Programming in C and C++
Lectures 10-12: C++ for Java and C programmers
Alan Mycroft!

Computer Laboratory, University of Cambridge

Michaelmas Term 2019-2020

"Notes based, with thanks, on slides due to Alastair Beresford and Andrew Moore
1/67

What we'll cover

» Differences between C and C++

» References versus pointers

» Overloading functions and operators

» Objects in C++; Classes and structs; Destructors; Virtual functions
> Multiple inheritance; Virtual base classes; Casting

» Exceptions

> Templates and meta-programming

» For exam purposes, focus on ‘big-picture’ novelties and differences
between features of C++ and those in C and Java.

» For coding, sorry but compilers insist you get it exactly right.

Should | program my application in C or C+-+7?
Or both or neither?

» One aim of these lectures is to help you decide.
» C and C++ both have very good run-time performance
» C++ has more facilities, but note Bjarne Stroustrup’s quote:
"“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do it blows your whole leg off.”
» Even if C++ is a superset of C then mixing code is risky, e.g.
> you don't want two conflicting |O libraries being active,
> you often program using different metaphors in C and C++
» C functions may not expect an exception to bypass their tidy-up code
» Using C-coded stand-alone libraries in C++ is fine.
» C++ vs. Java? Speed vs. safety? More vs. fewer features? Java is
trying to follow C++ (and C#) by having value types
(objects/structs as values not just references).

Decide C or C4+ at the start of a project.

C++ fundamental types

v

C++ has all the fundamental types C has
> character literals (e.g. ’a’) are now of type char

v

In addition, C++ defines a new fundamental type, bool

v

A bool has two values: true and false

v

When cast to an integer, true—1 and false—0

» When casting from an integer, non-zero values become true and
false otherwise

Aims of C+-+

To quote Bjarne Stroustrup:

“"C++ is a general-purpose programming language with a bias towards
systems programming that:

> is a better C
> supports data abstraction
> supports object-oriented programming

> supports generic programming.”

Alternatively: C++ is “an (almost upwards-compatible) extension of C
with support for: classes and objects (including multiple inheritance),
call-by-reference, operator overloading, exceptions and templates

(a richer form of generics)".

Much is familiar from Java, but with many subtle differences.

How to follow these two lectures

> These slides try capture the core enhancements of C4++, so that
afterwards you will be able to read C4++ code, and tentatively modify
it.

> But C++ is a very complex language, so these slides are incomplete,
even if they uncomfortably large.

» For exam purposes the fine details don’t matter, it's more important
to get the big picture, which I'll try to emphasise in lectures.

The creator of C++, Bjarne Stroustrup, has various entertaining and
educational articles on his web page: www.stroustrup.com

C++ Types [big picture]

C++ types are like C types, but:

> new type bool (values true and false)

> new type constructor class (generalising struct in C)

» reference types: new type constructor &, so can have
int x, *y, &z;

> enum types are distinct (not just synonyms for integers)

> names for enum, class, struct and union can be used directly as
types (C needs an additional typedef)

» character literals (e.g. >a’) are now of type char

» member functions (methods) can specify this to be const.

Many of the above changes are ‘just what you expect from programming
in Java'.
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C++ enumeration

» Unlike C, C++ enumerations define a new type; for example
enum flag is_keyword=1, is_static=2, is_extern=4,
» When defining storage for an instance of an enumeration, you use its
name; for example: flag f = is_keyword
> Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right
» The maximum valid value of an enumeration is the enumeration's
largest value rounded up to the nearest larger binary power minus one
» The minimum valid value of an enumeration with no negative values
is zero

» The minimum valid value of an enumeration with negative values is
the nearest least negative binary power



References

C++ supports references, which provide an alternative name (alias) for a
variable

Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

A reference is declared with the & operator; compare:
int i[] = {1,3}; int &refi = i[0]; int *ptri = &i[0];
A reference must be initialised when it is declared

The connection between a reference and what it refers to cannot be
changed after initialisation; for example:
refi++; // increments value referenced to 2

ptri++; // increments the pointer to &i[1]

Think of reference types as pointer types with implicit * at every use.
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Overloaded functions

» Just like Java we can define two functions with the same name, but

>

varying in argument types (for good style functions doing different
things should have different names).

Type conversion is used to find the “best” match

A best match may not always be possible:

1 void f(double);

> void f(long);

3 void test() {

« f(L); // £(long)

5 £(1.0); // f(double)

6 f(1); // Wrong: f(long(1)) or f(double(1)) ?

Can also overload built-in operators, such as assignment and equality.

Applies both to top-level functions and member functions (methods).
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Default function arguments

v

v

v

v

A function can have default arguments; for example:
double log(double v, double base=10.0);

A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

Be careful of the lexical interaction between * and =; for example:
void f(char*=0); //Wrong ’*=’ is assignment

13 /67

Example

1 namespace Modulel {int x;}

2

3 namespace Module2 {

4 inline int sqr(const int& i) {return ixi;}

5 inline int halve(const int& i) {return i/2;}
6 F

7

8 using namespace Modulel; //"import" everything
9

10
11
12
13
14

int main() {

}

using Module2::halve;
x = halve(x);
sqr(x);

//"import" the halve function

//Wrong
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References in function arguments

» When used as a function parameter, a referenced value is not copied,;
for example:
void inc(int& i) { i++;}

» Declare a reference as const when no modification takes place

> It can be noticeably more efficient to pass a large struct by reference

» Implicit type conversion into a temporary takes place for a const
reference but results in an error otherwise; for example:

1 float funl(float&);

2 float fun2(const float&);

3 void test() {

4 double v=3.141592654;

s funi(v); // Wrong

6 fun2(v); // OK, but beware the temporary’s lifetime
7

}

» Cf. Fortran call-by-reference
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Scoping and overloading

» Overloading does not apply to functions declared in different scopes;
for example:

1 void f(int);

2

3 void example() {

4 void f(double);

s f(1); //calls f(double);
6 F
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Namespaces

Related data can be grouped together in a namespace. Can use :
using to access components. Think Java packages.

: and

namespace Stack { //header file void £() { //usage

void push(char); ce
Stack: :push(’c’);

char popQ);

} ...
}

namespace Stack { //implementation

const int max_size = 100;

char s[max_size];

int top = 0;

void push(char c¢) { ... }

char pop() { ... }

}
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Using namespaces

» A namespace is a scope and expresses logical program structure

> |t provides a way of collecting together related pieces of code

» A namespace without a name limits the scope of variables, functions

and classes within it to the local execution unit

» The same namespace can be declared in several source files
> The global function main() cannot be inside a namespace
> The use of a variable or function name from a different namespace

must be qualified with the appropriate namespace(s)
> The keyword using allows this qualification to be stated once, thereby
shortening names
» Can also be used to generate a hybrid namespace
> typedef can be used: typedef Some::Thing thing;

> A namespace can be defined more than once

> Allows, for example, internal and external library definitions
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Linking C and C++ code Linking C and C++ code

> The directive extern "C" specifies that the following declaration or
definition should be linked as C, not C++, code:

extern "C" int £0; » Care must be taken with pointers to functions and linkage:

» Multiple declarations and definitions can be grouped in curly brackets:

1 extern "C" {

> int globalvar; //definition
3 int £Q);

4 void g(int);

5

}

extern "C" void gsort(void* p, \
size_t nmemb, size_t size, \
int (*compar) (const void*, const voidx));

Why do we need this?

char s[] = "some chars";

1
2
3
4
5 int compare(const void*,const voidx);
6
7
s gsort(s,9,1,compare); //Wrong

» ‘Name munging’ for overloaded functions. A C compiler typically
generates linker symbol ‘_f' for £ above, but a C++ compiler
typically generates '__z1fv'.

» Function calling sequences may also differ (e.g. for exceptions).
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Big Picture Classes and objects in C++

C++ classes are somewhat like Java:

v

Classes contain both data members and member functions (methods)
which act on the data; they can extend ':' other classes.

v

, . . Member n tatic (i.e. per-cl
So far we've only done minor things. embers can be static (i.e. per-class)

> Members have access control: private, protected and public
» We've seen C++ extensions to C. But, apart from reference types, > Classes are created with class or struct keywords
nothing really new has appeared that's beyond Java concepts. > struct members default to public access; class to private
» Now for classes and objects, which look the same, but aren't ... > A member function with the same name as a class is called a
constructor

» Can use overloading on constructors and member functions.
But also:

» A member function with the same name as the class, prefixed with a
tilde (~), is called a destructor
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Classes and objects: big differences from Java Example (emphasising differences from Java)
class Complex {

double re, im; // private by default

public:

Complex(double r=0.0, double i=0.0);

1
2
» Values of class types are not references to objects, but the objects 3
2
5 };
6
7
8
9

themselves. So we access members with C-style *." (but using '->" is
more convenient when we have pointers to objects).
» \We can create an object of class C, either by:

> on the stack (or globally) by declaring a variable: C x;
> on the heap: new C() (returns a pointer to C)

Complex: :Complex(double r,double i) : re(r), im(i) {
// preferred form, necessary for const fields

}

» Member functions (methods) by default are statically resolved. For 10

Java-like code declare them virtual u Complex: : Complex(double r,double i) {
12 re=r, im=i; // deprecated initialisation-by-assignment

> Member functions can be declared inside a class but defined outside it |, §
using ‘::’ 14
» C++ uses new to allocate and delete to de-allocate. There is no 15 int main() {

16 Complex c(2.0), d(), e(1,5.0);
17 return O;
18 } // local objects c,d,e are deallocated on scope exit

garbage collector — users must de-allocate heap objects themselves.
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Constructors and destructors Copy constructor

> A default constructor is a function with no arguments (or only default

v

A new class instance can defined by initialisation; for example;

arguments) ) s
) - . . Complex c(1,2); // note this C++ initialiser syntax
» |If no constructor is specified, the compiler will generate one Complex d = c;
> The programmer can specify one or more constructors > In this case, the new class is initialised with copies of all the existing
» Only one constructor is called when an object is created class's non-static member variables; no constructor is called
» There can only be one destructor » If this behaviour is undesirable (e.g. consider a class with a pointer as
> This is called when a stack-allocated object goes out of scope or when a member variable) define an your own copy constructor:
a heap-allocated object is deallocated with delete; this also occurs for » Complex::Complex(const Complex&) { ... }
T:::rl;—allocated objects deallocated during exception handling (more » If a copy constructor is not wanted, make the copy constructor a
» Stack-allocated objects with destructors are a useful way to release private member function, or in C++11 use delete.
resources on scope exit (similar effect as Java try-finally) — “RAII: » Note that assignment, e.g. d = c; differs differs from initialisation
Resource Allocation is Initialisation” . and does not use the copy constructor — see next slide.

» Make destructors virtual if class has subtypes or supertypes.



Assignment operator

» By default a class is copied on assignment by over-writing all
non-static member variables; for example:

Constant member functions

1 Complex c(), d(1.0,2.3); » Member functions can be declared const
2. ¢ =d; //assignment » Prevents object members being modified by the function:
» This behaviour may also not be desirable (e.g. you might want to tidy 1 double Complex::real() const {
up the object being over-written). 2 return re;
. . - }
» The assignment operator (operator=) can be defined explicitly: ’
1 Complex& Complex::operator=(const Complex& c) { > In effect it gives type const Complex *this instead of Complex *this
2 . to the (implicit) parameter ‘this’.
3} > Helpful to both programmer (maintenance) and compiler (efficiency).
> Note the result type of assignment, and the reference-type parameter
(passing the argument by value would cause a copy constructor to be
used before doing the assignment, and also be slower).
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Arrays and the free store Exercises
> An array of class objects can be defined if a class has a default 1. Write an implementation of a class LinkList which stores zero or
constructor more positive integers internally as a linked list on the heap. The
> C++ has a new operator to place items on the heap: class should provide appropriate constructors and destructors and a
Complex* ¢ = new Complex(3.4); method pop() to remove items from the head of the list. The method
> Items on the heap exist until they are explicitly deleted: POPO ShOUId_ return -1 if the_re are no remaining items. Your.
delete c: implementation should override the copy constructor and assignment
. L e . . operator to copy the linked-list structure between class instances. You
» Since C++ (like C) doesn't distinguish between a pointer to a single P . Py . . . .
. . . . might like to test your implementation with the following:
object and a pointer to an the first element of an array of objects, ) i
array deletion needs different syntax: 1 int main(©) {
2 int test[] = {1,2,3,4,5};
1 Complex* ¢ = new Complex[5]; s LinkList 11(test+1,4), 12(test,5);
2 s 4 LinkList 13=12, 14;
3 delete[] c; //Cannot use "delete" here s 14=11;
L . . intf("%d %d %d\n",11. ,13. ,14. ;
» When an object is deleted, the object destructor is invoked j S:im(o{ id Jhd\n popO) pop() pop())
» When an array is deleted, the object destructor is invoked on each s }
| t . . .
elemen Hint: heap allocation & deallocation should occur exactly once!
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Operators Streams
> Overloaded operators also work with built-in types
» C++ allows the programmer to overload the built-in operators > Overloading is used to define << (C++'s “printf"); for example:
» For example, a new test for equality: 1 #include <iostream>
2
1 bool operator==(Complex a, Comp1e§ b) { . 3 int mainQ) {
2> return a.real()==b.real() && a.imag()==b.imag(); 4+ const char* s = "char array";
3 // presume real() is an accessor for field ’re’, etc. 5
s} 6 std::cout << s << std::endl;
- . . 7
» An o_pera.tor can be defined or declargd W|th|n the body of a class, s //Unexpected output; prints s[0]
and in this case one fewer argument is required; for example: o std::cout.operator<<(s) .operator<<(std::endl);
1 bool Complex::operator==(Complex b) { 10
> return re==b.real() && im==b.imag(); u  //Expected output; prints s
3} 12 std: :operator<<(std::cout,s);
13 std::cout.operator<<(std::endl);
» Almost all operators can be overloaded 14 return 0;
15}
o > Note std::cin, std::cout, std::cerr .
29 /67 30/67

The ‘this’ pointer Class instances as member variables

. . . . > A class can have an instance of another class as a member variable
> |If an operator is defined in the body of a class, it may need to return

a reference to the current object » How can we pass arguments to the class constructor?

> The keyword this can be used > New C++ syntax for constructors:

> For example:

1 class X {
1 Complex& Complex::operator+=(Complex b) { 2 Complex c;
> re += b.real(); 3 Complex d;
5 this->im += b.imag(); 4 X(double a, double b): c(a,b), d(b) {
4 return *this; 5 cee
5} s}
7}

> In C (or assembler) terms this is an implicit argument to a method

when seen as a function. This notation must be used to initialise const and reference members

> |t can also be more efficient
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Temporary objects

» Temporary objects are often created during execution

» A temporary which is not bound to a reference or named object exists
only during evaluation of a full expression (BUGS BUGS BUGS!)

» Example: the C++ string class has a function c_str() which
returns a pointer to a C representation of a string:

1 string a("A "), b("string");
2 const char *s1 = a.c_str(); //0kay
3 const char *s2 = (a+b).c_str(); //Wrong
4
5 //s2 still in scope here, but the temporary holding
6 //"a+b" has been deallocated

7

8 string tmp = atb;

9 const char *s3 = tmp.c_str(); //Okay
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Inheritance
» C++ allows a class to inherit features of another:
1 class vehicle {
2 int wheels;
3 public:
4+ vehicle(int w=4):wheels(w) {}
5 s
6
7 class bicycle : public vehicle {
8 bool panniers;
9 public:
10 bicycle(bool p):vehicle(2),panniers(p) {}
u };
12
13 int main() {
14 bicycle(false);
15 }
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Example
1 #include <iostream>
2 #include "examplel3.hh"
3
4 void print_speed(vehicle &v, bicycle &b) {
5 std::cout << v.maxSpeed() << " ";
6 std::cout << b.maxSpeed() << std::endl;
7}
8
9 int main() {
10 bicycle b = bicycle(true);
1 print_speed(b,b); //prints "60 12"
12}
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Virtual functions

> In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

bicycle b(true);
vehicle v;
vehiclex pv;

pv = &v;

std::cout << pv->maxSpeed() << std::endl;

}

1
2
3
4
5 user_input() ? pv = &b :
6
7
8
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Friends

» If, within a class C, the declaration friend class D; appears, then D
is allowed to access the private and protected members of C.

» A (non-member) function can be declared friend to allow it to access
the private and protected members of the enclosing class, e.g.

class Matrix {
friend Vector operator*(const Matrix&, const Vector&);

};
¥

This code allows operator* to access the private fields of Matrix,
even though it is defined elsewhere.

1
2
3
4
5
6

» Note that friendship isn't symmetric.
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Derived member function call
l.e. when we call a function overridden in a subclass.
> Default derived member function call semantics differ from Java:
1 class vehicle {
2 int wheels;
3 public:
4 vehicle(int w=4):wheels(w) {}
5 int maxSpeed() {return 60;}
6
7
8 class bicycle : public vehicle {
9 int panniers;
10 public:
11 bicycle(bool p=true):vehicle(2),panniers(p) {}
12 int maxSpeed() {return panniers ? 12 : 15;}
13 };
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Virtual functions

» Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

» Since a pointer to a derived class can be cast to a pointer to a base
class, calls at base class do not see the overridden function.

» To get polymorphic behaviour, declare the function virtual in the
superclass:
1 class vehicle {
2 int wheels;
3 public:

4 vehicle(int w=4):wheels(w) {}

5  virtual int maxSpeed() {return 60;}

6

¥
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Enabling virtual functions

» To enable virtual functions, the compiler generates a virtual function
table or vtable

» A vtable contains a pointer to the correct function for each object
instance

» The vtable is an example of indirection

» The vtable introduces run-time overhead (this is compulsory in Java;
contemplate whether C++'s additional choice is good for efficiency or
bad for being an additional source of bugs)
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Abstract classes

Just like Java except for syntax.
Sometimes a base class is an un-implementable concept
In this case we can create an abstract class:

1 class shape {

2 public:
3 virtual void draw() = 0;
a}

It is not possible to instantiate an abstract class:
shape s; //Wrong

A derived class can provide an implementation for some (or all) the
abstract functions

A derived class with no abstract functions can be instantiated

C++ has no equivalent to Java ‘implements interface’.
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Multiple inheritance

It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {
2

3}
Members from both base classes exist in the derived class
If there is a name clash, explicit naming is required

This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle: :maxSpeed();
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Virtual base classes

» Alternatively, we can have a single instance of the base class

> Such a "virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};

> class Boat : public virtual Vehicle { ... };

3 class Car : public virtual Vehicle { ... };

4 class JamesBondCar : public Boat, public Car { ... };

> Multiple inheritance is often regarded as problematic, and one of the

reasons for Java creating interface.
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Exercises

. If a function £ has a static instance of a class as a local variable,
when might the class constructor be called?

. Write a class Matrix which allows a programmer to define 2 x 2
matrices. Overload the common operators (e.g. +, -, *, and /)

. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
inter-operate correctly (e.g. v2 = mxv1 should work as expected)

. Why should destructors in an abstract class almost always be declared
virtual?
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Example

1 class shape {

2 public:

3 virtual void draw() = 0;
4}

5

6 class circle : public shape {
7 public:

s //...

9 void draw() { /* impl */ }
10 };

Multiple instances of a base class

» With multiple inheritance, we can build:

1 class A {};

> class B : public A {};

3 class C : public A {};

4 class D : public B, public C {};

> This means we have two instances of A even though we only have a
single instance of D

> This is legal C++, but means all references to A must be stated

explicitly:
1D d;
2 d.B::var=3;

3 d.C::var=4;
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Casts in C++

These need quite a bit of care, hence syntactic variants offering additional
checks:

> classical C-style casts (type)expr, these do mainly the same as C.
Take care casting between pointers when multiple inheritance or
virtual bases are used; the compiler must be able to see the
inheritance tree otherwise it might not compile the right operation
(casting to a superclass might involve an addition or indirection, not
just the no-op in Java).

» New C++ constructor syntax: int(’a’) or C(expr).

» New C++ more descriptive forms: dynamic_cast<T>(e),
static_cast<T>(e), reinterpret_cast<T>(e) and
const_cast<T>(e). The former is closest to Java object-reference
casts, and generates code to do run-time tests of compatibility. Too
much detail for this course.

» New C++ form: typeid(e) gives the type of e encoded as an object

of type_info which is defined in standard header <typeinfo>.
46 / 67

Exceptions

Just like Java, but you normally throw an object value rather than an
object reference:

» Some code (e.g. a library module) may detect an error but not know
what to do about it; other code (e.g. a user module) may know how
to handle it

» C++ provides exceptions to allow an error to be communicated

> In C++ terminology, one portion of code throws an exception;
another portion catches it.

» If an exception is thrown, the call stack is unwound until a function is
found which catches the exception

» If an exception is not caught, the program terminates
But there is no try-finally (use local variables having destructors).
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Throwing exceptions Conveying information

> Exceptions in C++ are just normal values, matched by type » The “thrown” type can carry information:
» A class is often used to define a particular error type: 1 struct MyError {
class MyError {}; > int errorcode;
> An instance of this can then be thrown, caught and possibly 3 ) MyError (i) :errorcode(i) {}
re-thrown: Z ’
1 void £() { ... throw MyError(); ... } 6 void £() { ... throw MyError(5); ... }
2 . 7
3 try { s try {
4 £0O3 o £QO;
5 } 10 F
6 catch (MyError) { 11 catch (MyError x) {
7 //handle error 12 //handle error (x.errorcode has the value 5)
8 throw; //re-throw error 13 C
9 } 14}
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#include <iostream>

1
Handling multiple errors 2
3 struct SomeError {virtual void print() = 0;};
4 struct ThisError : public SomeError {
» Multiple catch blocks can be used to catch different errors: s virtual void print() {
6 std::cout << "This Error" << std::endl;
1 try { ;)
> L. s };
s } 9 struct ThatError : public SomeError {
4 catch (MyError x) { 10 virtual void print() {
s //handle MyError 1 std::cout << "That Error" << std::endl;
6} 2}
7 catch (YourError x) { 13}
s //handle YourError 1 int mainQ) {
o 15 try { throw ThisError(); }
. . X 16 catch (SomeError& e) { //reference, not value
» Every exception will be caught with catch(...) 17 e.printQ;
» Class hierarchies can be used to express exceptions: B}
19 return O;
20 }
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Exceptions and local variables [important] Templates

» Templates support meta-programming, where code can be evaluated

» When an exception is thrown, the stack is unwound at compile time rather than run time

» The destructors of any local variables are called as this process > Templates support generic programming by allowing types to be
continues parameters in a program

» Therefore it is good C++ design practice to wrap any locks, open file > Generic programming means we can write one set of algorithms and
handles, heap memory etc., inside stack-allocated object(s), with one set of data structures to work with objects of any type
constructors doing allocation and destructors doing deallocation. This » We can achieve some of this flexibility in C, by casting everything to
design pattern is analogous to Java's try-finally, and is often referred void * (e.g. sort routine presented earlier)
to as "RAIl: Resource Allocation is Initialisation”. » The C++ Standard Library makes extensive use of templates

» C++ templates are similar to, but richer than, Java generics.
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Templates — big-picture view (TL;DR) An example: a stack [revision]

> Templates are like Java generics, but can have both type and value
parameters:
template <class T, int max>class Buffer { T[max] v; int n;};

» The stack data structure is a useful data abstraction concept for
objects of many different types

» You can also specify ‘template specialisations’, special cases for > In one program, we might like to store a stack of ints

certain types (think compile-time pattern matching). > In another, a stack of NetworkHeader objects
> This gives lots of power (Turing-powerful) at compile time: > Templates allow us to write a single generic stack implementation for
‘meta-programming’. an unspecified type T
> Top-level functions can also be templated, with ML-style inference > What functionality would we like a stack to have?
allowing template parameters to be omitted, given > bool isEmpty();
> void push(T item)
1 template<class T> void sort(T al[l, const unsigned& len); .
; > T popQ);
> int al] = {2,1,3}; >

then sort(a,3) = sort<int>(a,3) > Many of these operations depend on the type T

» The rest of the slides explore the details.

o

2
@
3



Creating a stack template

> A class template is defined as:

1 template<class T> class Stack {
2

3}

> Where class T can be any C++ type (e.g. int)

» When we wish to create an instance of a Stack (say to store ints)
then we must specify the type of T in the declaration and definition of
the object: Stack<int> intstack;

> We can then use the object as normal: intstack.push(3);

» So, how do we implement Stack?

> Write T whenever you would normally use a concrete type
Java programmers: note Java forbids List<int> (generics cannot use
primitive types).
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1 #include "examplel6.hh"
2
3 template<class T> void Stack<T>::append(T val) {
4 Item *xpp = &head;
5 while(*pp) {pp = &((*pp)->next);}
6 *pp = new Item(val);
7}
8
9 //Complete these as an exercise
10 template<class T> void Stack<T>::push(T) {/* */}
1 template<class T> T Stack<T>::pop() {/* ... %/}
12 template<class T> Stack<T>::"Stack() {/* ... */}
13
14 int main() {
15 Stack<char> s;
16 s.push(’a’), s.append(’b’), s.popQ);
17 }
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Default parameters
> Template parameters may be given default values
1 template <class T,int i=128> struct Buffer{
2 T bufl[i];
3}
4
5 int main() {
6 Buffer<int> B; //i=128
7 Buffer<int, 256> C;
8 F
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Templated functions

> A top-level function definition can also be specified as a template; for
example (think ML):

1 template<class T> void sort(T all,
2 const unsigned int& len);

> The type of the template is inferred from the argument types:
int al[l = {2,1,3}; sort(a,3); = T is an int
» The type can also be expressed explicitly:
sort<int>(a,3)
» There is no such type inference for templated classes
» Using templates in this way enables:
> better type checking than using void *

> potentially faster code (no function pointers in vtables)
> larger binaries if sort () is used with data of many different types
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1 template<class T> class Stack {
2
struct Item { //class with all public members

w

4 T val;
Item* next;
: val(v), next(0) {}

6 Item(T v)
7 }s

9 Item* head;

11 Stack(const Stack& s) {} //private
12 Stack& operator=(const Stack& s) {} //

14 public:

15 Stack() : head(0) {}

16 “Stack(); // should generally be virtual
17 T popQ);

18 void push(T val);
19 void append(T val);

58 /67

Template richer details

v

A template parameter can take an integer value instead of a type:
template<int i> class Buf { int b[i]; ... };

> A template can take several parameters:
template<class T,int i> class Buf { T b[i]; ... };

» A template can even use one template parameter in the definition of a
subsequent parameter:
template<class T, T val> class A { ... };

> A templated class is not type checked until the template is

instantiated:
template<class T> class B {const static T a=3;}

» B<int> b; is fine, but what about B<B<int> > bi;?

» Template definitions often need to go in a header file, since the
compiler needs the source to instantiate an object
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Specialisation

> The class T template parameter will accept any type T
» We can define a specialisation for a particular type as well (effectively
type comparison by pattern-matching at compile time)

1 #include <iostream>
2 class A {};

3

4 template<class T> struct B {

5 void print() { std::cout << "General" << std::endl;}
6 F;
7 template<> struct B<A> {
s void print() { std::cout << "Special" << std::endl;}
9 };

1 int main() {

12 B<A> bil;

13 B<int> b2;

14 bl.print(); //Special
15 b2.print(); //General

1 #include <iostream>
2
3 template<class T> void sort(T a[], const unsigned int& len) {

4 T tmp;

5  for(unsigned int i=0;i<len-1;i++)

6 for(unsigned int j=0;j<len-1-i;j++)

7 if (aljl > alj+1]) //type T must support "operator>"
8 tmp = aljl, aljl = alj+1], alj+1] = tmp;

0}

10

11 int main() {

12 const unsigned int len = 5;

13 int a[len] = {1,4,3,2,5};

14 float f[len] = {3.14,2.72,2.54,1.62,1.41};

15

16 sort(a,len), sort(f,len);

17 for(unsigned int i=0; i<len; i++)

18 std::cout << ali] << "\t" << f[i] << std::endl;
19 }
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Overloading templated functions Meta-programming example
1 #include <iostream>

2
3 template<unsigned int N> struct fact {
» Templated functions can be overloaded with templated and 4 static const int value = N * fact<N-1>::value;
non-templated functions 5 char v[valuel; // just to prove the value is computed
- . u T " i i !
» Resolving an overloaded function call uses the “most specialised o ) // at compile time!
[

function call

©

template<> struct fact<0> {

> If this is ambiguous, then an error is given, and the programmer must static const int value = 1;

©

fix by: 0}
> being explicit with template parameters (e.g. sort<int>(...)) 1
> re-writing definitions of overloaded functions 12 struct fact<7> foo; // a struct containing
13 // char v[5040] and a const.
14 int main() {
o 3 15 std::cout << sizeof(foo) << ", " << foo.value << std::endl;
Template specialisation enables meta-programming;: ©}

Templates are a Turing-complete compile-time programming language!
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Exercises

1. Provide an implementation for:
template<class T> T Stack<T>::pop(); and
template<class T> Stack<T>::~Stack();

2. Provide an implementation for:

Stack(const Stack& s); and
Stack& operator=(const Stack& s);

3. Using meta programming, write a templated class prime, which
evaluates whether a literal integer constant (e.g. 7) is prime or not at
compile time.

4. How can you be sure that your implementation of class prime has
been evaluated at compile time?
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