ).

Table 6 shows the execution pattern out of total 1,080 executions.

Mode Baseline Step 1 Step 2 Step 3 Step 4

Extended 0 (0%) 0 (0%) 448 (41.4%) 615 (56.9%) 17 (1.5%)

Expedited 0 (0%) 81 (7.5%) 999 (92.5%) - -

Ensembled 5 (0.4%) 1075 (99.5%) - - -

Latent Training 902 (83.5%) 178 (16.4%) - - -

Table 6: The execution pattern of accelerations (voice command)

8.3 Overhead of Acceleration

Although the accelerator runs only on harvested energy, the main

MCU needs to process the data from the accelerator, which causes

an overhead on the main MCU. We evaluate this overhead by mea-

suring the additional power consumption and clock cycles required
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for acceleration, compared to standalone execution of the main

MCU. Table 7 shows the overhead of the main MCU for four modes

of acceleration for the traffic sign recognizer. The percentages indi-

cate their relative amount compared to standalone execution of the

mainMCUwithout the accelerator. For latent training, the overhead

refers to the cost of fetching a trained model from the accelerator

to the main MCU. We observe that the three inferences require less

than 1% extra energy and clock cycles for acceleration, while the

overhead of latent training is relatively higher. This is because the

amount of data moved between two MCUs are different for infer-

ence and latent training. During inference, the two MCUs exchange

relatively small chunks of data for input/output and intermediate

results, whereas latent training requires movement of relatively

larger sized classifier models. However, the frequency of fetching

models is much lower than the frequency of interaction between the

two MCUs in other three modes since a model is fetched occasion-

ally, only when it has been improved by completing a predefined

number of training iterations on the accelerator.

Mode Energy Overhead Clock Cycle Overhead

Extended Inference 0.065 mJ (0.7%) 256 × 103 (0.9%)

Expedited Inference 0.058 mJ (0.9%) 240 × 103 (1.4%)

Ensembled Inference 0.055 mJ (0.6%) 240 × 103 (0.9%)

Latent Train (fetching) 3.4 mJ (-%) 15, 344 × 103 (-%)

Table 7: The overhead of the main MCU due to acceleration.

9 RELATEDWORK

Embedded DNN Accelerator. DNN inference accelerators using

FPGAs such as [30, 93, 112, 122] have been widely studied due to

their high performance and reconfigurability. Also, there are some

accelerators based on different platforms, e.g., embedded GPU [14,

42] or ARM microprocessors [36]. However, they only focus on

speeding up DNN inference given a pre-trained model, unlike the

proposed accelerator that enables accuracy improvement as well

as training. Although some work introduced trainable accelerators,

they depend on a specific platform such as NVIDIA GPU [29] or

specific hardware [17, 61, 82]. None of these works utilize energy

harvesters as their power source in an energy-aware manner.

DNN with Fixed-Point. Fixed-point arithmetic for DNNs has

been explored in earlier works ranging from the theoretical analy-

sis [28, 54] to implementations [21, 41]. Recently, [73] showed that

DNNs could be effectively trained using only fixed-point arithmetic

and many approaches have been proposed to increase accuracy and

efficiency. Most popular approaches are based on compression of a

pre-trained model, including quantization of weights [3, 37, 56, 111]

and extremely low-precision (1-3 bits) [22, 57]. However, the pro-

posed adaptive-scale fixed-point is applicable to general DNNswith-

out requiring any compression. Although a pre-trained DNNmodel

can be effectively reduced for fixed-point by compressing, [73, 96]

showed that training DNN models with fixed-point results in better

accuracy. In accordance with these results, we train DNNs from

scratch using adaptive-scale arithmetic, i.e., MAC, multiplication,

and addition. Similar to our work, [41] trained DNNs by taking a

maximum integer base using stochastic and near-rounding. How-

ever, unlike ours, their scaling factor is fixed for the entire training.

Intermittent Computing. Existing work on intermittent com-

puting address some important system-level problems, such as

atomicity [19, 79], consistency [19, 77, 79], programmability [51],

timeliness [51], and energy efficiency [12, 20, 50]. Although they

enable efficient code execution of general-purpose tasks on bat-

teryless systems, none of them considers the learning aspects of a

DNN such as their accuracy or training. Recently, [33] implemented

intermittent inference on harvested energy using a microcontroller.

However, its execution of inference is not guaranteed unlike the

proposed system since it entirely depends on harvested energy. For

DNN training, [87] proposed layer-by-layer training approach with

the concept of lifelong learning, which repeatedly trains a fixed

number of weights without skipping out.

10 DISCUSSION

Unpredictable Harvested Energy. Due to the unpredictable na-

ture of harvested energy, the accelerator may not be available at

desired instants. To enable timely wake-up, specially designed en-

ergy management unit, along with scheduling algorithms for en-

ergy harvesting systems [7, 8, 18, 78, 84] should be implemented

alongside Neuro.ZERO. To meet the varying energy demands of the

running application, reconfiguration energy storage [20] and/or

multi-capacitor systems [50] should be implemented to scale and/or

partition harvested energy for efficient and timely use.

Caveats to On-Device Training. There are certain caveats to on-

device online training on Neuro.ZERO. First, a mini-batch size of

one is used in our implementation of the latent training mode of

Neuro.ZERO, which might increase noise and cause abrupt changes

in the training process [9, 72, 81]. To mitigate this, multiple exam-

ples should be stored and trained together as a batch instead of

training only one. Second, a large learning rate may never converge

to an optimal solution but to a sub-optimal one [6, 38]. To handle

this, the learning rate should be decayed after a number of training

iterations. Alternatively, transfer learning techniques [89, 108] such

as retraining only the last few layers as opposed to training the

whole network could be employed.

Using Battery as a Backup. Besides the energy harvester, the

accelerator could use a battery of its own as a backup source. Al-

though such a design allows waking-up the accelerator in times of

need, eventually, the battery will die, and the design will fall back

to our current implementation of Neuro.ZERO. Another alternative

design is to design a single-MCU system that has both a battery and

a harvester. Although such a design increases the battery-life of the

MCU, the performance-gain in DNN acceleration on a single-MCU

system is never going to be as high as a multi-MCU system like

Neuro.ZERO, which has more computational capacity.

11 CONCLUSION

We introduce Neuro.ZERO, an intermittently-powered accelerator

that draws no system energy and opportunistically accelerates the

performance of a DNN based on the four modes of acceleration. To

enable zero-energy acceleration, energy-aware acceleration algo-

rithms, and adaptive-scale fixed-point are proposed. A traffic sign

and a voice command recognizer are implemented, and they have

been demonstrated that the inference accuracy and speed increase.
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