
Notes for Programming in C Lab Session #8

October 22, 2018

1 Introduction

The purpose of this lab session is to write matrix manipulation code to see how different memory access
patterns can affect performance.

2 Overview

A matrix is a rectangular array of numbers, and also one of the fundamental concepts of mathematics.
Matrices can represent linear transformations between vector spaces, extensive-form games in game theory,
graph connectivity in graph theory, the systems of differential equations arising in control theory, just to list
a few applications. As a result, high-performance implementations of matrices and operations on them are
of great importance to a wide variety of scientific and engineering domains.

In this lab, we will work use the following datatype for matrices:

typedef struct matrix matrix_t;
struct matrix {

int rows;
int cols;
double *elts;

};

Here, a matrix is represented by a structure containing a number of rows, a number of columns, and an
array of doubles elts containing the elements of the array. As programmers, we immediately face a choice
in how to represent arrays. An array is a two-dimensional object like:

A ≡


1 2 3
4 5 6
7 8 9
10 11 12


However, a C array is one-dimensional. So we have to decide how to place the 12 elements of the 4 × 3

matrix A in memory. In C, it is typical to represent arrays in row-major order. This means that the elts array
will have the following shape:

elts 7→ 1 2 3 4 5 6 7 8 9 10 11 12

So the elts array stores the rows of A one after another in memory.1

As a result, if we have a matrix B of size n×m, and we want to find B(i, j) – the j-th column of the i-th
row will be the (n× i) + j-th element of the array.

1The choice of row-major order is purely conventional; historically Fortran has made the opposite choice!

1

One of the most important matrix operations is matrix multiplication. Given an n ×m matrix A, and an
m× o matrix B, we define the following n× o matrix A×B as the product:

(A×B)(i, j) =
∑

k∈{0...n}

A(i, k)×B(k, j)

In the calculation of A(i, j), we will touch the following entries:

A(0,0) A(0,m−1)
...

...
A(i,0) A(i,m−1)
...

...
A(n−1,0) A(n−1,m−1)

 ×


B(0,0) . . . B(0,j) . . . B(0,o−1)
...

...
...

...
B(m−1,0) . . . B(m−1,j) . . . B(m−1,o−1)


Note that we are accessing the elements of A(i,k) in a row-wise order, but accessing the elements of B(k,j)

in a column-wise order. As a result, we risk a cache miss on each access to B!
However, if B were transposed – i.e., if rows and columns were interchanged – then we would be ac-

cessing the elements of B in a row-wise order as well. In equational form, we can make the following
observation (writing BT for the transpose of B):

(A×BT)(i, j) =
∑

k∈{0...n}

A(i, k)×BT (k, j)

=
∑

k∈{0...n}

A(i, k)×B(j, k)

By making use of the observation that BT (k, j) = B(j, k), we can replace a column-wise traversal with a
row-wise traversal.

So in this exercise, you will implement naive multiplication, transpose, and transposed multiplication,
and compare the performance of naive multiplication to building a transpose and then doing a transposed
multiplication.

3 Instructions

1. Download the lab8.tar.gz file from the class website.

2. Extract the file using the command tar xvzf lab8.tar.gz.

3. This will extract the lab8/ directory. Change into this directory using the cd lab8/ command.

4. In this directory, there will be files lab8.c, matrix.h, and matrix.c.

5. There will also be a file Makefile, which is a build script which can be invoked by running the
command make (without any arguments). It will automatically invoke the compiler and build the
lab8 executable.

6. There is a test routine to check if you have implemented matrix multiplication probably works, to-
gether with expected correct output in the lab8.c file.

7. Once it works, run the timing functions on your two matrix multiplication routines to see which one
is faster.

2

4 The Types and Functions to Implement

• matrix_t matrix_create(int rows, int cols);

Given integer arguments rows and cols, return a new matrix of size rows × cols. Initializing the
elements of the array is optional, but may help you debug.

• void matrix_free(matrix_t m);

Deallocate the storage associated with the matrix m.

• void matrix_print(matrix_t m);

You don’t have to implement this – it comes for free to help you test your code.

• double matrix_get(matrix_t m, int r, int c);

Return the value in the r-th row and c-th column of m.

• void matrix_set(matrix_t m, int r, int c, double d);

Modify the value in the r-th row and c-th column of m to d.

• matrix_t matrix_multiply(matrix_t m1, matrix_t m2);

Given an n×m matrix m1 and an m× k matrix m2, return the n× k matrix that is the matrix product
of m1 and m2.

You should be able to implement this with a simple triply-nested for-loop.

• matrix_t matrix_transpose(matrix_t m);

Given an n × m matrix m as an argument, return the m × n transposed matrix. (That is, if A is the
argument and B is the return value, then A(i, j) = B(j, i).)

• matrix_t matrix_multiply_transposed(matrix_t m1, matrix_t m2);

Given an n ×m matrix m1 and an k ×m matrix m2, return the n × k matrix that corresponds to m1
times the transpose of m2.

• matrix_t matrix_multiply_fast(matrix_t m1, matrix_t m2);

This function should also implement matrix multiplication, but do it by constructing the transpose of
m2, and then passing that to matrix_multiply_fast. Don’t forget to free the transposed matrix
when you are done!

3

