
Quantum Computing (CST Part II)
Lecture 13: Quantum Error Correction

We have learned that it is possible to fight
entanglement with entanglement.

John Preskill
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Resources for this lecture

Nielsen and Chuang p425-453 (sections 10.1-10.4) covers the material
of this lecture.

The next section (10.5) of Nielsen and Chuang introduces the stabiliser
formalism which, whilst being beyond the scope of this course, is very
commonly used to describe error correction, so may be of interest to
students considering further study / work in quantum computing.
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Why do we need quantum error correction?

Modern (classical) digital computers are, to all intents and purposes,
error-free. The same cannot, however, be said of quantum computers,
therefore error correction is required, in particular:

Even though near-term hybrid quantum-classical algorithms have
been conceptualised to achieve classically-intractable simulations,
even in the presence of noise, it is becoming increasingly apparent
that some amount of error correction is crucial to achieve
satisfactory performance.

More fundamentally, in order to assert that quantum algorithms will
indeed achieve super-classical performance in practise, it is necessary
to understand the “asymptotic significance” of quantum errors, and
the possibility and efficiency of correction.
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Classical errors: the binary symmetric channel

One of the simplest models for single-bit (classical) errors is the binary
symmetric channel, in which each possible state of the bit, 0 and 1
“flips” to the other with some probability pe:

0 0

1 1

pe

pe

1-pe

1-pe

Note that, without loss of generality we can assume pe ≤ 0.5, because if
pe > 0.5 then it is more likely than not that a bit-flip has occurred, so we
can interpret a received 0 as a 1 and vice-versa. In the case where
pe = 0.5 we cannot recover any information from the channel.
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Classical error correction: the three-bit repetition code

If we wish to send a single bit over a binary symmetric channel, then we
can encode the bit, by simply repeating it three times. That is, if we wish
to transmit a 0, we send three bits (sequentially) in the state 0, and
likewise for 1. This can be denoted as:

0→ 000

1→ 111

Once the three bits have been received, they are decoded by a “majority
vote”. So in order for an error to occur, it is necessary that either two of
the three bits have been flipped (which can occur in three different
ways), or all three have been, that is:

p′e = 3p2e(1− pe) + p3e

Which is less than pe if pe < 0.5. Typically, pe is small, and we can
describe this as suppressing the error to O(p2e).
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Complicating factors with quantum error correction

Ostensibly, it appears that we cannot directly transfer classical error
correction techniques to the problem of quantum error correction for
three reasons:

1. The no-cloning principle forbids the copying of quantum states.

2. Measurement destroys quantum information.

3. Quantum states are continuous: α |0〉+ β |1〉.

Nevertheless, we shall see that with some ingenuity we can correct
quantum errors.
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The three-qubit bit-flip code
The three-bit repetition code guarantees to return the correct bit value,
so long as at most one of the bits in the code is flipped. We now use this
as inspiration for the three-qubit bit-flip code, in which entanglement
rather than cloning plays the role of the repetition. That is, we encode
the computational basis states:

|0〉 → |000〉
|1〉 → |111〉

Which is achieved using the following circuit:

0

+𝛽 1𝛼 0

0

This has the following action on an arbitrary qubit state:

(α |0〉+ β |1〉) |0〉⊗2 → α |000〉+ β |111〉
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The three-qubit bit-flip code: error detection and recovery
To detect and recover errors, we supplement the circuit with two ancillas
that we use for error detection:

0

+𝛽 1𝛼 0

0

noisy channel

0

0
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Error correction

We can thus detect and recover single-qubit bit-flips:

Bit-flip |ψ1〉 M1 M2 Recovery |ψ2〉
- α |000〉+ β |111〉 0 0 I ⊗ I ⊗ I α |000〉+ β |111〉
1 α |100〉+ β |011〉 1 0 X ⊗ I ⊗ I α |000〉+ β |111〉
2 α |010〉+ β |101〉 1 1 I ⊗X ⊗ I α |000〉+ β |111〉
3 α |001〉+ β |110〉 0 1 I ⊗ I ⊗X α |000〉+ β |111〉

That is, we have made comparative parity-check measurements that tell
us only about the error and not about the quantum state itself, and so
these measurements have not destroyed the quantum state.
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The three-qubit phase-flip code
The three-qubit bit-flip code demonstrates how we can overcome two of
the possible problems with quantum error correction that we previously
identified:

We can use entanglement to enable repetition.
We can detect errors using parity-check measurements that do not
destroy the quantum information.

However, we still have not addressed the fact that quantum states are
continuous. To begin to do this, we’ll look at an error correction code for
a different type of error. The three-qubit phase-flip code has the
following action on an arbitrary single-qubit state:

(α |0〉+ β |1〉) |0〉⊗2 → α |+++〉+ β |− − −〉
Which is achieved by the following circuit:

0

+𝛽 1𝛼 0

0

H

H

H
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Three-qubit phase-flip code: error detection and recovery
Once again, to detect and recover errors, we supplement the circuit with
two ancillas that we use for error detection:
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By definition, a phase flip sends:

|+〉 = 1√
2
(|0〉+ |1〉)→ 1√

2
(|0〉 − |1〉) = |−〉

|−〉 = 1√
2
(|0〉 − |1〉)→ 1√

2
(|0〉+ |1〉) = |+〉

Thus we have:

Ph-flip |ψ1〉 M1 M2 Recovery |ψ2〉
- α |+++〉+ β |− − −〉 0 0 I ⊗ I ⊗ I α |+++〉+ β |− − −〉
1 α |−++〉+ β |+−−〉 1 0 Z ⊗ I ⊗ I α |+++〉+ β |− − −〉
2 α |+−+〉+ β |−+−〉 1 1 I ⊗ Z ⊗ I α |+++〉+ β |− − −〉
3 α |++−〉+ β |− −+〉 0 1 I ⊗ I ⊗ Z α |+++〉+ β |− − −〉
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The Shor code
The Shor code is a 9-qubit code which is constructed by concatenating
the three-qubit bit-flip and three-qubit phase-flip codes:

𝜓 H

H

H

0

0

0

0

0

0

0

0

This encodes the computational basis states as follows:

|0〉 → |0L〉 =
1

2
√
2
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

|1〉 → |1L〉 =
1

2
√
2
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
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Correcting bit-flips with the Shor code

The Shor code can detect and correct a bit-flip on any single qubit. For
example, suppose we have an arbitrary quantum state α |0〉+ β |1〉 which
we encode with the Shor code as:

1

2
√
2

(
α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

If a bit-flip occurs on the first qubit, the state becomes:

1

2
√
2

(
α(|100〉+ |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉 − |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

Which can be detected (and thus recovered from) by parity-check
measurements between the first three qubits as in the three-qubit bit-flip
code. By symmetry we can see that the same principle applies to all of
the nine qubits.
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Correcting phase-flips with the Shor code

The Shor code can also detect and correct a phase-flip on any single
qubit. If a phase-flip occurs on the first qubit, the state becomes:

1

2
√
2

(
α(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

The key idea here is to detect which of the three blocks of three qubits
has experienced a change of sign. This is achieved using the circuit
shown on the following slide.

We can also correct combinations of bit- and phase-flips in this way.

13 / 23



Circuit for correcting phase-flips with the Shor code
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14 / 23



The depolarising channel

When studying the (classical) three-bit repetition code, we saw that in
practise it is more useful to think of it as a code that suppresses the error
in the binary symmetric channel from pe to O(p2e).

In the quantum case, we can see something similar: Consider the
depolarising channel, in which a qubit is left unchanged with probability
1− pe; experiences a bit-flip with probability pe

3 ; experiences a phase-flip
with probability pe

3 ; or experiences both a bit- and phase-flip with
probability pe

3 .

An analogous argument to that made for the binary symmetric channel
can be made to show that the Shor code suppresses the error from pe to
O(p2e) in the depolarising channel.
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Correcting any single qubit error with the Shor code (1)
Suppose the first qubit encounters an error which sends
|0〉 → a |0〉+ b |1〉 and |1〉 → c |0〉+ d |1〉. We thus have the state:

1

2
√
2

(
α(a |000〉+ b |100〉+ c |011〉+ d |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(a |000〉+ b |100〉 − c |011〉 − d |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

Letting k +m = a, k −m = d, l + n = b and l − n = c, we get

1

2
√
2

(
k
(
α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

+l
(
α(|100〉+ |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉 − |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

+m
(
α(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

+n
(
α(|100〉 − |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉+ |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
))
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Correcting any single qubit error with the Shor code (2)
As before, we first perform parity-check measurements to detect a
bit-flip. The parity check for a bit-flip in the first block of three qubits
requires two ancillas (the first comparing the first and second qubits, the
second comparing the second and third qubits), whose state (after the
parity-check CNOTs) we can append to the Shor code state:

1

2
√
2

(
k
(
α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)
|00〉

+l
(
α(|100〉+ |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉 − |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
)
|10〉

+m
(
α(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)
|00〉

+n
(
α(|100〉 − |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉+ |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
)
|10〉

)
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Correcting any single qubit error with the Shor code (3)
If the parity-check measurement outcome is 00, the state collapses to
(un-normalised):

k
(
α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

+m
(
α(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

In which case there is no bit-flip. Or if the measurement outcome is 10:

l
(
α(|100〉+ |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉 − |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
)

+n
(
α(|100〉 − |011〉)(|000〉+ |111〉)(|000〉+ |111〉)

+ β(|100〉+ |011〉)(|000〉 − |111〉)(|000〉 − |111〉)
))

i.e., a bit-flip has occurred which we can then correct.
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Correcting any error by correcting only bit- and phase-flips
Following the bit-flip parity-check measurement (and correction if
necessary) we perform a parity-check measurement to check for a phase
flip. Using the same argument as for the bit-flip detection, if we measure
0 the state collapses to:

α(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
+ β(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

Or if we measure a 1 we get:

α(|000〉 − |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
+ β(|000〉+ |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

i.e., a phase-flip has occurred which we can then correct. Therefore we
have recovered the original state.

Therefore performing bit- and phase-flip parity-check measurements
collapses a general state into the case where either the bit / phase flip
has occurred or not as per the measurement outcome. This remarkable
property allows us to correct a continuum of errors by performing only
bit- and phase-flip checks.
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Quantum error correction

We have seen that the Shor code can correct an arbitrary error on any
one qubit. In practise, however, we are interested in the case where each
qubit experiences some amount of noise – we assume this is independent
and identically distributed (iid).

We saw that the Shor code suppresses errors in the (iid) depolarising
channel to O(p2e).
The general quantum case is slightly more complicated, but
essentially the same principle applies: in the low noise setting it
often suffices to use codes which guarantee to correct any single
error, because multiple errors are much less likely.

This principle only works because of the way that quantum error
correction works: the fact that the parity-checking measurements collapse
the state such that either a bit-flip or a phase-flip or both or neither has
occurred means that quantum error correction is analogous to digital
rather than analogue classical error correction in many important ways.
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More sophisticated classical error correction
Repetition codes are useful for demonstrating the principle of error
correction, but are rather too inefficient to use in practise. One
particularly elegant code is the (7, 4) Hamming code, a linear code that
encodes a 4-bit data-word, d, as a 7-bit code-word, c, according to
c = Gd mod 2, where G is the generator matrix:

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


Any errors are detected by applying the parity-check matrix, H, to a
given code-word.

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


Letting p = Hc mod 2, the three bits of p are all zero if c is a valid
code-word, and otherwise the seven possible three-bit strings with at
least one 1 encode the position of a single error. Thus the (7, 4)
Hamming code can detect and correct any single bit error. 21 / 23



Quantum codes from classical codes
Classical linear codes are efficient, in the sense that code-words are
generated by multiplying the data-word by a matrix, which can be
compactly described.
There is a technique for using classical linear codes to find quantum
error correction codes. These codes are known as CSS
(Calderbank-Shor-Steane) codes.
To study CSS codes it is helpful to know the Stabiliser formalism,
which is beyond the scope of this course.
However, it is worth being aware of one particular CSS code, the
Steane code, which is constructed from the (7, 4) Hamming code.
The Steane code encodes one data-qubit in seven physical qubits,
such that any single-qubit error can be detected and corrected. The
Steane code encodes the logical states 0 and 1 as follows:

|0L〉 =
1√
8

(
|00000000〉+ |1010101〉+ |0110011〉+ |1100110〉

|0001111〉+ |1011010〉+ |0111100〉+ |1101001〉
)

|1L〉 =
1√
8

(
|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉
)
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What to remember

We have seen that there are three obstacles to applying the techniques
and principles of classical error correction directly to quantum error
correction, each of which can be worked around:

The no-cloning principle means that we cannot simply copy
quantum states in repetition codes – instead we can use entangling
to “copy” the information.

Measurements destroy quantum information: so instead we design
the error correcting codes so that the measurements only tell us
whether an error has occurred, and nothing about the quantum
state itself.

Quantum errors are continuous: but we have seen that the process
of error correction effectively digitises the errors.

Additionally, we have seen that, in practise, classical error correction
codes are typically more sophisticated and efficient than simple repetition
codes, and that these can be used to design quantum error correction
codes, of which the Steane code is an important example.
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