A Note on the
Confinement Problem

How to prepare a sample talk

Alastair Beresford
January 2020



Operating C. Weissman
Systems Editor

A Note onthe
Confinement Problem

Butler W. Lampson
Xerox Palo Alto Research Center

This note explores the problem of confining a
program during its execution so that it cannot transmit
information to any other program except its caller. A
set of examples attempts to stake out the boundaries of
the problem. Necessary conditions for a solution are
stated and informally justified.

Key Words and Phrases: protection, confinement,
proprietary program, privacy, security, leakage of data

CR Categories: 2.11, 4.30

Introduction

Designers of protection systems are usually pre-
occupied with the need to safeguard data from un-
authorized access or modification, or programs from
unauthorized execution. It is known how to solve these
problems well enough so that a program can create
a controlled environment within which another, pos-
sibly untrustworthy program, can be run safely [1, 2].
Adopting terminology appropriate for our particular
case, we will call the first program a customer and the
second a service.

The customer will want to ensure that the service
cannot access (i.e. read or modify) any of his data
except those items to which he explicitly grants access.
If he is cautious, he will only grant access to items which
are needed as input or output for the service program.
In general it is also necessary to provide for smooth
transfers of control, and to handle error conditions.
Furthermore, the service must be protected from
intrusion by the customer, since the service may be a

Copyright © 1973, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM'’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author’s address: Xerox Palo Alto Research Center, 3180 Porter
Drive, Palo Alto, CA 94304,

613

proprietary program or may have its own private data.
These things, while interesting, will not concern us here.

Even when all unauthorized access has been pre-
vented, there remain two ways in which the customer
may be injured by the service: (1) it may not perform
as advertised; or (2) it may leak, i.e. transmit to its
owner the input data which the customer gives it.
The former problem does not seem to have any general
technical solution short of program certification. It does,
however, have the property that the dissatisfied cus-
tomer is left with evidence, in the form of incorrect
outputs from the service, which he can use to support
his claim for restitution. If, on the other hand, the
service leaks data which the customer regards as con-
fidential, there will generally be no indication that the
security of the data has been compromised.

There is, however, some hope for technical safe-
guards which will prevent such leakages. We will call
the problem of constraining a service in this way the
confinement problem. The purpose of this note is to
characterize the problem more precisely and to de-
scribe methods for blocking some of the subtle paths
by which data can escape from confinement.

The Problem

We want to be able to confine an arbitrary program.
This does not mean that any program which works
when free will still work under confinement, but that
any program, if confined, will be unable to leak data. A
misbehaving program may well be trapped as a result
of an attempt to escape.

A list of possible leaks may help to create some
intuition in preparation for a more abstract description
of confinement rules.

0. If the service has memory, it can collect data, wait
for its owner to call it, and then return the data to him.
1. The service may write into a permanent file in its
owner’s directory. The owner can then come around at
his leisure and collect the data.

2. The service may create a temporary file (in itself a
legitimate action which cannot be forbidden without
imposing an unreasonable constraint on the computing
which a service can do) and grant its owner access to
this file. If he tests for its existence at suitable intervals,
he can read out the data before the service completes
its work and the file is destroyed.

3. The service may send a message to a process con-
trolled by its owner, using the system’s interprocess
communication facility.

4. More subtly, the information may be encoded in the
bill rendered for the service, since its owner must get a
copy. If the form of bills is suitably restricted, the
amount of information which can be transmitted in this
way can be reduced to a few bits or tens of bits. Re-
ducing it to zero, however, requires more far-reaching
measures.

Communications October 1973
of Volume 16
the ACM Number 10

The paper
introduces a
data security
challenge

How were
these framed?



The confinement problem

“The customer will want to ensure that the
service cannot access (i.e. read or modify)
any of his data except those items to which
he explicitly grants access”



Context:
computing in
the 1970s...




Concern was about leaking
confidential data, not correctness

Can you remember the seven ways of leaking data?



Concern was about leaking
confidential data, not correctness

Leak via shared memory

Write data to a permanent file

Write data to a temporary file

Send data via IPC

Encode data in the bill for service
Encode data through write-locks on files

o Uk wWNE O

Artificially modulate system resource usage



Proposed sol™: use confinement
to block explicit sharing

Three properties suggested:
* A confined program must be memoryless

* A confined program must make no calls to any
other (unconfined) program

* A trustworthy supervisor

What does a trustworthy supervisor need to do?



Side channels and covert channels
are described

“Examples 5 and 6 show that it is hard to write a
trustworthy supervisor, since some of the paths by
which information can leak out from a supervisor are
quite subtle and obscure. The remainder of this note
argues that it is possible ... It is necessary to
enumerate them all and then block each one”



The stri

paper and a talk may dif

Paper structure

* Introduction You don’t
all the det

e The Problem

cture and content of a
‘er

need to explain
ail: focus on

the important ideas

 Confinement Rules

* Summary



What doesn’t the paper talk
about?



What doesn’t the paper talk
about?

* Programming-language security

* Attacker models

* Cryptography

* Computer networking

* Anonymous users

* Mobile and cyber-physical systems



Was the work novel at the time?

* Lampson, B.W. Dynamic protection structures. Proc.
AFIPS 1969 FICC, Vol. 35, AFIPS Press, pp.27-38.

e Schroeder, M.D., and Saltzer, J.H. A Hardware
Architecture for implementing protection rings.
Comm. ACM 15,3 (Mar. 1972), 157-170.



Possible talk structure

* Historical context: who, what, why? 1 min
* Interpreting and explaining terminology 2
* |[deas found in the paper 7

* The overall challenge
* Ways data might leak
* Confinement

* Under explored ideas present at the time
* Papers cited and other ideas at the time
* Changes which have occurred since publication

N NN PN

* In what ways is the work (in)valid today?

(total: 17 mins)



TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the

software.

KEN THOMPSON

INTRODUCTION

I thank the ACM for this award. I can’t help but feel
that I am receiving this honor for timing and serendip-
ity as much as technical merit. UNIX" swept into popu-
larity with an industry-wide change from central main-
frames to autonomous minis. I suspect that Daniel Bob-
row [1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

There is an old adage, “Dance with the one that
brought you,” which means that I should talk about
UNIX. I have not worked on mainstream UNIX in many
years, yet I continue to get undeserved credit for the
work of others. Therefore, I am not going to talk about
UNIX, but I want to thank everyone who has contrib-
uted.

That brings me to Dennis Ritchie. Our collaboration
has been a thing of beauty. In the ten years that we
have worked together, I can recall only one case of
miscoordination of work. On that occasion, I discovered
that we both had written the same 20-line assembly
language program. I compared the sources and was as-
tounded to find that they matched character-for-char-
acter. The result of our work together has been far
greater than the work that we each contributed.

I am a programmer. On my 1040 form, that is what I
put down as my occupation. As a programmer, I write

¢
1 UNIX is a trademark of AT&T Bell Laboratories.
© 1984 0001-0782/84/0800-0761 75¢

August 1984 Volume 27 Number 8

programs. I would like to present to you the cutest
program I ever wrote. I will do this in three stages and
try to bring it together at the end.

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN
was the language of choice for the same reason that
three-legged races are popular.

More precisely stated, the problem is to write a
source program that, when compiled and executed, will
produce as output an exact copy of its source. If you
have never done this, I urge you to try it on your own.
The discovery of how to do it is a revelation that far
surpasses any benefit obtained by being told how to do
it. The part about “shortest” was just an incentive to
demonstrate skill and determine a winner.

Figure 1 shows a self-reproducing program in the C*
programming language. (The purist will note that the
program is not precisely a self-reproducing program,
but will produce a self-reproducing program.) This en-
try is much too large to win a prize, but it demonstrates
the technique and has two important properties that I
need to complete my story: 1) This program can be
easily written by another program. 2) This program can
contain an arbitrary amount of excess baggage that will
be reproduced along with the main algorithm. In the
example, even the comment is reproduced.

Communications of the ACM

761

What were
the most
nteresting
ideas in this

paper?



