Programming in C and C++
Lectures 10-12: C++ for Java and C programmers
Alan Mycroft!

Computer Laboratory, University of Cambridge

Michaelmas Term 2019-2020

"Notes based, with thanks, on slides due to Alastair Beresford and Andrew Moore
1/67

What we'll cover

» Differences between C and C++

» References versus pointers

» Overloading functions and operators

» Objects in C++; Classes and structs; Destructors; Virtual functions
> Multiple inheritance; Virtual base classes; Casting

» Exceptions

> Templates and meta-programming

» For exam purposes, focus on ‘big-picture’ novelties and differences
between features of C++ and those in C and Java.

» For coding, sorry but compilers insist you get it exactly right.

Should | program my application in C or C+-+7?
Or both or neither?

» One aim of these lectures is to help you decide.
» C and C++ both have very good run-time performance
» C++ has more facilities, but note Bjarne Stroustrup’s quote:
"“C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do it blows your whole leg off.”
» Even if C++ is a superset of C then mixing code is risky, e.g.
> you don't want two conflicting |O libraries being active,
> you often program using different metaphors in C and C++
» C functions may not expect an exception to bypass their tidy-up code
» Using C-coded stand-alone libraries in C++ is fine.
» C++ vs. Java? Speed vs. safety? More vs. fewer features? Java is
trying to follow C++ (and C#) by having value types
(objects/structs as values not just references).

Decide C or C4+ at the start of a project.

C++ fundamental types

v

C++ has all the fundamental types C has
> character literals (e.g. ’a’) are now of type char

v

In addition, C++ defines a new fundamental type, bool

v

A bool has two values: true and false

v

When cast to an integer, true—1 and false—0

» When casting from an integer, non-zero values become true and
false otherwise

Aims of C+-+

To quote Bjarne Stroustrup:

“"C++ is a general-purpose programming language with a bias towards
systems programming that:

> is a better C
> supports data abstraction
> supports object-oriented programming

> supports generic programming.”

Alternatively: C++ is “an (almost upwards-compatible) extension of C
with support for: classes and objects (including multiple inheritance),
call-by-reference, operator overloading, exceptions and templates

(a richer form of generics)".

Much is familiar from Java, but with many subtle differences.

How to follow these two lectures

> These slides try capture the core enhancements of C4++, so that
afterwards you will be able to read C4++ code, and tentatively modify
it.

> But C++ is a very complex language, so these slides are incomplete,
even if they uncomfortably large.

» For exam purposes the fine details don’t matter, it's more important
to get the big picture, which I'll try to emphasise in lectures.

The creator of C++, Bjarne Stroustrup, has various entertaining and
educational articles on his web page: www.stroustrup.com

C++ Types [big picture]

C++ types are like C types, but:

> new type bool (values true and false)

> new type constructor class (generalising struct in C)

» reference types: new type constructor &, so can have
int x, *y, &z;

> enum types are distinct (not just synonyms for integers)

> names for enum, class, struct and union can be used directly as
types (C needs an additional typedef)

» character literals (e.g. >a’) are now of type char

» member functions (methods) can specify this to be const.

Many of the above changes are ‘just what you expect from programming
in Java'.

6/67

C++ enumeration

» Unlike C, C++ enumerations define a new type; for example
enum flag is_keyword=1, is_static=2, is_extern=4,
» When defining storage for an instance of an enumeration, you use its
name; for example: flag f = is_keyword
> Implicit type conversion is not allowed:
f = 5; //wrong f = flag(5); //right
» The maximum valid value of an enumeration is the enumeration's
largest value rounded up to the nearest larger binary power minus one
» The minimum valid value of an enumeration with no negative values
is zero

» The minimum valid value of an enumeration with negative values is
the nearest least negative binary power

References

C++ supports references, which provide an alternative name (alias) for a
variable

Generally used for specifying parameters to functions and return
values as well as overloaded operators (more later)

A reference is declared with the & operator; compare:
int i[] = {1,3}; int &refi = i[0]; int *ptri = &i[0];
A reference must be initialised when it is declared

The connection between a reference and what it refers to cannot be
changed after initialisation; for example:
refi++; // increments value referenced to 2

ptri++; // increments the pointer to &i[1]

Think of reference types as pointer types with implicit * at every use.

9/67

Overloaded functions

» Just like Java we can define two functions with the same name, but

>

varying in argument types (for good style functions doing different
things should have different names).

Type conversion is used to find the “best” match

A best match may not always be possible:

1 void f(double);

> void f(long);

3 void test() {

« f(L); // £(long)

5 £(1.0); // f(double)

6 f(1); // Wrong: f(long(1)) or f(double(1)) ?

Can also overload built-in operators, such as assignment and equality.

Applies both to top-level functions and member functions (methods).

11/67

Default function arguments

v

v

v

v

A function can have default arguments; for example:
double log(double v, double base=10.0);

A non-default argument cannot come after a default; for example:
double log(double base=10.0, double v); //wrong

A declaration does not need to name the variable; for example:
double log(double v, double=10.0);

Be careful of the lexical interaction between * and =; for example:
void f(char*=0); //Wrong ’*=’ is assignment

13 /67

Example

1 namespace Modulel {int x;}

2

3 namespace Module2 {

4 inline int sqr(const int& i) {return ixi;}

5 inline int halve(const int& i) {return i/2;}
6 F

7

8 using namespace Modulel; //"import" everything
9

10
11
12
13
14

int main() {

}

using Module2::halve;
x = halve(x);
sqr(x);

//"import" the halve function

//Wrong

15 /67

References in function arguments

» When used as a function parameter, a referenced value is not copied,;
for example:
void inc(int& i) { i++;}

» Declare a reference as const when no modification takes place

> It can be noticeably more efficient to pass a large struct by reference

» Implicit type conversion into a temporary takes place for a const
reference but results in an error otherwise; for example:

1 float funl(float&);

2 float fun2(const float&);

3 void test() {

4 double v=3.141592654;

s funi(v); // Wrong

6 fun2(v); // OK, but beware the temporary’s lifetime
7

}

» Cf. Fortran call-by-reference

10/67

Scoping and overloading

» Overloading does not apply to functions declared in different scopes;
for example:

1 void f(int);

2

3 void example() {

4 void f(double);

s f(1); //calls f(double);
6 F

12 /67

Namespaces

Related data can be grouped together in a namespace. Can use :
using to access components. Think Java packages.

: and

namespace Stack { //header file void £() { //usage

void push(char); ce
Stack: :push(’c’);

char popQ);

} ...
}

namespace Stack { //implementation

const int max_size = 100;

char s[max_size];

int top = 0;

void push(char c¢) { ... }

char pop() { ... }

}

14 /67

Using namespaces

» A namespace is a scope and expresses logical program structure

> |t provides a way of collecting together related pieces of code

» A namespace without a name limits the scope of variables, functions

and classes within it to the local execution unit

» The same namespace can be declared in several source files
> The global function main() cannot be inside a namespace
> The use of a variable or function name from a different namespace

must be qualified with the appropriate namespace(s)
> The keyword using allows this qualification to be stated once, thereby
shortening names
» Can also be used to generate a hybrid namespace
> typedef can be used: typedef Some::Thing thing;

> A namespace can be defined more than once

> Allows, for example, internal and external library definitions

16 /67

Linking C and C++ code Linking C and C++ code

> The directive extern "C" specifies that the following declaration or
definition should be linked as C, not C++, code:

extern "C" int £0; » Care must be taken with pointers to functions and linkage:

» Multiple declarations and definitions can be grouped in curly brackets:

1 extern "C" {

> int globalvar; //definition
3 int £Q);

4 void g(int);

5

}

extern "C" void gsort(void* p, \
size_t nmemb, size_t size, \
int (*compar) (const void*, const voidx));

Why do we need this?

char s[] = "some chars";

1
2
3
4
5 int compare(const void*,const voidx);
6
7
s gsort(s,9,1,compare); //Wrong

» ‘Name munging’ for overloaded functions. A C compiler typically
generates linker symbol ‘_f' for £ above, but a C++ compiler
typically generates '__z1fv'.

» Function calling sequences may also differ (e.g. for exceptions).

17 /67 18 /67

Big Picture Classes and objects in C++

C++ classes are somewhat like Java:

v

Classes contain both data members and member functions (methods)
which act on the data; they can extend ':' other classes.

v

, . . Member n tatic (i.e. per-cl
So far we've only done minor things. embers can be static (i.e. per-class)

> Members have access control: private, protected and public
» We've seen C++ extensions to C. But, apart from reference types, > Classes are created with class or struct keywords
nothing really new has appeared that's beyond Java concepts. > struct members default to public access; class to private
» Now for classes and objects, which look the same, but aren't ... > A member function with the same name as a class is called a
constructor

» Can use overloading on constructors and member functions.
But also:

» A member function with the same name as the class, prefixed with a
tilde (~), is called a destructor

19/67 20/67

Classes and objects: big differences from Java Example (emphasising differences from Java)
class Complex {

double re, im; // private by default

public:

Complex(double r=0.0, double i=0.0);

1
2
» Values of class types are not references to objects, but the objects 3
2
5 };
6
7
8
9

themselves. So we access members with C-style *." (but using '->" is
more convenient when we have pointers to objects).
» \We can create an object of class C, either by:

> on the stack (or globally) by declaring a variable: C x;
> on the heap: new C() (returns a pointer to C)

Complex: :Complex(double r,double i) : re(r), im(i) {
// preferred form, necessary for const fields

}

» Member functions (methods) by default are statically resolved. For 10

Java-like code declare them virtual u Complex: : Complex(double r,double i) {
12 re=r, im=i; // deprecated initialisation-by-assignment

> Member functions can be declared inside a class but defined outside it |, §
using ‘::’ 14
» C++ uses new to allocate and delete to de-allocate. There is no 15 int main() {

16 Complex c(2.0), d(), e(1,5.0);
17 return O;
18 } // local objects c,d,e are deallocated on scope exit

garbage collector — users must de-allocate heap objects themselves.

21/67 22/67

Constructors and destructors Copy constructor

> A default constructor is a function with no arguments (or only default

v

A new class instance can defined by initialisation; for example;

arguments)) s
) - . . Complex c(1,2); // note this C++ initialiser syntax
» |If no constructor is specified, the compiler will generate one Complex d = c;
> The programmer can specify one or more constructors > In this case, the new class is initialised with copies of all the existing
» Only one constructor is called when an object is created class's non-static member variables; no constructor is called
» There can only be one destructor » If this behaviour is undesirable (e.g. consider a class with a pointer as
> This is called when a stack-allocated object goes out of scope or when a member variable) define an your own copy constructor:
a heap-allocated object is deallocated with delete; this also occurs for » Complex::Complex(const Complex&) { ... }
T:::rl;—allocated objects deallocated during exception handling (more » If a copy constructor is not wanted, make the copy constructor a
» Stack-allocated objects with destructors are a useful way to release private member function, or in C++11 use delete.
resources on scope exit (similar effect as Java try-finally) — “RAII: » Note that assignment, e.g. d = c; differs differs from initialisation
Resource Allocation is Initialisation” . and does not use the copy constructor — see next slide.

» Make destructors virtual if class has subtypes or supertypes.

Assignment operator

» By default a class is copied on assignment by over-writing all
non-static member variables; for example:

Constant member functions

1 Complex c(), d(1.0,2.3); » Member functions can be declared const
2. ¢ =d; //assignment » Prevents object members being modified by the function:
» This behaviour may also not be desirable (e.g. you might want to tidy 1 double Complex::real() const {
up the object being over-written). 2 return re;
. . - }
» The assignment operator (operator=) can be defined explicitly: ’
1 Complex& Complex::operator=(const Complex& c) { > In effect it gives type const Complex *this instead of Complex *this
2 . to the (implicit) parameter ‘this’.
3} > Helpful to both programmer (maintenance) and compiler (efficiency).
> Note the result type of assignment, and the reference-type parameter
(passing the argument by value would cause a copy constructor to be
used before doing the assignment, and also be slower).
25 /67 26 /67
Arrays and the free store Exercises
> An array of class objects can be defined if a class has a default 1. Write an implementation of a class LinkList which stores zero or
constructor more positive integers internally as a linked list on the heap. The
> C++ has a new operator to place items on the heap: class should provide appropriate constructors and destructors and a
Complex* ¢ = new Complex(3.4); method pop() to remove items from the head of the list. The method
> Items on the heap exist until they are explicitly deleted: POPO ShOUId_ return -1 if the_re are no remaining items. Your.
delete c: implementation should override the copy constructor and assignment
. L e . . operator to copy the linked-list structure between class instances. You
» Since C++ (like C) doesn't distinguish between a pointer to a single P . Py
. . . . might like to test your implementation with the following:
object and a pointer to an the first element of an array of objects,) i
array deletion needs different syntax: 1 int main(©) {
2 int test[] = {1,2,3,4,5};
1 Complex* ¢ = new Complex[5]; s LinkList 11(test+1,4), 12(test,5);
2 s 4 LinkList 13=12, 14;
3 delete[] c; //Cannot use "delete" here s 14=11;
L . . intf("%d %d %d\n",11. ,13. ,14. ;
» When an object is deleted, the object destructor is invoked j S:im(o{ id Jhd\n popO) pop() pop())
» When an array is deleted, the object destructor is invoked on each s }
| t . . .
elemen Hint: heap allocation & deallocation should occur exactly once!
27 /67 28 /67
Operators Streams
> Overloaded operators also work with built-in types
» C++ allows the programmer to overload the built-in operators > Overloading is used to define << (C++'s “printf"); for example:
» For example, a new test for equality: 1 #include <iostream>
2
1 bool operator==(Complex a, Comp1e§ b) { . 3 int mainQ) {
2> return a.real()==b.real() && a.imag()==b.imag(); 4+ const char* s = "char array";
3 // presume real() is an accessor for field ’re’, etc. 5
s} 6 std::cout << s << std::endl;
- . . 7
» An o_pera.tor can be defined or declargd W|th|n the body of a class, s //Unexpected output; prints s[0]
and in this case one fewer argument is required; for example: o std::cout.operator<<(s) .operator<<(std::endl);
1 bool Complex::operator==(Complex b) { 10
> return re==b.real() && im==b.imag(); u //Expected output; prints s
3} 12 std: :operator<<(std::cout,s);
13 std::cout.operator<<(std::endl);
» Almost all operators can be overloaded 14 return 0;
15}
o > Note std::cin, std::cout, std::cerr .
29 /67 30/67

The ‘this’ pointer Class instances as member variables

. . . . > A class can have an instance of another class as a member variable
> |If an operator is defined in the body of a class, it may need to return

a reference to the current object » How can we pass arguments to the class constructor?

> The keyword this can be used > New C++ syntax for constructors:

> For example:

1 class X {
1 Complex& Complex::operator+=(Complex b) { 2 Complex c;
> re += b.real(); 3 Complex d;
5 this->im += b.imag(); 4 X(double a, double b): c(a,b), d(b) {
4 return *this; 5 cee
5} s}
7}

> In C (or assembler) terms this is an implicit argument to a method

when seen as a function. This notation must be used to initialise const and reference members

> |t can also be more efficient

32/67

Temporary objects

» Temporary objects are often created during execution

» A temporary which is not bound to a reference or named object exists
only during evaluation of a full expression (BUGS BUGS BUGS!)

» Example: the C++ string class has a function c_str() which
returns a pointer to a C representation of a string:

1 string a("A "), b("string");
2 const char *s1 = a.c_str(); //0kay
3 const char *s2 = (a+b).c_str(); //Wrong
4
5 //s2 still in scope here, but the temporary holding
6 //"a+b" has been deallocated

7

8 string tmp = atb;

9 const char *s3 = tmp.c_str(); //Okay

33/67
Inheritance
» C++ allows a class to inherit features of another:
1 class vehicle {
2 int wheels;
3 public:
4+ vehicle(int w=4):wheels(w) {}
5 s
6
7 class bicycle : public vehicle {
8 bool panniers;
9 public:
10 bicycle(bool p):vehicle(2),panniers(p) {}
u };
12
13 int main() {
14 bicycle(false);
15 }
35/67
Example
1 #include <iostream>
2 #include "examplel3.hh"
3
4 void print_speed(vehicle &v, bicycle &b) {
5 std::cout << v.maxSpeed() << " ";
6 std::cout << b.maxSpeed() << std::endl;
7}
8
9 int main() {
10 bicycle b = bicycle(true);
1 print_speed(b,b); //prints "60 12"
12}
37/67

Virtual functions

> In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

bicycle b(true);
vehicle v;
vehiclex pv;

pv = &v;

std::cout << pv->maxSpeed() << std::endl;

}

1
2
3
4
5 user_input() ? pv = &b :
6
7
8

39/67

Friends

» If, within a class C, the declaration friend class D; appears, then D
is allowed to access the private and protected members of C.

» A (non-member) function can be declared friend to allow it to access
the private and protected members of the enclosing class, e.g.

class Matrix {
friend Vector operator*(const Matrix&, const Vector&);

};
¥

This code allows operator* to access the private fields of Matrix,
even though it is defined elsewhere.

1
2
3
4
5
6

» Note that friendship isn't symmetric.

34 /67
Derived member function call
l.e. when we call a function overridden in a subclass.
> Default derived member function call semantics differ from Java:
1 class vehicle {
2 int wheels;
3 public:
4 vehicle(int w=4):wheels(w) {}
5 int maxSpeed() {return 60;}
6
7
8 class bicycle : public vehicle {
9 int panniers;
10 public:
11 bicycle(bool p=true):vehicle(2),panniers(p) {}
12 int maxSpeed() {return panniers ? 12 : 15;}
13 };
36 /67

Virtual functions

» Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

» Since a pointer to a derived class can be cast to a pointer to a base
class, calls at base class do not see the overridden function.

» To get polymorphic behaviour, declare the function virtual in the
superclass:
1 class vehicle {
2 int wheels;
3 public:

4 vehicle(int w=4):wheels(w) {}

5 virtual int maxSpeed() {return 60;}

6

¥

38/67

Enabling virtual functions

» To enable virtual functions, the compiler generates a virtual function
table or vtable

» A vtable contains a pointer to the correct function for each object
instance

» The vtable is an example of indirection

» The vtable introduces run-time overhead (this is compulsory in Java;
contemplate whether C++'s additional choice is good for efficiency or
bad for being an additional source of bugs)

40 /67

Abstract classes

Just like Java except for syntax.
Sometimes a base class is an un-implementable concept
In this case we can create an abstract class:

1 class shape {

2 public:
3 virtual void draw() = 0;
a}

It is not possible to instantiate an abstract class:
shape s; //Wrong

A derived class can provide an implementation for some (or all) the
abstract functions

A derived class with no abstract functions can be instantiated

C++ has no equivalent to Java ‘implements interface’.

41 /67

Multiple inheritance

It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {
2

3}
Members from both base classes exist in the derived class
If there is a name clash, explicit naming is required

This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle: :maxSpeed();

43 /67

Virtual base classes

» Alternatively, we can have a single instance of the base class

> Such a "virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};

> class Boat : public virtual Vehicle { ... };

3 class Car : public virtual Vehicle { ... };

4 class JamesBondCar : public Boat, public Car { ... };

> Multiple inheritance is often regarded as problematic, and one of the

reasons for Java creating interface.

45 /67

Exercises

. If a function £ has a static instance of a class as a local variable,
when might the class constructor be called?

. Write a class Matrix which allows a programmer to define 2 x 2
matrices. Overload the common operators (e.g. +, -, *, and /)

. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
inter-operate correctly (e.g. v2 = mxv1 should work as expected)

. Why should destructors in an abstract class almost always be declared
virtual?

47 /67

Example

1 class shape {

2 public:

3 virtual void draw() = 0;
4}

5

6 class circle : public shape {
7 public:

s //...

9 void draw() { /* impl */ }
10 };

Multiple instances of a base class

» With multiple inheritance, we can build:

1 class A {};

> class B : public A {};

3 class C : public A {};

4 class D : public B, public C {};

> This means we have two instances of A even though we only have a
single instance of D

> This is legal C++, but means all references to A must be stated

explicitly:
1D d;
2 d.B::var=3;

3 d.C::var=4;

44 /67

Casts in C++

These need quite a bit of care, hence syntactic variants offering additional
checks:

> classical C-style casts (type)expr, these do mainly the same as C.
Take care casting between pointers when multiple inheritance or
virtual bases are used; the compiler must be able to see the
inheritance tree otherwise it might not compile the right operation
(casting to a superclass might involve an addition or indirection, not
just the no-op in Java).

» New C++ constructor syntax: int(’a’) or C(expr).

» New C++ more descriptive forms: dynamic_cast<T>(e),
static_cast<T>(e), reinterpret_cast<T>(e) and
const_cast<T>(e). The former is closest to Java object-reference
casts, and generates code to do run-time tests of compatibility. Too
much detail for this course.

» New C++ form: typeid(e) gives the type of e encoded as an object

of type_info which is defined in standard header <typeinfo>.
46 / 67

Exceptions

Just like Java, but you normally throw an object value rather than an
object reference:

» Some code (e.g. a library module) may detect an error but not know
what to do about it; other code (e.g. a user module) may know how
to handle it

» C++ provides exceptions to allow an error to be communicated

> In C++ terminology, one portion of code throws an exception;
another portion catches it.

» If an exception is thrown, the call stack is unwound until a function is
found which catches the exception

» If an exception is not caught, the program terminates
But there is no try-finally (use local variables having destructors).

48 /67

Throwing exceptions Conveying information

> Exceptions in C++ are just normal values, matched by type » The “thrown” type can carry information:
» A class is often used to define a particular error type: 1 struct MyError {
class MyError {}; > int errorcode;
> An instance of this can then be thrown, caught and possibly 3) MyError (i) :errorcode(i) {}
re-thrown: Z ’
1 void £() { ... throw MyError(); ... } 6 void £() { ... throw MyError(5); ... }
2 . 7
3 try { s try {
4 £0O3 o £QO;
5 } 10 F
6 catch (MyError) { 11 catch (MyError x) {
7 //handle error 12 //handle error (x.errorcode has the value 5)
8 throw; //re-throw error 13 C
9 } 14}
49 /67 50/67

#include <iostream>

1
Handling multiple errors 2
3 struct SomeError {virtual void print() = 0;};
4 struct ThisError : public SomeError {
» Multiple catch blocks can be used to catch different errors: s virtual void print() {
6 std::cout << "This Error" << std::endl;
1 try { ;)
> L. s };
s } 9 struct ThatError : public SomeError {
4 catch (MyError x) { 10 virtual void print() {
s //handle MyError 1 std::cout << "That Error" << std::endl;
6} 2}
7 catch (YourError x) { 13}
s //handle YourError 1 int mainQ) {
o 15 try { throw ThisError(); }
. . X 16 catch (SomeError& e) { //reference, not value
» Every exception will be caught with catch(...) 17 e.printQ;
» Class hierarchies can be used to express exceptions: B}
19 return O;
20 }
51/67 52 /67
Exceptions and local variables [important] Templates

» Templates support meta-programming, where code can be evaluated

» When an exception is thrown, the stack is unwound at compile time rather than run time

» The destructors of any local variables are called as this process > Templates support generic programming by allowing types to be
continues parameters in a program

» Therefore it is good C++ design practice to wrap any locks, open file > Generic programming means we can write one set of algorithms and
handles, heap memory etc., inside stack-allocated object(s), with one set of data structures to work with objects of any type
constructors doing allocation and destructors doing deallocation. This » We can achieve some of this flexibility in C, by casting everything to
design pattern is analogous to Java's try-finally, and is often referred void * (e.g. sort routine presented earlier)
to as "RAIl: Resource Allocation is Initialisation”. » The C++ Standard Library makes extensive use of templates

» C++ templates are similar to, but richer than, Java generics.

53 /67 54 /67

Templates — big-picture view (TL;DR) An example: a stack [revision]

> Templates are like Java generics, but can have both type and value
parameters:
template <class T, int max>class Buffer { T[max] v; int n;};

» The stack data structure is a useful data abstraction concept for
objects of many different types

» You can also specify ‘template specialisations’, special cases for > In one program, we might like to store a stack of ints

certain types (think compile-time pattern matching). > In another, a stack of NetworkHeader objects
> This gives lots of power (Turing-powerful) at compile time: > Templates allow us to write a single generic stack implementation for
‘meta-programming’. an unspecified type T
> Top-level functions can also be templated, with ML-style inference > What functionality would we like a stack to have?
allowing template parameters to be omitted, given > bool isEmpty();
> void push(T item)
1 template<class T> void sort(T al[l, const unsigned& len); .
; > T popQ);
> int al] = {2,1,3}; >

then sort(a,3) = sort<int>(a,3) > Many of these operations depend on the type T

» The rest of the slides explore the details.

o

2
@
3

Creating a stack template

> A class template is defined as:

1 template<class T> class Stack {
2

3}

> Where class T can be any C++ type (e.g. int)

» When we wish to create an instance of a Stack (say to store ints)
then we must specify the type of T in the declaration and definition of
the object: Stack<int> intstack;

> We can then use the object as normal: intstack.push(3);

» So, how do we implement Stack?

> Write T whenever you would normally use a concrete type
Java programmers: note Java forbids List<int> (generics cannot use
primitive types).

57 /67
1 #include "examplel6.hh"
2
3 template<class T> void Stack<T>::append(T val) {
4 Item *xpp = &head;
5 while(*pp) {pp = &((*pp)->next);}
6 *pp = new Item(val);
7}
8
9 //Complete these as an exercise
10 template<class T> void Stack<T>::push(T) {/* */}
1 template<class T> T Stack<T>::pop() {/* ... %/}
12 template<class T> Stack<T>::"Stack() {/* ... */}
13
14 int main() {
15 Stack<char> s;
16 s.push(’a’), s.append(’b’), s.popQ);
17 }
59 /67
Default parameters
> Template parameters may be given default values
1 template <class T,int i=128> struct Buffer{
2 T bufl[i];
3}
4
5 int main() {
6 Buffer<int> B; //i=128
7 Buffer<int, 256> C;
8 F
61/67

Templated functions

> A top-level function definition can also be specified as a template; for
example (think ML):

1 template<class T> void sort(T all,
2 const unsigned int& len);

> The type of the template is inferred from the argument types:
int al[l = {2,1,3}; sort(a,3); = T is an int
» The type can also be expressed explicitly:
sort<int>(a,3)
» There is no such type inference for templated classes
» Using templates in this way enables:
> better type checking than using void *

> potentially faster code (no function pointers in vtables)
> larger binaries if sort () is used with data of many different types

63 /67

1 template<class T> class Stack {
2
struct Item { //class with all public members

w

4 T val;
Item* next;
: val(v), next(0) {}

6 Item(T v)
7 }s

9 Item* head;

11 Stack(const Stack& s) {} //private
12 Stack& operator=(const Stack& s) {} //

14 public:

15 Stack() : head(0) {}

16 “Stack(); // should generally be virtual
17 T popQ);

18 void push(T val);
19 void append(T val);

58 /67

Template richer details

v

A template parameter can take an integer value instead of a type:
template<int i> class Buf { int b[i]; ... };

> A template can take several parameters:
template<class T,int i> class Buf { T b[i]; ... };

» A template can even use one template parameter in the definition of a
subsequent parameter:
template<class T, T val> class A { ... };

> A templated class is not type checked until the template is

instantiated:
template<class T> class B {const static T a=3;}

» B<int> b; is fine, but what about B<B<int> > bi;?

» Template definitions often need to go in a header file, since the
compiler needs the source to instantiate an object

60 /67

Specialisation

> The class T template parameter will accept any type T
» We can define a specialisation for a particular type as well (effectively
type comparison by pattern-matching at compile time)

1 #include <iostream>
2 class A {};

3

4 template<class T> struct B {

5 void print() { std::cout << "General" << std::endl;}
6 F;
7 template<> struct B<A> {
s void print() { std::cout << "Special" << std::endl;}
9 };

1 int main() {

12 B<A> bil;

13 B<int> b2;

14 bl.print(); //Special
15 b2.print(); //General

1 #include <iostream>
2
3 template<class T> void sort(T a[], const unsigned int& len) {

4 T tmp;

5 for(unsigned int i=0;i<len-1;i++)

6 for(unsigned int j=0;j<len-1-i;j++)

7 if (aljl > alj+1]) //type T must support "operator>"
8 tmp = aljl, aljl = alj+1], alj+1] = tmp;

0}

10

11 int main() {

12 const unsigned int len = 5;

13 int a[len] = {1,4,3,2,5};

14 float f[len] = {3.14,2.72,2.54,1.62,1.41};

15

16 sort(a,len), sort(f,len);

17 for(unsigned int i=0; i<len; i++)

18 std::cout << ali] << "\t" << f[i] << std::endl;
19 }

64 /67

Overloading templated functions Meta-programming example
1 #include <iostream>

2
3 template<unsigned int N> struct fact {
» Templated functions can be overloaded with templated and 4 static const int value = N * fact<N-1>::value;
non-templated functions 5 char v[valuel; // just to prove the value is computed
- . u T " i i !
» Resolving an overloaded function call uses the “most specialised o) // at compile time!
[

function call

©

template<> struct fact<0> {

> If this is ambiguous, then an error is given, and the programmer must static const int value = 1;

©

fix by: 0}
> being explicit with template parameters (e.g. sort<int>(...)) 1
> re-writing definitions of overloaded functions 12 struct fact<7> foo; // a struct containing
13 // char v[5040] and a const.
14 int main() {
o 3 15 std::cout << sizeof(foo) << ", " << foo.value << std::endl;
Template specialisation enables meta-programming;: ©}

Templates are a Turing-complete compile-time programming language!

65 /67 66 /67

Exercises

1. Provide an implementation for:
template<class T> T Stack<T>::pop(); and
template<class T> Stack<T>::~Stack();

2. Provide an implementation for:

Stack(const Stack& s); and
Stack& operator=(const Stack& s);

3. Using meta programming, write a templated class prime, which
evaluates whether a literal integer constant (e.g. 7) is prime or not at
compile time.

4. How can you be sure that your implementation of class prime has
been evaluated at compile time?

67 /67

