
Quantum Computing (CST Part II)
Lecture 14: Fault Tolerant Quantum Computing

The history of the universe is, in effect, a huge and ongoing quantum
computation. The universe is a quantum computer.

Seth Lloyd
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Resources for this lecture

Nielsen and Chuang p474-495 covers the material of this lecture.
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Why we need fault tolerance

Classical computers perform complicated operations where bits are
repeatedly “combined” in computations, therefore if an error occurs, it
could in principle propagate to a huge number of other bits. Fortunately,
in modern digital computers errors are so phenomenally unlikely that we
can forget about this possibility for all practical purposes.

Errors do, however, occur in telecommunications systems, but as the
purpose of these is the simple transmittal of some information, it suffices
to perform error correction on the final received data.

In a sense, quantum computing is the worst of both of these worlds:
errors do occur with significant frequency, and if uncorrected they will
propagate, rendering the computation useless. Thus the solution is that
we must correct errors as we go along.
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Fault tolerant quantum computing set-up

For fault tolerant quantum computing:

We use encoded qubits, rather than physical qubits. For example we
may use the 7-qubit Steane code to represent each logical qubit in
the computation.

We use fault tolerant quantum gates, which are defined such that a
single error in the fault tolerant gate propagates to at most one error
in each encoded block of qubits.

By a “block of qubits”, we mean (for example) each block of 7 physical
qubits that represents a logical qubit using the Steane code.
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Example of a fault tolerant circuit
Consider the quantum circuit for preparing the state |Φ+〉:

H0

0

The fault tolerant version is:

FT H0𝐿

0𝐿

Err. Cor.

Err. Cor.

Err. Cor.

Err. Cor.

FT
CNOT

Note that errors can occur even if a gate is not performed, therefore we
must perform error correction on all qubits at regular intervals (even if
they are idling).
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The fault tolerant Steane code Hadamard gate

We can perform the Steane code Hadamard gate transversally, by
applying a Hadamard gate to each of the seven qubits:

H

H

H

H

H

H

H

The encoded Hadamard gate is clearly fault tolerant as each component
physical Hadamard gate acts only on a single qubit.
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The fault tolerant Steane code S gate

We can also perform the Steane code S gate transversally, by applying
three S gates to each of the seven qubits:
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Again, this is fault tolerant as each component physical S gate acts on a
single qubit.
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The fault tolerant Steane code S gate (cont.)
To see that the Steane code S gate works, recall that the Steane code
encodes the computational basis states as follows:

|0L〉 =
1√
8

(
|00000000〉+ |1010101〉+ |0110011〉+ |1100110〉

|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉
)

|1L〉 =
1√
8

(
|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉
)

The action of the three S gates on each qubit is thus:

SL |0L〉 =
1√
8

(
|00000000〉+ (i3)4 |1010101〉+ (i3)4 |0110011〉+ (i3)4 |1100110〉

+ (i3)4 |0001111〉+ (i3)4 |1011010〉+ (i3)4 |0111100〉+ (i3)4 |1101001〉
)

= |0L〉

because i12 = 1. Similarly for |1L〉 (because i21 = i9 = i):

SL |1L〉 =
1√
8

(
(i3)7 |1111111〉+ (i3)3 |0101010〉+ (i3)3 |1001100〉+ (i3)3 |0011001〉

+ (i3)3 |1110000〉+ (i3)3 |0100101〉+ (i3)3 |1000011〉+ (i3)3 |0010110〉
)

=i |1L〉
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The fault tolerant Steane code CNOT gate
The Steane code CNOT can also be performed transversally:

This is fault tolerant, as each of the component CNOT gates acts on
exactly one qubit in the first block and one qubit in the second block.
Therefore a single error will propagate to (at most) one qubit in each
block, as per the definition of fault tolerant quantum gates.
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Does transversality suffice?

We have seen that, when qubits are encoded using the Steane code,
we can perform H, S and CNOT gates transversally (and therefore
fault tolerantly). Together, these gates generate the Clifford group,
and the Gottesman-Knill theorem (that we met in lecture 5) tells us
that Clifford group circuits can be efficiently simulated on a classical
computer.

We must add the T gate to have a universal gate-set. Unfortunately
the T gate cannot be performed transversally.

The fact that the very gate which yields the (conjectured) quantum
advantage is the one which cannot be performed transversally is not
a coincidence and is a general feature of this approach to error
correction (a more detailed study of quantum error correction in the
stabiliser formalism reveals why this is so).

Therefore we take a different approach to the construction of fault
tolerant T gates – this yields a solution which is efficient in an
asymptotic sense, but is more resource intensive in practise.
Therefore T gate count reduction is an important factor in quantum
circuit compilation.
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The fault tolerant Steane code T gate

To perform the T gate fault tolerantly, we must prepare an encoded
ancilla state, which we use to perform the following circuit:

0

𝜓

𝑇 𝜓SXTH

Here the H, T , CNOT and classically controlled SX gates are all
performed “transversally”, and together perform an encoded T gate.
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Elements of fault tolerance

We have seen that we can construct a fault tolerant universal gate-set
using the Steane code. For a fully fault tolerant circuit, we must also
construct:

Fault tolerant state preparation

Fault tolerant error correction

Fault tolerant measurement

All of these can be achieved, but we won’t look at the details of exactly
how in this course (see the referenced pages in Nielsen and Chuang if you
are interested).
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Fault tolerant quantum computing

Three things make fault tolerant quantum computing possible, the first
two of which we have already seen:

1. Fault tolerant quantum gates, in which a single error propagates to
at most one qubit in each encoded block of qubits.

2. The existence of quantum error correcting codes, which guarantee to
correct a single error if it occurs.

3. The ability to concatenate error correcting codes.
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Concatenated codes
We have already seen that the Steane code suppresses the error in the
depolarising channel from pe to O(p2e) – let this be (for some constant c):

p′e = cp2e

We can now concatenate the Steane code by encoding a single logical
qubit not with seven physical qubits, but rather with seven qubits that
are themselves encoded using the Steane code. Therefore we have used
72 = 49 physical qubits in a two-level concatenated Steane code to form
one logical qubit. In this case, the error has been suppressed to:

c× (cp2e)2 =
(cpe)

22

c

It follows that if we concatenate k times, we suppress the error to:

(cpe)
2k

c

Therefore using concatenation we can suppress the error in each encoded,
logical qubit as much as we would like. Moreover, we will see that when
the physical qubit error pe is sufficiently small this error suppression is
efficient.
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The fault tolerance threshold of a code

If a quantum computer has n qubits then any polynomial time quantum
algorithm will have p(n) quantum gates, for some polynomial p(·). Let
p′e be the probability of the failure of a single fault tolerant gate, when
encoded in a k level concatenated code. We can thus bound the
probability of the computation failing, pf , using the Union bound:

pf ≤p(n)p′e

=p(n)
(cpe)

2k

c

Therefore, in order to achieve a desired maximum error of ε, it suffices to
choose k such that:

(cpe)
2k

c
≤ ε

p(n)

Such a k exists if the physical qubit error rate, pe, is such that
pe < pth = 1

c . For any error correcting code, pth is known as the code’s
threshold.
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How many operations are required for fault tolerance?
We must now ask how much additional resource is required to perform
the fault tolerant computation. To do so, notice that a k level
concatenated code requires dk operations, where d is some constant. We
therefore require dkp(n) operations to perform the fault tolerant
computation, compared to p(n) in the original circuit. To evaluate dk,
consider an encoding that satisfies the threshold condition with equality,
from the equation on the previous slide we can re-arrange and take
logarithms of both sides to get:

2k log(pec) = log(cε/p(n))

=⇒ −2k log(pec) =− log(cε/p(n))

=⇒ 2k log(1/(pec)) = log(p(n)/(cε)

=⇒ 2k =
log(p(n)/(cε)

log(1/(pec))

=⇒ dk =

(
log(p(n)/(cε)

log(1/(pec))

)log2 d

∈O(poly(log p(n)/ε))
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The threshold theorem

The analysis on the previous slide leads to the threshold theorem:

A quantum circuit containing p(n) gates may be simulated
with probability of error at most ε using

O(poly(log p(n)/ε)p(n))

quantum gates on hardware whose gates fail with probability
at most pe, provided pe is less than some constant threshold
pe < pth.

Note that we have proved this for the case of the depolarising channel,
but owing to the digitisation of errors discussed in the last lecture, a
general proof follows along similar lines.
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Significance of the threshold theorem
The importance of the threshold theorem cannot be understated:

When the probability of failure of each quantum gate is below the
threshold, then we can correct errors as we go along so that the
computation succeeds with high probability. Moreover, this error
correction is efficient in the sense that only a poly-logarithmic
increase in the number of gates in the circuit is incurred.

This contrasts with analogue computing, which theoretically can
achieve impressive performance improvements over digital
computing, but in fact offers no significant improvements at all
when the physical reality of noise, and the subsequent necessity of
error correction are taken into account.

It follows that a crucial goal for quantum computer hardware
designers is to reduce the error rate of the quantum gates as much
as possible; and for quantum computing theorists is to design codes
with as high a threshold as possible.

However, in this analysis we have overlooked locality constraints, and
these potentially hamper our ability to find good error correcting codes
for quantum computing.
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Error correction with locality constraints
Concatenated codes require parity-check measurements between the
physical qubits used to encode logical qubits – however these physical
qubits may be distant from each other in any actual quantum computer
architecture. Thus SWAP gates would be required to move these qubits
to be local. However, these SWAP gates would be on actual physical
qubits, and thus not fault tolerant.

There is, however, an alternative to this concatenated code approach –
surface codes work when qubits are laid out on a rectangular grid with
only nearest-neighbour interactions possible, the surface code assigns
every other qubit as a parity-check ancilla, which usually illustrated as:

with the red qubits on the faces and vertices as parity-check ancillas, and
the blue qubits on the edges being the data qubits. The surface code
only requires local parity-check measurements, and can encode logical
qubits in an appropriate number of physical qubits.
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State-of-the-art thresholds and gate error rates

The threshold of the surface code is estimated to be 0.01.

Ion-trap qubits in the University of Oxford currently have
world-leading “fidelity” – with two-qubit gate error rates less than
0.001.

So it follows that error rates below the surface code threshold have
been achieved, and therefore all that is required, in principle, for
fault tolerant quantum computing to be achieved is to scale up the
number of qubits in the quantum computer.

In practise there are a number of significant engineering (and some
theoretical) hurdles to overcome. In particular, even though error
rates below the threshold have been achieved, for practical purposes
it is still important to increase the fidelity of the quantum operations
further, so that fewer resources will be required to achieve fault
tolerance.
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Summary

In this lecture we have looked at:

The elements of fault tolerant quantum computation, in particular
constructing a fault tolerant universal gate-set.

The threshold theorem.

Using the surface code to achieve fault tolerance in physically
realistic quantum computer architectures.

State-of-the art code thresholds and gate error rates.
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