Lecture 13: Dimensionality Reduction

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Outline

Introduction

Warm-up: Freivalds' Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Mathematical Tools

- Matrices and Geometry

- Data points (predictions, observations, classifications) encoded in matrices/vectors
- This allows geometric representation that is the basis of many network analysis methods (e.g., clustering)
- Networks and graphs \Leftrightarrow adjacency matrices

Inner product, Hyperplanes, Eigenvectors

- Probability Theory
- Randomisation guards against worst-case inputs
- Sampling allows approximate answers/estimates without looking at entire input
- Random Projection is a powerful preprocessing tool to compress data using redundancy
- Randomised Algorithms often exploit concentration

Random Variables, Chernoff Bounds, hashing

Source: Laurent Jacques

Motivation

Random Projection:

- Powerful technique for performing dimensionality reduction
- Theoretical guarantee given by Johnson-Lindenstrauss Lemma
- Key Idea: Compress data set (set of vectors) through multiplication with a random matrix

We will first look at a simpler algorithm that instead involves multiplying matrices by a random vector!

Outline

Introduction

Warm-up: Freivalds' Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Matrix Multiplication

Remember: If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are square $n \times n$ real-valued matrices, then the matrix product $C=A \cdot B$ is defined by

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j} \quad \forall i, j=1,2, \ldots, n
$$

- Naive Algorithm: $O\left(n^{3}\right)$ time
- Strassen's Algorithm (1969): $O\left(n^{2.81}\right)$ time
- State-of-the-art: Williams, Virginia Vassilevska (2013): O($\left.n^{2.3729}\right)$ time

Remarkable: It is possible to verify matrix multiplication in $O\left(n^{2}\right)$!
R. M. Freivalds (1942-2016), Latvian computer scientists and mathematician

Freivalds' Algorithm

Freivalds' Algorithm

Input: Three $n \times n$ matrices A, B and C

1. Sample a random $\{0,1\}$-vector $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$
2. Compute a new vector $p=(A B-C) r=A(B r)-C r$
3. If $p \neq \overrightarrow{0}$, then REJECT.
4. Otherwise, ACCEPT.

Important to keep running time within $O\left(n^{2}\right)$!

Example of a one-sided error!

Correctness Analysis

- If $A B=C$, then Freivalds' Algorithm returns ACCEPT.
- If $A B \neq C$, then Freivalds' Algorithm returns REJECT w.p. 1/2.

Running the algorithm k times reduces the error probability to $(1 / 2)^{k}$!

Proof of Correctness

- Consider the (only non-trivial) case when $A B \neq C$. We need to prove that:

$$
\mathbf{P}[p=\overrightarrow{0}] \leq 1 / 2
$$

- Define a new matrix $D=A \cdot B-C$
- At least one element D is nonzero; call this $d_{i k}$
- Then, element p_{i} is obtained by

$$
p_{i}=\sum_{j=1}^{n} d_{i j} r_{j}=d_{i k} r_{k}+\sum_{j \neq k} d_{i j} r_{j}
$$

- Let $\sum_{j \neq k} d_{j j} r_{j}=: \alpha$ for some random variable $\alpha \in \mathbb{R}$.
- Using Bayes' rule gives:

$$
\begin{aligned}
\mathbf{P}\left[p_{i}=0\right] & =\mathbf{P}\left[p_{i}=0 \mid \alpha=0\right] \cdot \mathbf{P}[\alpha=0]+\mathbf{P}\left[p_{i}=0 \mid \alpha \neq 0\right] \cdot \mathbf{P}[\alpha \neq 0] \\
& \leq \mathbf{P}\left[r_{k}=0 \mid \alpha=0\right] \cdot \mathbf{P}[\alpha=0]+\mathbf{P}\left[r_{k}=1 \mid \alpha \neq 0\right] \cdot \mathbf{P}[\alpha \neq 0] \\
& \leq \frac{1}{2} \cdot \mathbf{P}[\alpha=0]+\frac{1}{2} \cdot \mathbf{P}[\alpha \neq 0]=\frac{1}{2} .
\end{aligned}
$$

This proof method is also known as Principle of Deferred Decisions!

Comments on Freivalds' Algorithm

- Why do we choose each entry of r from $\{0,1\}$ uniformly at random?
" This allows algorithm to work in \mathbb{F}_{2} (the "smallest" field)
- Over \mathbb{R}, choosing each entry from $\{0,1, \ldots, x-1\}$ increases probability for REJECT if $A B \neq C$ to $1-1 / x$ (Exercise!)
- How can we reduce the probability of error (more efficiently)?
- Run Freivalds' k times and REJECT if at least one of run returns REJECT
\Rightarrow The probability for REJECT if $A B \neq C$ is increased to $1-(1 / 2)^{k}$.
- Can we find an efficient deterministic algorithm to verify Matrix Multiplication?
- This is a fundamental open problem. (Even if it was possible, it is likely that the algorithm would be much more complicated!)
- Note: For any deterministic vector r, it is easy to find matrices A, B and C so that $(A B-C) \cdot r=0$ but $A B \neq C$!

Proof: Let $D=A B-C$.
If $r=\overrightarrow{0}$, then we can choose D differently from the all zero-matrix.
Otherwise, let $r_{k} \neq 0$, and then for any $1 \leq i \leq n$:

$$
\sum_{j=1}^{n} d_{i j} r_{j}=0 \quad \Leftrightarrow \quad d_{i k} r_{k}=\sum_{j \neq k} d_{i j} r_{j} \quad \Leftrightarrow \quad d_{i k}=\frac{\sum_{j \neq k} d_{i j} r_{j}}{r_{k}} .
$$

Now choose all $d_{i j} \neq 0, j \neq k$ arbitrarily and then pick $d_{i k}$ to solve above equation.

Other Applications of the same Idea

- Comparing Database Copies
- Goal: want to compare two n-bit numbers a, b without sending all bits
- Represent database copy as a binary number, and test $(a-b) \neq 0(\bmod p)$ for a random prime p
" Correctness based on the fact that there are "not too many" primes p that divide $a-b$
- Polynomial Identity Testing
- Instead of expanding two given polynomials, check equality on a set of randomly chosen inputs
- Correctness relies on Schwartz-Zippel-Lemma
- Can be used for testing whether a perfect matching exists in a bipartite graph

Outline

Introduction

Warm-up: Freivalds' Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Dimensionality Reduction: Basic Setup

Unlike other methods like PCA, there are no assumptions on the original data.

- Given P points $x_{1}, x_{2}, \ldots, x_{P} \in \mathbb{R}^{N}$
- Want to find P points $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{P}^{\prime} \in \mathbb{R}^{M}, M \ll N$

Goal: Distances are approximately preserved, i.e.,

$$
(1-\epsilon) \cdot\left\|x_{i}-x_{j}\right\| \leq\left\|x_{i}^{\prime}-x_{j}^{\prime}\right\| \leq(1+\epsilon) \cdot\left\|x_{i}-x_{j}\right\| \quad \text { for all } i, j
$$

Note: M does not depend on N !

Theorem

Let $x_{1}, x_{2}, \ldots x_{p} \in \mathbb{R}^{N}$ be arbitrary. Pick any $\epsilon=(0,1)$. Then for some $M=O\left(\log (P) / \epsilon^{2}\right)$, there is a polynomial-time algorithm that, with probability at least $1-\frac{2}{p}$, computes $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{P}^{\prime} \in \mathbb{R}^{M}$ such that

$$
\begin{aligned}
& (1-\epsilon) \cdot\left\|x_{i}-x_{j}\right\| \leq\left\|x_{i}^{\prime}-x_{j}^{\prime}\right\| \leq(1+\epsilon) \cdot\left\|x_{i}-x_{j}\right\| \quad \text { for all } i, j \\
& (1-\epsilon) \cdot\left\|x_{i}\right\| \leq\left\|x_{i}^{\prime}\right\| \leq(1+\epsilon) \cdot\left\|x_{i}\right\| \quad \text { for all } i .
\end{aligned}
$$

1
How to construct $x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{p}^{\prime}$?

Key Tool: Random Projection Method

$$
\begin{aligned}
& \text { Definition of } f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M} \quad(M \ll N)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\\
\end{array}
\end{aligned}
$$

Proof of Theorem (using JL-Lemma)

Johnson-Lindenstrauss Lemma

Let $w \in \mathbb{R}^{N}$ with $\|w\|=1$. Then for some $M=O\left(\log (P) / \epsilon^{2}\right)$, we have

$$
\mathbf{P}\left[1-\epsilon \leq \frac{\|f(w)\|}{\sqrt{M}} \leq 1+\epsilon\right] \geq 1-\frac{2}{P^{3}}
$$

- Define $L(v):=\frac{f(v)}{\sqrt{M}}$
- JL-Lemma with $w=\frac{v}{\|v\|} \Rightarrow \frac{\|f(w)\|}{\sqrt{M}}=\frac{\|L(v /\|v\|) \sqrt{M}\|}{\sqrt{M}}$

$$
\mathbf{P}[(1-\epsilon) \cdot\|v\| \leq\|L(v)\| \leq(1+\epsilon) \cdot\|v\|] \geq 1-\frac{2}{P^{3}} .
$$

- Apply to $v=x_{j}$ and $v=x_{i}-x_{j}, j \neq i$ and the Union bound $(\mathbf{P}[A \cup B] \leq \mathbf{P}[A]+\mathbf{P}[B])$: W.p. $1-\frac{2}{p}$,

$$
\begin{array}{cl}
\quad L\left(x_{i}-x_{j}\right)=L\left(x_{i}\right)-L\left(x_{j}\right) & \\
(1-\epsilon) \cdot\left\|x_{i}-x_{j}\right\| \leq\left\|L\left(x_{i}-x_{j}\right)\right\| \leq(1+\epsilon) \cdot\left\|x_{i}-x_{j}\right\| & \text { for all } i, j \\
(1-\epsilon) \cdot\left\|x_{i}\right\| \leq\left\|L\left(x_{i}\right)\right\| \leq(1+\epsilon) \cdot\left\|x_{i}\right\| & \text { for all } i .
\end{array}
$$

Example: Target Dimension M of Dimensionality Reduction

Recall: $M \leq \frac{6 \ln P}{\epsilon^{2}}$

ϵ	Number of Points P	Target Dimension M
$1 / 2$	1,000	166
$1 / 2$	10,000	221
$1 / 2$	100,000	276
$1 / 2$	$1,000,000$	331
$1 / 2$	$10,000,000$	387
$1 / 10$	1,000	4145
$1 / 10$	10,000	5526
$1 / 10$	100,000	6907
$1 / 10$	$1,000,000$	8298
$1 / 10$	$10,000,000$	9670

Outline

Introduction

Warm-up: Freivalds' Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Reminder: Chernoff Bounds

- Chernoffs bounds are "strong" bounds on the tail probabilities of sums of independent random variables (random variables can be discrete or continuous)
- usually these bounds decrease exponentially as opposed to a polynomial decrease in Markov's or Chebysheff's inequality (see example later)
- have found various applications in:
- Random Projections
- Approximation and Sampling Algorithms
- Learning Theory (e.g., PAC-learning)

Hermann Chernoff (1923-)

- Statistics

Recipe for Deriving Chernoff Bounds

Recipe
The three main steps in deriving Chernoff bounds for sums of independent random variables $X=X_{1}+\cdots+X_{n}$ are:

1. Instead of working with X, we switch to $e^{\lambda X}, \lambda>0$ and apply Markov's inequality $\rightsquigarrow \mathbf{E}\left[e^{\lambda X}\right]$
2. Compute an upper bound for $\mathbf{E}\left[e^{\lambda X}\right]$ (using independence of $\left.X_{1}, \ldots, X_{n}\right)$
3. Optimise value of λ to obtain best tail bound

Outline

Introduction

Warm-up: Freivalds' Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Proof of JL-Lemma (1/4)

Johnson-Lindenstrauss Lemma

Let $w \in \mathbb{R}^{N}$ with $\|w\|=1$. Then for some $M=O\left(\log (P) / \epsilon^{2}\right)$, we have

$$
\mathbf{P}\left[1-\epsilon \leq \frac{\|f(w)\|}{\sqrt{M}} \leq 1+\epsilon\right] \geq 1-\frac{2}{P^{3}} .
$$

Proof (of the upper bound):

- Squaring yields $\mathbf{P}\left[\|f(w)\|^{2}>(1+\epsilon)^{2} \cdot M\right]$.
- Recall that the i-th coordinate of $f(w)$ is $r_{i}^{T} \cdot w$. The distribution is

$$
\mathcal{N}\left(0, \sum_{j=1}^{N} w_{j}^{2}\right)=\mathcal{N}(0,1)
$$

If X_{1}, \ldots, X_{N} are independent random variables with distribution $\mathcal{N}(0,1)$ each, then $\sum_{j=1}^{N} w_{j} X_{j}$ has distribution $\mathcal{N}\left(0, \sum_{j=1}^{N} w_{j}^{2}\right)$

- Hence

$$
\|f(w)\|^{2}=\sum_{i=1}^{M} X_{i}^{2}
$$

where the X_{i} 's are independent $\mathcal{N}(0,1)$ random variables.

Proof of JL-Lemma (2/4)

- Taking expectations:

$$
\begin{aligned}
\mathbf{E}\left[\|f(w)\|^{2}\right] & =\mathbf{E}\left[\sum_{i=1}^{M} x_{i}^{2}\right] \\
& =\sum_{i=1}^{M} \mathbf{E}\left[x_{i}^{2}\right]=M
\end{aligned}
$$

- We will now derive a Chernoff bound for $X:=\sum_{i=1}^{M} X_{i}^{2}$. Let $\lambda \in(0,1 / 2)$,

$$
\mathbf{P}[X>\alpha]=\mathbf{P}\left[e^{\lambda Y}>e^{\lambda \alpha}\right] \leq e^{-\lambda \alpha} \cdot \mathbf{E}\left[e^{\lambda X}\right] .
$$

- Since $X_{1}^{2}, \ldots, X_{M}^{2}$ are independent,

$$
\mathbf{E}\left[e^{\lambda X}\right]=\mathbf{E}\left[e^{\lambda \sum_{i=1}^{M} X_{i}^{2}}\right]=\mathbf{E}\left[\prod_{i=1}^{M} e^{\lambda X_{i}^{2}}\right] \stackrel{!}{=} \prod_{i=1}^{M} \mathbf{E}\left[e^{\left(\lambda X_{i}^{2}\right)}\right]
$$

Proof of JL-Lemma (3/4)

- We need to analyse $\mathbf{E}\left[e^{\lambda X_{i}^{2}}\right]$:

$$
\begin{aligned}
\mathbf{E}\left[e^{\lambda x_{i}^{2}}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(\lambda y^{2}\right) \exp \left(-y^{2} / 2\right) d y \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \exp \left(-y^{2}(1-2 \lambda) / 2\right) d y
\end{aligned}
$$

- Now substitute $z=y \cdot \sqrt{1-2 \lambda}$ to obtain

$$
\begin{aligned}
& =\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{1-2 \lambda}} \cdot \int_{-\infty}^{\infty} e^{-z^{2} / 2} d z \\
& =\frac{1}{\sqrt{1-2 \lambda}}
\end{aligned}
$$

$\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-z^{2} / 2} d z$ is the CDF of $\mathcal{N}(0,1)$

Proof of JL-Lemma (4/4)

- Hence with $\alpha=(1+\epsilon)^{2} M$,

$$
\mathbf{P}\left[X>(1+\epsilon)^{2} M\right] \leq e^{-\lambda(1+\epsilon)^{2} M} \cdot\left(\frac{1}{1-2 \lambda}\right)^{M / 2}
$$

- We choose $\lambda=\left(1-1 /(1+\epsilon)^{2}\right) / 2$, giving

$$
\mathbf{P}\left[X>(1+\epsilon)^{2} M\right] \leq e^{\left(M-M(1+\epsilon)^{2}\right) / 2} \cdot(1+\epsilon)^{-M}
$$

- The last term can be rewritten as

$$
\begin{aligned}
& \exp \left(\frac{M}{2}\left(1-(1+\epsilon)^{2}\right)-\frac{M}{2} \ln \left(\frac{1}{(1+\epsilon)^{2}}\right)\right) \\
& =\exp \left(-M\left(\epsilon+\epsilon^{2} / 2-\ln (1+\epsilon)\right)\right)
\end{aligned}
$$

- Using $\ln (1+x) \leq x$ for $x \geq 0$, implies

$$
\begin{aligned}
\mathbf{P}\left[X>(1+\epsilon)^{2} M\right] & \leq \exp \left(-M\left(\epsilon+\epsilon^{2} / 2-\epsilon\right)\right) \\
& \leq \exp \left(-M \epsilon^{2} / 2\right)
\end{aligned}
$$

- With $M=6 \ln P / \epsilon^{2}$, the last term becomes $\frac{2}{P^{3}}$.
- Lower bound is derived similarly \Rightarrow proof complete

Outline

Introduction

Warm-up: Freivalds' Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

General Comments on the JL-Lemma

- Use Random Projection to a Subspace
- similar to projection on the bottom k eigenvectors, but with different aim here
- exploits redundancy in "Wide-Data" (high-dimensional data)
- also powerful method in approximation algorithms (see SPD algorithm for MAX-CUT!)
- Why do we use a Random Projection?
- If projection f is chosen deterministically, easy to find vectors u, v with
$\|u-v\|$ large but $f(u)=f(v)$.
\Rightarrow Randomisation prevents the input to foil a specific deterministic algorithm

Generic Application of Preprocessing

Further Reading (1/2)

Is the dependence on the dimension optimal?

- This had been an open problem for many years
- Theoretical results eventually established that the dependence is basically optimal (see research articles for more details)
"Database-Friendly" Version of JL
- Random Matrix contains only three values: $\{-1,0,+1\}$

Applications of JL in Streaming

- many streaming algorithms based on JL
- one basic example is to estimate the frequencies
- often use projections based on sparse matrices which have a succinct representation

Applications of JL in Machine Learning

- Streaming Algorithms
- Preprocessing of many Machine Learning Methods like Clustering

Random Projection, Margins, Kernels, and Feature-Selection

Avrim Blum
Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213-3891

Abstract

Random projection is a simple technique that has had a number of applications in algorithm design. In the context of machine learning, it can provide insight into questions such as "why is a learning problem easier if data is separable by a large margin?" and "in what sense is choosing a kernel much like choosing a set of features?" This talk is intended to provide an introduction to random projection and to survey some simple learning algorithms and other applications to learning based on it. I will also discuss how, given a kernel as a black-box function, we can use various forms of random projection to extract an explicit small feature space that captures much of what the kernel is doing. This talk is based in large part on work in [BB05, BBV04] joint with Nina Balcan and Santosh Vempala.

Summary: Using Chernoff Bounds for Dimensionality Reduction

- sums of independent random variables
- Chernoff Bounds: concrete tail inequalities that are exponential in the deviation
- Proof Method: Moment Generating Function \& Markov's Inequality

