Programming in C and C++4

Lecture 7: Reference Counting and Garbage Collection

David J Greaves and Alan Mycroft
(Materials by Neel Krishnaswami)

1/30



The C API for Dynamic Memory Allocation

e In the previous lecture, we saw how to use arenas and ad-hoc
graph traversals to manage memory when pointer graphs

contain aliasing or cycles
e These are not the only idioms for memory management in C!

e Two more common patterns are reference counting and

type-specific garbage collectors.

2/30



A Tree Data Type

1 struct node {

2 int value;

3 struct node *left;

4 struct node *right;

5 };

6 typedef struct node Tree;

e This is still the tree type from Lab 4.
e It has a value, a left subtree, and a right subtree

e An empty tree is a NULL pointer.

3/30



Construct Nodes of a Tree

1 Tree #*node(int value, Tree *left, Tree *right) {
2 Tree *t = malloc(sizeof (tree));
3 t->value = value;
4 t->right = right;
5 t->left = left;
6 return t;
7 }
1. Allocate a pointer to a tree struct
2. Initialize the value field
3. Initialize the right field
4. Initialize the left field
5. Return the initialized pointer!

4/30



A Directed Acyclic Graph (DAG)

1 Tree *n = node(2, NULL, NULL);
2 Tree *n2 =
3 node(l, n, n); // n repeated!

1. We allocate n on line 1
2. On line 2, we create n2 whose left and right fields are n.

3. Hence n2->1left and n2->right are said to alias — they are
two pointers aimed at the same block of memory.

5/30



The shape of the graph

e nodel has two pointers to
node?2

e This is a directed acyclic

graph, not a tree.

e A recursive free of the tree
n2 will try to free n twice.

6/30



The ldea of Reference Counting

. The problem: freeing things

with two pointers to them
twice

. Solution: stop doing that

. Keep track of the number of

pointers to an object

. Only free when the count

reaches zero

7/30



How Reference Counting Works

1. We start with k references
to n2

8/30



How Reference Counting Works

1. We start with k references
to n2

2. Eventually k becomes 0

8/30



How Reference Counting Works

1. We start with k references
to n2

2. Eventually k becomes 0

3. It's time to delete n2

8/30



How Reference Counting Works

. We start with k references

to n2

. Eventually k becomes 0
. It's time to delete n2

. Decrement the reference

count of each thing n2
points to

8/30



How Reference Counting Works

1. We start with k references
to n2

2. Eventually k becomes 0
3. It's time to delete n2

4. Decrement the reference
count of each thing n2
points to

8/30



How Reference Counting Works

(n2: 0)

1. We start with k references
: L to n2
left “right
. : 2. Eventually k becomes 0
3. It's time to delete n2

4. Decrement the reference
count of each thing n2
points to

5. Then delete n2

8/30



How Reference Counting Works

» f‘n2 : 0

1. We start with k references
: L to n2
left “right
. : 2. Eventually k becomes 0
3. It's time to delete n2

4. Decrement the reference
count of each thing n2
points to

5. Then delete n2

8/30



How Reference Counting Works

» f‘n2: 0.
1. We start with k references
: L to n2
left “right
. : 2. Eventually k becomes 0
3. It's time to delete n2

4. Decrement the reference
count of each thing n2

Ieft_"b right points to
5. Then delete n2

g b 6. Recursively delete n
NuULL NuLL

8/30



The Reference Counting API

1 struct node {

2 unsigned int rc; ¢ e We add a field rc to keep
3 int value; track of the references.
4 struct node *left;

e We keep the same node

5 struct node *right; ]

s s constructor interface.

7 typedef struct node Node; e We add a procedure

8 inc_ref to increment the
O G2 dEE REEO) By S LIHES reference count of a node.
10 Node *node(int value,

. Node *left / We add a procedure

12 Node *right);
13 void inc_ref (Node *node);

dec_ref to decrement the
reference count of a node.

14 void dec_ref (Node *node);

9/30



Reference Counting Implementation: node ()

1 Node *node(int value,

2 Node *left,

5 Node *right) { e On line 4, we initialize the
4 Node *r = malloc(sizeof(Node)); rc field to 1. (Annoyingly,
. r->rc = 1; this is a rather delicate

6 r->value = value; point!)

7 e On line 8-9, we set the left
8 r->left = left; field, and increment the

9 inc_ref (left); reference count of the

10 pointed-to node.

11 r->right = right; e On line 11-12, we do the
12 inc_ref (right); same to right

13 return r;

14

10/30



Reference Counting Implementation: inc ref ()

1 void inc_ref (Node #*node) {
2 if (node != NULL) {

3 node->rc += 1;

4 }

5 +

e On line 3, we increment the rc field (if nonnull)

e That's it!

11/30



Reference Counting Implementation: dec ref ()

1 void dec_ref (Node *node) { e When we decrement a

, if (node !'= NULL) { reference count, we check to

see if we are the last

3 if (node->rc > 1) {

\ node->re —= 1; reference (line 3)

. } else { e If not, we just decrement

. dec_ref (node->left) ; the reference count (line 4)
7 dec_ref (node->right); e |f so, then decrement the

8 free(node); reference counts of the

9 } children (lines 6-7)

e + e Then free the current

no ) object. (line 8)

12/30



Example 1

e complete(n) builds a
complete binary tree of

1 Node *complete(int n) { depth n
2 if (n==0) { e Sharing makes memory
3 return empty; usage O(n)
4 } else { . .
. Tede il = camaleselni) e On line 5, makes a recursive
a Node *result = call to build subtree.
7 node(n, sub, sub); e On line 6, builds the tree
8 dec_ref (sub); .
e On line 8, call
9 return result;
o } dec_ref (sub) to drop the
n o} stack reference sub

e On line 9, don't call
dec_ref (result)
13/30



Example 1 — mistake 1

e |f we forget to call

dec_ref (sub), we get a
1 Node *complete(int n) {

|
2 if (n == 0) { memory leak!

3 return empty; e sub begins with a refcount
4 } else { of 1

° Node *sub = complete(n-1); e node(sub, sub) bumps it
6 Node *result =

7 node(n, sub, sub); to 3

8 // dec_ref(sub); o If we call

9 return result; dec_ref (complete(n)),
o} the outer node will get freed
11}

e But the children will end up
with an rc field of 1

14/30



Example 1 — mistake 2

e This still leaks memory!

e complete(n-1) begins with
1 Node *complete(int n) {

2 if m==0) {

a refcount of 1

e The expression on lines 5-7

3 return empty;

A } else { bumps each subtree to a
5 return node(n, refcount of 2

6 complete(n-1), 5 [F e cll

’ SSLs free(complete(n)), the
z } ’ outer node will get freed

e But the children will end up
with an rc field of 1

15/30



Design Issues with Reference Counting APls

e The key problem: who is responsible for managing reference
counts?

e Two main options: sharing references vs transferring
references
e Both choices work, but must be made consistently

e To make this work, APl must be documented very carefully

e Good example: Python C API
e https://docs.python.org/3/c-api/intro.html#
objects-types—-and-reference-counts

16 /30


https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts
https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts

igations: Careful Use of Getters and Setters

1 Node *get_left(Node *node) { e The get_left() function
? inc_ref (node->left); returns the left subtree, but
3 return(node->left); .

) also increments the
4
- reference count
6 void set_left(Node *node, e The set_left() function
7 Node *newval) { updates the left subtree,
g inc_ref (newval); incrementing the reference

_> .

? dec_ref (node=>left); count to the new value and
10 node->left = newval; .

) decrementing the reference
11

17/30



Cycles: A Fundamental Limitation on Reference Counting

1 Node *foo() {

2 Node #*nl1 = node(1, NULL, NULL);
3 Node #*n2 = node(2, NULL, NULL);
4 set_left(nodel, node2);

5 set_left(node2, nodel);

6 dec_ref (n2);

7 return nodel;

8 }

What does a call to foo () build?

18/30



A Cyclic Object Graph

e nl->rc is 2, since n2 points
to it

e n2->rc is 1, since n1 points
to it

e This is a cyclic graph

e Even though there is only 1
external reference to ni,

left
nl->rcis 2.

e Hence dec_ref (foo()) will

not free memory!

e Reference counting cannot
collect cycles

19/30



Garbage Collection: Dealing with Cycles

e In ML or Java, we don't have to worry about cycles or

managing reference counts explicitly

e We rely on a garbage collector to manage memory

automatically

e In C, we can implement garbage collection to manage memory

20/ 30



GC API - Data structures

1 struct node {

2 int value;

s struct node *left; e Node * are node objects,

4 struct node *right; .

5 bool mark; but augmented with a mark
€ SLTuCLpnodein ey bit (Lab 5) and a next link
7} .

5 rEen eanen e N connecting all allocated

o nodes

10 struct root { ) v
1 Node *start; e A Root * is a node we don't
12 TEENEE FEOB S want to garbage collect.

Ll
w

I8

typedef struct root Root; Roots are also in a linked list

—- =
SIS

e An allocator Alloc * holds
struct alloc {

Node *nodes; the head of the lists of

Root *roots; nodes and roots
I8
typedef struct alloc Alloc;

N = = = =
S © ®» 9 o

21/30



N o ook W N

GC API - Procedures

Alloc *make_allocator(void);
Node #*node(int value,
Node *left,
Node *right,
Alloc *a);
Root *root(Node *node, Alloc *a);
void gc(Alloc *a);

make_allocator creates a
fresh allocator

node(n, 1, r, a) creates
a fresh node in allocator a

(as in the arena API)

root(n) creates a new root

object rooting the node n

gc(a) frees all nodes
unreachable from the roots

22/30



Creating a Fresh Allocator

1 Alloc *make_allocator(void) {

2 Alloc *a = malloc(sizeof(Alloc));
3 a->roots = NULL;

4 a->nodes = NULL;

5 return a;

6 }

e Creates a fresh allocator with empty set of roots and nodes
e Invariant: no root or node is part of two allocators!

e (Could use global variables, but thread-unfriendly)

23/30



Creating a Node

1 Node *node(int value,

2 Node *left,

3 Node *right,

4 Alloc #*a) { e Lines 5-9 perform familiar
5 Node *r = malloc(sizeof (Node)); operations: allocate memory
p r->value = value; (line 5) and initialize data
7 r->left = left; fields (6-8)

8 r->right = right; e Line 10 initializes mark to
9 /7 false

o r—>mark = false; e Lines 11-12 add new node
11 r->next = a->nodes; to a—>nodes

12 a->nodes = r;

13 return r;

14

24 /30



Creating a Root

. Root *root(Node *node, e On line 4, allocate a new

) Alloc #*a) { Root struct g

3 Root *g = e On line 5, set the start

4 malloc(sizeof (Root)); field to the node argument

5 g->start = node; e On lines 6-7, attach g to the
6 g->next = a->roots; roots of the allocator a

! a->roots = g; e Now the allocator knows to
¢ ) return g; treat the root as always

9

reachable

25 /30



Implementing a Mark-and-Sweep GC

e |dea: split GC into two phases, mark and sweep

e In mark phase:
e From each root, mark the nodes reachable from that root
e |.e., set the mark field to true
e So every reachable node will have a true mark bit, and every
unreachable one will be set to false

e In sweep phase:
e [terate over every allocated node
e |f the node is unmarked, free it
e |f the node is marked, reset the mark bit to false

26 /30



1 void mark_node(Node *node) {

2 if (node != NULL && !mode->mark) {
e mark_node() function

3 node->mark = true;

, irt sk Cuete—sAler) - marks a node if unmarked,
. mark_node (node->right) ; and then recursively marks
. } subnodes

;) e Just like in lab 6!

8 e mark() procedure iterates
9 void mark(Alloc *a) { over the roots, marking the
10 Root *g = a->roots; nodes reachable from it.

1 while (g != NULL) { e If a node is not reachable
12 mark_node (g->start) ; from the a->roots pointer,
1) g = g->next; it will stay false

14 }

15} 27/30



10

11

12

13

14

void sweep(Alloc *a) {

Node *n = a->nodes;
Node *live = NULL;
while (n != NULL) {
Node *tl = n->next;
if (!'(n->mark)) {
free(n);
} else {
n->mark = false;

n->next live;
live = n;

}

n = tl;

}

a->nodes = live;

On line 2, get a pointer to all
allocated nodes via a->nodes

On line 3, create a new empty
list of 1ive nodes

On lines 4-14, iterate over each
allocated node

On line 6, check to see if the
node is unmarked

If unmarked, free it (line 8)

If marked, reset the mark bit
and add it to the live list
(9-11)

On line 15, update a->nodes

to the still-live 1ive nodes
28 /30



The gc() routine

void gc(Alloc *a) {
mark(a) ;

sweep(a) ;

gc(a) just marks and sweeps!

To use the gc, we allocate nodes as normal

Periodically, invoke gc(a) to clear out unused nodes

That's it!

29 /30



Design Considerations

e This kind of custom GC is quite slow relative to ML/Java gcs

e However, simple and easy to implement (only 50 lines of
code!)

e No worries about cycles or managing reference counts
e Worth considering using the Boehm gc if gc in C/C++ is
needed:
e https://www.hboehm.info/gc/
e Drop-in replacement for malloc!
e Still useful when dealing with interop between gc'd and
manually-managed languages (eg, DOM nodes in web
browsers)

30/30


https://www.hboehm.info/gc/

