
Quantum Computing (CST Part II)
Lecture 2: Linear Algebra

Quantum phenomena do not occur in a Hilbert space,
they occur in a laboratory.

Asher Peres
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Resources for this lecture

A thorough description of all of the linear algebra required for quantum
computing can be found in Nielsen and Chuang p60-79.
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The need for linear algebra and Hilbert space

Quantum phenomena are described
using linear algebra, which is the
study of vector spaces and linear
operations thereon. That is, states
of a quantum system form a vector
space and their transformations are
described by linear operators.

A finite-dimension vector space
with a defined inner product is also
known as a Hilbert space, which
is the most usual term used in the
literature.

https://en.wikipedia.org/wiki/David Hilbert/media/File:Hilbert.jpg

David Hilbert
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Recap: complex numbers and complex vectors

In general, we require complex numbers to describe quantum phenomena.
Any z ∈ C is of the form z = a+ ib for some a, b ∈ R and i =

√
−1.

Cn is the vector space of n-tuples of complex numbers


z1
z2
...
zn

.

With addition:


z1
z2
...
zn

+


w1

w2

...
wn

 =


z1 + w1

z2 + w2

...
zn + wn

,

and scalar multiplication: W


z1
z2
...
zn

 =


Wz1
Wz2

...
Wzn

.
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Matrices

A matrix is an array of (in general) complex numbers:

A =

a11 . . . a1m

...
. . .

an1 anm


With addition:a11 . . . a1m

...
. . .

an1 anm

+

b11 . . . b1m
...

. . .

bn1 bnm

 =

a11 + b11 . . . a1m + b1m
...

. . .

an1 + bn1 anm + bnm


and scalar multiplication:

B

a11 . . . a1m

...
. . .

an1 anm

 =

Ba11 . . . Ba1m

...
. . .

Ban1 Banm


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Matrix multiplication

If A is a n×m matrix and B is a m× l matrix then C = A×B is the
n× l matrix with entries given by

Cik =

m∑
j=1

AijBjk

for all i = 1, . . . , n and k = 1, . . . , l.

Matrix multiplication is

associative: (A×B)× C = A× (B × C) = ABC

distributive: A(B + C) = AB +AC; (A+B)C = AB +BC

not commutative: AB 6= BA
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Tensor multiplication

As well as scalar multiplication and matrix multiplication, to describe
quantum computation we must consider a third form of multiplication on
matrices, tensor multiplication. Let A and B be matrices of any
dimension:

A⊗B =

a11B . . . a1mB
...

. . .

an1B anmB


where ⊗ denotes the tensor product. For example:[

1 0
0 2

]
⊗
[
1 2 3

]
=

[
1 2 3 0 0 0
0 0 0 2 4 6

]

In general if A is n×m and B is n′ ×m′ then A⊗B is nn′ ×mm′.
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Combining matrix and tensor multiplication

As a (column) vector is just a n× 1 matrix, we can equally well apply
tensor products to vectors. This reveals an important property of tensor
products when combined with matrix products. Let A and B be n×m
and n′ ×m′ matrices respectively, and x and y be m and m′ dimension
column vectors respectively:

(A⊗B)(x⊗ y) = (Ax)⊗ (By)

The second exercise sheet asks you to prove this for the case of 2× 2
matrices.
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Complex conjugation, transpose and conjugate transpose
A complex number z = a+ bi has a conjugate, defined as z∗ = a− bi.
Letting A be the n×m matrix:

A =

a11 . . . a1m

...
. . .

an1 anm


its transpose is defined as the m× n matrix:

AT =

a11 . . . an1

...
. . .

a1m amn


Combining these two, we get the conjugate transpose or adjoint of a
matrix:

A† = (A∗)T =

a∗11 . . . a∗n1

...
. . .

a∗1m a∗mn


Note that (AB)† = B†A†.
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Dirac notation

https://en.wikipedia.org/wiki/Paul Dirac/media/File:Paul Dirac, 1933.jpgg

Paul Dirac

Virtually all teaching and research
on the subject of quantum
information and computation
expresses the linear algebra using
Dirac notation (also known as
“Bra-Ket” notation), and we will
also adopt this convention.

By doing so, the expressions are
compact, thus helping us to focus
on the actual quantum states that
are being represented.
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“Bras” and “Kets”

A “Ket” is a column vector:

|ψ〉 =


a1
a2
...
an


Each “Ket” has a corresponding “Bra”, which is its conjugate transpose,
the row vector:

〈ψ| =
[
a∗1 a∗2 . . . a∗n

]
We continue to denote matrix operations with a capital letter, i.e., the
matrix A operating on the state |u〉 would be written A |u〉.

When tensor multiplying vectors expressed as kets, the following are all
equivalent: |ψ〉 ⊗ |φ〉, |ψ〉 |φ〉, |ψφ〉. Note also that tensor multiplication
is associative, so (|ψ〉 ⊗ |φ〉)⊗ |ω〉 = |ψ〉 ⊗ (|φ〉 ⊗ |ω〉) = |ψφω〉.
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Inner products, orthogonality and norms

Let |u〉 =

a1...
an

, and |v〉 =

b1...
bn

, we define the inner product:

〈u|v〉 = 〈u| × |v〉 =
[
a∗1 . . . a∗n

] b1...
bn

 =

n∑
i=1

a∗i bi

If each of |u〉 and |v〉 have at least one non-zero element:

〈u|v〉 = (〈v|u〉)∗

If 〈u|v〉 = 0 then |u〉 and |v〉 are orthogonal.

〈u|u〉 =
∑n

i=1 |ai|2, which is a positive real number.

|| |u〉 || =
√
〈u|u〉 is defined as the norm of |u〉, unit vectors have

norm = 1.
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Outer products and projectors
As well as inner products, vectors can be multiplied by outer-products,
for which they need no longer have the same dimension. Let

|u〉 =
[
a1 . . . an

]T
and |v〉 =

[
b1 . . . bm

]T
, the outer product is

defined as the n×m complex matrix: |u〉 〈v|.

If |u〉 is a unit vector, then |u〉 〈u| is known as a projector , as |u〉 〈u| is an
operators that ‘projects’ an arbitrary vector (of appropriate dimension)
|v〉 onto the subspace |u〉. That is:

(|u〉 〈u|) |v〉 = |u〉 (〈u| |v〉) = (〈u|v〉) |u〉

which can be seen to be the projection of |v〉 onto |u〉 in the following
diagram:

𝑣

𝑢𝜃

𝑢𝑢 𝑣
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Basis

A basis of Cn is a minimal collection of vectors |v1〉 , |v2〉 , . . . , |vn〉 such
that every vector |v〉 ∈ Cn can be expressed as a linear combination of
these:

|v〉 = α1 |v1〉+ α2 |v2〉+ · · ·+ αn |vn〉

where the coefficients αi ∈ C.

That the basis is a minimal collection of vectors means that
|v1〉 , |v2〉 , . . . , |vn〉 are linearly independent, no |vi〉 can be expressed as
a linear combination of the rest. The size of the basis is n, termed its
dimension.

Of particular interest are orthonormal bases, in which each basis vector is
a unit vector, and the basis vectors are pairwise orthogonal, that is:

〈vi|vj〉 =
{
1 if i = j
0 otherwise
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Standard ‘computational’ basis

Here are some bases for C3:12
1

 ,
 10
2 + i
0

 ,
10
0

  0

1/
√
2

1/
√
2

 ,
 0

1/
√
2

−1/
√
2

 ,
10
0

 10
0

 ,
01
0

 ,
00
1


The latter two of these are orthonormal, of which the final one is known
as the standard or computational basis. In general, the computational
basis for Cn is

|1〉 =


1
0
...
0

 , |2〉 =

0
1
...
0

 , . . . , |n〉 =

0
0
...
1


Sometimes, especially in the case of C2, we’ll number these
|0〉 . . . |n− 1〉.
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Expanding vectors and matrices in the standard basis

Any vector |u〉 =
[
a1 a2 . . . an

]T
can be expressed as a weighted

sum of standard basis vectors:

|u〉 = a1 |1〉+ a2 |2〉+ · · ·+ an |n〉

Similarly, any matrix can be expressed as a double sum over the
outer-products of standard basis vectors:a11 . . . a1m

...
. . .

an1 anm

 =

n∑
i=1

m∑
j=1

aij |i〉 〈j|
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Eigenvectors and eigenvalues

If a n× n matrix, A, has the effect of scaling a given (non-zero) vector,
|v〉 by a constant, λ, then that vector is known as an eigenvector, with
corresponding eigenvalue λ:

A |v〉 = λ |v〉

The eigenvalues of a matrix are the roots of the characteristic polynomial:

det(A− λI) = 0

where det denotes the determinant, and I is the n× n identity. Each
square matrix has at least one eigenvalue.

The determinant of a matrix is the product of its eigenvalues.

The trace of a square matrix is the sum of its leading diagonal
elements. It is also the sum of its eigenvalues.
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Diagonal representation of matrices

If a n× n complex matrix A can be expressed in the form:

A =

n∑
i=1

λi |vi〉 〈vi|

where λi is the ith eigenvalue, corresponding to the ith eigenvector |vi〉,
then it is said to be diagonalisable. This is called the eigendecomposition,
or spectral decomposition of A.

If A is diagonalisable as above, then it can be written as the diagonal
matrix 

λ1
λ2

. . .

λn


in the basis of its eigenvectors, |v1〉, |v2〉, . . . , |vn〉. Moreover, the
(normalised) eigenvectors form an orthonormal set.
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Normal, Hermitian and unitary matrices

A matrix is normal if A†A = AA†

A matrix is normal if and only if it is diagonalisable.
If A = A† a matrix is Hermitian.

A matrix is unitary if A†A = AA† = I (the identity).

Unitary matrices play an important role in quantum computing.
Clearly all unitary matrices are normal therefore diagonalisable.
All eigenvalues of unitary matrices have absolute value one.
Unitary operators preserve inner products: if U is unitary and
|u′〉 = U |u〉 and |v′〉 = U |v〉 then:

〈u′|v′〉 = (U |u〉)†(U |v〉)

= (〈u|U†)(U |v〉)

= 〈u| (U†U) |v〉
= 〈u| I |v〉
= 〈u|v〉
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Summary

We have covered a lot of ground in this lecture:

Re-cap of the properties of complex vectors and matrices

Tensor products

Braket notation

Inner products, orthogonality and norms

Outer products and projectors

Bases, the computational (standard) basis

Eigenvectors, eigenvalues and diagonalisation

Normal, Hermitian and unitary matrices
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