
Programming in C and C++

Lecture 5: Tooling

David J Greaves and Alan Mycroft

(Materials by Neel Krishnaswami)

1

Undefined and Unspecified Behaviour

• We have seen that C is an unsafe language

• Programming errors can arbitrarily corrupt runtime data

structures. . .

• . . . leading to undefined behaviour

• Enormous number of possible sources of undefined behavior

(See https://blog.regehr.org/archives/1520)

• What can we do about it?

2

https://blog.regehr.org/archives/1520

Tooling and Instrumentation

Add instrumentation to detect unsafe behaviour!

We will look at 4 tools:

• ASan (Address Sanitizer)

• MSan (Memory Sanitizer)

• UBSan (Undefined Behaviour Sanitizer)

• Valgrind

3

ASan: Address Sanitizer

• One of the leading causes of errors in C is memory corruption:

• Out-of-bounds array accesses

• Use pointer after call to free()

• Use stack variable after it is out of scope

• Double-frees or other invalid frees

• Memory leaks

• AddressSanitizer instruments code to detect these errors

• Need to recompile

• Adds runtime overhead

• Use it while developing

• Built into gcc and clang!

4

ASan Example #1

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 #define N 10

5

6 int main(void) {

7 char s[N] = "123456789";

8 for (int i = 0; i <= N; i++)

9 printf ("%c", s[i]);

10 printf("\n");

11 return 0;

12 }

• Loop bound goes past the

end of the array

• Undefined behaviour!

• Compile with

-fsanitize=address

5

ASan Example #2

1 #include <stdlib.h>

2

3 int main(void) {

4 int *a =

5 malloc(sizeof(int) * 100);

6 free(a);

7 return a[5]; // DOOM!

8 }

1. array is allocated

2. array is freed

3. array is dereferenced! (aka

use-after-free)

6

ASan Example #3

1 #include <stdlib.h>

2

3 int main(void) {

4 char *s =

5 malloc(sizeof(char) * 10);

6 free(s);

7 free(s);

8 printf("%s", s);

9 return 0;

10 }

1. array is allocated

2. array is freed

3. array is double-freed

7

ASan Limitations

• Must recompile code

• Adds considerable runtime overhead

• Typical slowdown 2x

• Does not catch all memory errors

• NEVER catches uninitialized memory accesses

• Still: a must-use tool during development

8

MSan: Memory Sanitizer

• Both local variable declarations and dynamic memory

allocation via malloc() do not initialize memory:

1 #include <stdio.h>

2

3 int main(void) {

4 int x[10];

5 printf("%d\n", x[0]); // uninitialized

6 return 0;

7 }

• Accesses to uninitialized variables are undefined

• This does NOT mean that you get some unspecified value

• It means that the compiler is free to do anything it likes

• ASan does not catch uninitialized memory accesses

9

MSan: Memory Sanitizer

1 #include <stdio.h>

2

3 int main(void) {

4 int x[10];

5 printf("%d\n", x[0]); // uninitialized

6 return 0;

7 }

• Memory sanitizer (MSan) does check for uninitialized memory

accesses

• Compile with -fsanitize=memory

10

MSan Example #1: Stack Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char** argv) {

5 int a[10];

6 a[2] = 0;

7 if (a[argc])

8 printf("print something\n");

9 return 0;

10 }

1. Stack allocate array

on line 5

2. Partially initialize it

on line 6

3. Access it on line 7

4. This might or might

not be initialized

11

MSan Example #2: Heap Allocation

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main(int argc, char** argv) {

5 int *a = malloc(sizeof(int) * 10);

6 a[2] = 0;

7 if (a[argc])

8 printf("print something\n");

9 free(a);

10 return 0;

11 }

1. Heap allocate array

on line 5

2. Partially initialize it

on line 6

3. Access it on line 7

4. This might or might

not be initialized

12

MSan Limitations

• MSan just checks for memory initialization errors

• It is very expensive

• 2-3x slowdowns, on top of anything else

• Currently only available on clang, and not gcc

13

UBSan: Undefined Behaviour Sanitizer

• There is lots of non-memory-related undefined behaviour in C:

• Signed integer overflow

• Dereferencing null pointers

• Pointer arithmetic overflow

• Dynamic arrays whose size is non-positive

• Undefined Behaviour Sanitizer (UBSan) instruments code to

detect these errors

• Need to recompile

• Adds runtime overhead

• Typical overhead of 20%

• Use it while developing, maybe even in production

• Built into gcc and clang!

14

UBSan Example #1

1 #include <limits.h>

2

3 int main(void) {

4 int n = INT_MAX;

5 int m = n + 1;

6 return 0;

7 }

1. Signed integer overflow is

undefined

2. So value of m is undefined

3. Compile with

-fsanitize=undefined

15

UBSan Example #2

1 #include <limits.h>

2

3 int main(void) {

4 int n = 65

5 int m = n / (n - n);

6 return 0;

7 }

1. Division-by-zero is undefined

2. So value of m is undefined

3. Any possible behaviour is

legal!

16

UBSan Example #3

1 #include <stdlib.h>

2

3 struct foo {

4 int a, b;

5 };

6

7 int main(void) {

8 struct foo *x = NULL;

9 int m = x->a;

10 return 0;

11 }

1. Accessing a null pointer is

undefined

2. So accessing fields of x is

undefined

3. Any possible behaviour is

legal!

17

UBSan Limitations

• Must recompile code

• Adds modest runtime overhead

• Does not catch all undefined behaviour

• Still: a must-use tool during development

• Seriously consider using it in production

18

Valgrind

• UBSan, MSan, and ASan require recompiling

• UBSan and ASan don’t catch accesses to uninitialized memory

• Enter Valgrind!

• Instruments binaries to detect numerous errors

19

Valgrind Example

1 #include <stdio.h>

2

3 int main(void) {

4 char s[10];

5 for (int i = 0; i < 10; i++)

6 printf("%c", s[i]);

7 printf("\n");

8 return 0;

9 }

1. Accessing elements of s is

undefined

2. Program prints uninitialized

memory

3. Any possible behaviour is

legal!

4. Invoke valgrind with

binary name

20

Valgrind Limitations

• Adds very substantial runtime overhead

• Not built into GCC/clang (plus or minus?)

• As usual, does not catch all undefined behaviour

• Still: a must-use tool during testing

21

Summary

Tool Slowdown Source/Binary Tool

ASan Big Source GCC/Clang

MSan Big Source Clang

UBSan Small Source GCC/Clang

Valgrind Very big Binary Standalone

22

