
Programming in C and C++

Lecture 8: The Memory Hierarchy and Cache Optimization

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1 / 22



Three Simple C Functions

void increment_every(int *array)

for (int i = 0; i < BIG_NUMBER; i += 1) {

array[i] = 0;

}

void increment_8th(int *array) {

for (int i = 0; i < BIG_NUMBER; i += 8)

array[i] = 0;

}

void increment_16th(int *array) {

for (int i = 0; i < BIG_NUMBER; i += 16)

array[i] = 0;

}

• Which runs faster?

• . . . and by how much?
2 / 22



The Memory Hierarchy

CPU and Registers

Level 1 Instruction Cache Level 1 Data Cache

Unified Level 2 Cache

Unified Level 3 Cache

Main Memory (RAM)

3 / 22



Latencies in the Memory Hierarchy

Access Type Cycles Time Human Scale

L1 cache reference ≈4 1.3 ns 1s

L2 cache reference ≈10 4 ns 3s

L3 cache reference, unshared ≈40 13 ns 10s

L3 cache reference, shared ≈65 20 ns 16s

Main memory reference ≈300 100 ns 80s

• Random accesses to main memory are slow

• This can dominate performance!

4 / 22



How Caches Work

When a CPU looks up an address. . . :

1. It looks up the address in the cache

2. If present, this is a cache hit (cheap!)

3. If absent, this is a cache miss

3.1 The address is then looked up in main memory (expensive!)

3.2 The address/value pair is then stored in the cache

3.3 . . . along with the next 64 bytes (typically) of memory

3.4 This is a cache line or cache block

5 / 22



Locality: Taking advantage of caching

Caching is most favorable:

• Each piece of data the program works on is near (in RAM)

the address of the last piece of data the program worked on.

• This is the principle of locality

• Performance engineering involves redesigning data structures

to take advantage of locality.

6 / 22



Pointers Are Expensive

Consider the following Java linked list implementation

class List<T> {

public T head;

public List<T> tail;

public List(T head, List<T> tail) {

this.head = head;

this.tail = tail;

}

}

7 / 22



Pointers Are Expensive in C, too

typedef struct List* list_t;

struct List {

void *head;

list_t tail;

};

list_t list_cons(void *head, list_t tail) {

list_t result = malloc(sizeof(struct list));

r->head = head;

r->tail = tail;

return r;

}

• C uses void * for genericity, but this introduces pointer

indirections.

• This can get expensive!

8 / 22



Specializing the Representation

Suppose we use a list at a Data * type:

struct data {

int i;

double d;

char c;

};

typedef struct data Data;

struct List {

Data *head;

struct List *tail;

};

9 / 22



Technique #1: Intrusive Lists

We can try changing the list representation to:

typedef struct intrusive_list ilist_t;

struct intrusive_list {

Data head;

ilist_t tail;

};

ilist_t ilist_cons(Data head, ilist_t tail) {

list_t result = malloc(sizeof(struct intrusive_list));

r->head = head;

r->tail = tail;

return r;

}

• The indirection in the head is removed

• But we had to use a specialized representation

• Can no longer use generic linked list routines 10 / 22



Technique #2: Lists of Structs to Arrays of Structs

Linked lists are expensive:

1. Following a tail pointer can lead to cache miss

2. Cons cells requiring storing a tail pointer. . .

3. This reduces the number of data elements that fit in a cache

line

4. This decreases data density, and increases cache miss rate

5. Replace ilist_t with Data[]!

11 / 22



Technique #2: Lists of Structs to Arrays of Structs

We can try changing the list representation to:

Data *iota_array(int n) {

Data *a = malloc(n * sizeof(Data));

for (int i = 0; i < n; i++) {

a[i].i = i;

a[i].d = 1.0;

a[i].c = 'x';

}

return a;

}

• No longer store tail pointers

• Every element comes after previous element in memory

• Can no longer incrementally build lists

• Have to know size up-front 12 / 22



Technique #3: Arrays of Structs to Struct of Arrays

struct data {

int i;

double d;

char c;

};

typedef struct data Data;

void traverse(int n, Data *a) {

for (int i = 0; i < n; i++)

a[i].c += 'y';

}

• Note that we are only

modifying character field c.

• We have “hop over” the

integer and double fields.

• So characters are at least 12,

and probably 16 bytes apart.

• This means only 4

characters in each cache

line. . .

• Optimally, 64 characters fit

in each cache line. . .

13 / 22



Technique #3: Arrays of Structs to Struct of Arrays

typedef struct datavec *DataVec;

struct datavec {

int *is;

double *ds;

char *cs;

};

• Instead of storing an array of

structures. . .

• We store a struct of arrays

• Now traversing just the cs is

easy

14 / 22



Technique #3: Traversing Struct of Arrays

void traverse_datavec(int n, DataVec d) {

char *a = d->cs;

for (int i = 0; i < n; i++) {

a[i] += 'y';

}

}

• To update the characters. . .

• Just iterate over the character. . .

• Higher cache efficiency!

15 / 22



Technique #4: Loop Blocking

1 #define SIZE 8192

2 #define dim(i, j) (((i) * SIZE) + (j))

3

4 double *add_transpose(double *A,

5 double *B) {

6 double *dest =

7 malloc(sizeof(double)

8 * SIZE * SIZE);

9 for (int i = 0; i < SIZE; i++) {

10 for (int j = 0; j < SIZE; j++) {

11 dest[dim(i,j)] =

12 A[dim(i,j)] + B[dim(j,i)];

13 }

14 }

15 return dest;

16 }

• The add_transpose

function takes two square

matrices A and B, and

returns a new matrix equal

to A + BT .

• C stores arrays in row-major

order.

16 / 22



How Matrices are Laid out in Memory

A ,


0 1 4

9 16 25

36 49 64

81 100 121


Address 0 1 2 3 4 5 6 7 8 9 10 11

Value 0 1 4 9 16 25 36 49 64 81 100 121

• A is a 3 × 4 array.

• A(i , j) is at address 3 × i + j (0 based!)

• E.g., A(2, 1) = 49, at address 7

• E.g., A(3, 1) = 100, at address 10

17 / 22



Loop Blocking

1 # define SIZE 8192

2 # define dim(i, j) (((i) * SIZE) + (j))

3

4 double *add_transpose(double *A,

5 double *B) {

6 double *dest =

7 malloc(sizeof(double)

8 * SIZE * SIZE);

9 for (int i = 0; i < SIZE; i++) {

10 for (int j = 0; j < SIZE; j++) {

11 dest[dim(i,j)] =

12 A[dim(i,j)] + B[dim(j,i)];

13 }

14 }

15 return dest;

16 }

• The succesive accesses to

A(i , j) will go sequentially in

memory

• The successive accesses to

B(j , i) will jump SIZE

elements at a time

18 / 22



How to Block a Loop, Concept

Traversing A Traversing B

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

• We can see that A has a favorable traversal, and B is “jumpy”

• Let’s change the traversal order!

19 / 22



How to Block a Loop, Concept

Traversing A Traversing B

a b c d

e f g h

i j k l

m n o p

a b c d

e f g h

i j k l

m n o p

• Since each nested iteration is acting on the same n × n

submatrix, a cache miss on one lookup will bring memory into

cache for the other lookup

• This reduces the total number of cache misses

20 / 22



Loop Blocking

double *add_transpose_blocked(double *m1,

double *m2,

int bsize) {

double *dest =

malloc(sizeof(double) * SIZE * SIZE);

for (int i = 0; i < SIZE; i += bsize) {

for (int j = 0; j < SIZE; j += bsize) {

for (int ii = i; ii < i+bsize; ii++) {

for (int jj = j; jj < j+bsize; jj++) {

dest[dim(ii,jj)] =

m1[dim(ii,jj)] + m2[dim(jj, ii)];

}

}

}

}

return dest;

}

• Doubly-nested loop goes to

quadruply-nested loop

• Increment i and j by bsize at

a time

• Do a little iteration over the

submatrix with ii and jj

21 / 22



Conclusion

• Memory is hierarchical, with each level slower than

predecessors

• Caching make locality assumption

• Making this assumption true requires careful design

• Substantial code alterations can be needed

• But can lead to major performance gains

22 / 22


