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Mathematical Tools

Matrices and Geometry
Data points (predictions, observations,
classifications) encoded in matrices/vectors
This allows geometric representation that is the
basis of many network analysis methods
(e.g., clustering)
Networks and graphs⇔ adjacency matrices

Inner product, Hyperplanes, Eigenvectors

Probability Theory
Randomisation guards against worst-case inputs
Sampling allows approximate answers/estimates
without looking at entire input
Random Projection is a powerful preprocessing tool
to compress data using redundancy
Randomised Algorithms often exploit concentration

Random Variables, Chernoff Bounds, hashing

A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



(1 + δ)µ(1 − δ)µ µ
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Motivation: Dimensionality Reduction

ELEN

Applications of such a problem? Many!
Linear Dimensionality Reduction

6

Source: Laurent Jacques
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Motivation

Random Projection:
Powerful technique for performing dimensionality reduction

Theoretical guarantee given by Johnson-Lindenstrauss Lemma

Key Idea: Compress data set (set of vectors) through multiplication with a
random matrix

We will first look at a simpler algorithm that instead
involves multiplying matrices by a random vector!
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Matrix Multiplication

Remember: If A = (aij) and B = (bij) are square n × n real-valued matrices,
then the matrix product C = A · B is defined by

cij =
n∑

k=1

aik · bkj ∀i, j = 1, 2, . . . , n.

Naive Algorithm: O(n3) time
Strassen’s Algorithm (1969): O(n2.81) time
State-of-the-art: Williams, Virginia Vassilevska (2013): O(n2.3729) time

Remarkable: It is possible to verify
matrix multiplication in O(n2)!

R. M. Freivalds (1942-2016),
Latvian computer scientists
and mathematician

Source: Wikipedia

Lecture 13: Dimensionality Reduction 7



Freivalds’ Algorithm

Input: Three n × n matrices A,B and C

1. Sample a random {0, 1}-vector r = (r1, r2, . . . , rn)

2. Compute a new vector p = (AB − C)r = A(Br)− Cr

3. If p 6= ~0, then REJECT.

4. Otherwise, ACCEPT.

Freivalds’ Algorithm

Important to keep running time within O(n2)!

If AB = C, then Freivalds’ Algorithm returns ACCEPT.

If AB 6= C, then Freivalds’ Algorithm returns REJECT w.p. 1/2.

Correctness Analysis

Example of a one-sided error!

Running the algorithm k times reduces the error probability to (1/2)k !
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Proof of Correctness

Consider the (only non-trivial) case when AB 6= C. We need to prove that:

P
[

p = ~0
]
≤ 1/2.

Define a new matrix D = A · B − C
At least one element D is nonzero; call this dik

Then, element pi is obtained by

pi =
n∑

j=1

dij rj = dik rk +
∑
j 6=k

dij rj

Let
∑

j 6=k dij rj =: α for some random variable α ∈ R.
Using Bayes’ rule gives:

P[ pi = 0 ] = P[ pi = 0 | α = 0 ] · P[α = 0 ] + P[ pi = 0 | α 6= 0 ] · P[α 6= 0 ]

≤ P[ rk = 0 | α = 0 ] · P[α = 0 ] + P[ rk = 1 | α 6= 0 ] · P[α 6= 0 ]

≤ 1
2
· P[α = 0 ] +

1
2
· P[α 6= 0 ] =

1
2
.

This proof method is also known as Principle of Deferred Decisions!
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Comments on Freivalds’ Algorithm

Why do we choose each entry of r from {0, 1} uniformly at random?
This allows algorithm to work in F2 (the “smallest” field)
Over R, choosing each entry from {0, 1, . . . , x − 1} increases probability for
REJECT if AB 6= C to 1− 1/x (Exercise!)

How can we reduce the probability of error (more efficiently)?
Run Freivalds’ k times and REJECT if at least one of run returns REJECT

⇒ The probability for REJECT if AB 6= C is increased to 1− (1/2)k .

Can we find an efficient deterministic algorithm to verify Matrix Multiplication?
This is a fundamental open problem. (Even if it was possible, it is likely that
the algorithm would be much more complicated!)
Note: For any deterministic vector r , it is easy to find matrices A,B and C so
that (AB − C) · r = 0 but AB 6= C!

Proof: Let D = AB − C.
If r = ~0, then we can choose D differently from the all zero-matrix.
Otherwise, let rk 6= 0, and then for any 1 ≤ i ≤ n:

n∑
j=1

dij rj = 0 ⇔ dik rk =
∑
j 6=k

dij rj ⇔ dik =

∑
j 6=k dij rj

rk
.

Now choose all dij 6= 0, j 6= k arbitrarily and then pick dik to solve above
equation.
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Other Applications of the same Idea

Comparing Database Copies
Goal: want to compare two n-bit numbers a, b without sending all bits
Represent database copy as a binary number, and test (a− b) 6= 0 (mod p)
for a random prime p
Correctness based on the fact that there are “not too many” primes p that
divide a− b

Polynomial Identity Testing
Instead of expanding two given polynomials, check equality on a set of
randomly chosen inputs
Correctness relies on Schwartz-Zippel-Lemma
Can be used for testing whether a perfect matching exists in a bipartite graph
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Dimensionality Reduction: Basic Setup

ELEN

Applications of such a problem? Many!
Linear Dimensionality Reduction

6

Given P points x1, x2, . . . , xP ∈ RN

Want to find P points x ′1, x
′
2, . . . , x

′
P ∈ RM , M � N

Unlike other methods like PCA, there
are no assumptions on the original data.

Goal: Distances are approximately preserved, i.e.,

(1− ε) · ‖xi − xj‖ ≤ ‖x ′i − x ′j ‖ ≤ (1 + ε) · ‖xi − xj‖ for all i, j
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Johnson-Lindenstrauss-Lemma

Let x1, x2, . . . , xp ∈ RN be arbitrary. Pick any ε = (0, 1). Then for some
M = O(log(P)/ε2), there is a polynomial-time algorithm that, with proba-
bility at least 1− 2

P , computes x ′1, x
′
2, . . . , x

′
P ∈ RM such that

(1− ε) · ‖xi − xj‖ ≤ ‖x ′i − x ′j ‖ ≤ (1 + ε) · ‖xi − xj‖ for all i, j

(1− ε) · ‖xi‖ ≤ ‖x ′i ‖ ≤ (1 + ε) · ‖xi‖ for all i.

Theorem

Note: M does not depend on N!

How to construct x ′1, x
′
2, . . . , x

′
P?
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Key Tool: Random Projection Method

Definition of f : RN → RM (M � N)

f



w1
w2
...
...

wN

 =


· · · · · · rT

1 · · · · · ·
· · · · · · rT

2 · · · · · ·
...

· · · · · · rT
M · · · · · ·

 ·


w1
w2
...
...

wN

 =


rT
1 w

rT
2 w
...

rT
Mw

 ,where the ri ’s are random

Each entry of ri is indepen-
dently drawn from N (0, 1)

ri ’s are chosen independently

ELEN

Applications of such a problem? Many!
Linear Dimensionality Reduction

6

Let w ∈ RN with ‖w‖ = 1. Then for some
M = O(log(P)/ε2), we have

P
[

1− ε ≤ ‖f (w)‖√
M
≤ 1 + ε

]
≥ 1− 2

P3 .

Johnson-Lindenstrauss Lemma
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Proof of Theorem (using JL-Lemma)

Let w ∈ RN with ‖w‖ = 1. Then for some M = O(log(P)/ε2), we have

P
[

1− ε ≤ ‖f (w)‖√
M
≤ 1 + ε

]
≥ 1− 2

P3 .

Johnson-Lindenstrauss Lemma

Define L(v) := f (v)√
M

JL-Lemma with w = v
‖v‖ ⇒

‖f (w)‖√
M

= ‖L(v/‖v‖)
√

M‖√
M

P[ (1− ε) · ‖v‖ ≤ ‖L(v)‖ ≤ (1 + ε) · ‖v‖ ] ≥ 1− 2
P3 .

Apply to v = xj and v = xi − xj , j 6= i and the Union
bound (P[A ∪ B ] ≤ P[A ] + P[B ]): W.p. 1− 2

P ,

(1− ε) · ‖xi − xj‖ ≤ ‖L(xi − xj)‖ ≤ (1 + ε) · ‖xi − xj‖ for all i, j

(1− ε) · ‖xi‖ ≤ ‖L(xi)‖ ≤ (1 + ε) · ‖xi‖ for all i.

L(xi − xj ) = L(xi )− L(xj )

ELEN

Applications of such a problem? Many!
Linear Dimensionality Reduction

6
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Example: Target Dimension M of Dimensionality Reduction

Recall: M ≤ 6 ln P
ε2

ε Number of Points P Target Dimension M

1/2 1,000 166

1/2 10,000 221

1/2 100,000 276

1/2 1,000,000 331

1/2 10,000,000 387

1/10 1,000 4145

1/10 10,000 5526

1/10 100,000 6907

1/10 1,000,000 8298

1/10 10,000,000 9670
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Reminder: Chernoff Bounds

Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables
(random variables can be discrete or continuous)

usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebysheff’s inequality (see example later)
have found various applications in:

Random Projections
Approximation and Sampling Algorithms
Learning Theory (e.g., PAC-learning)
Statistics
...

Hermann Chernoff (1923-)

(1 + δ)µ(1 − δ)µ µ
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Recipe for Deriving Chernoff Bounds

The three main steps in deriving Chernoff bounds for sums of indepen-
dent random variables X = X1 + · · ·+ Xn are:

1. Instead of working with X , we switch to eλX , λ > 0 and apply
Markov’s inequality E

[
eλX ]

2. Compute an upper bound for E
[

eλX ] (using independence of
X1, . . . ,Xn)

3. Optimise value of λ to obtain best tail bound

Recipe

Lecture 13: Dimensionality Reduction 20



Outline

Introduction

Warm-up: Freivalds’ Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Lecture 13: Dimensionality Reduction 21



Proof of JL-Lemma (1/4)

Let w ∈ RN with ‖w‖ = 1. Then for some M = O(log(P)/ε2), we have

P
[

1− ε ≤ ‖f (w)‖√
M
≤ 1 + ε

]
≥ 1− 2

P3 .

Johnson-Lindenstrauss Lemma

Proof (of the upper bound):
Squaring yields P

[
‖f (w)‖2 > (1 + ε)2 ·M

]
.

Recall that the i-th coordinate of f (w) is rT
i · w . The distribution is

N (0,
N∑

j=1

w2
j ) = N (0, 1).

If X1, . . . , XN are independent random variables with distribution

N (0, 1) each, then
∑N

j=1 wj Xj has distribution N (0,
∑N

j=1 w2
j )

Hence

‖f (w)‖2 =
M∑

i=1

X 2
i ,

where the Xi ’s are independent N (0, 1) random variables.
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Proof of JL-Lemma (2/4)

Taking expectations:

E
[
‖f (w)‖2

]
= E

[
M∑

i=1

X 2
i

]

=
M∑

i=1

E
[

X 2
i

]
= M

We will now derive a Chernoff bound for X :=
∑M

i=1 X 2
i . Let λ ∈ (0, 1/2),

P[X > α ] = P
[

eλY > eλα
]
≤ e−λα · E

[
eλX

]
.

Since X 2
1 , . . . ,X

2
M are independent,

E
[

eλX
]
= E

[
eλ

∑M
i=1 X2

i

]
= E

[
M∏

i=1

eλX2
i

]
!
=

M∏
i=1

E
[

e(λX2
i )
]
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Proof of JL-Lemma (3/4)

We need to analyse E
[

eλX2
i

]
:

E
[

eλX2
i

]
=

1√
2π

∫ ∞
−∞

exp(λy2) exp(−y2/2)dy

=
1√
2π

∫ ∞
−∞

exp
(
−y2(1− 2λ)/2

)
dy

Now substitute z = y ·
√

1− 2λ to obtain

=
1√
2π
· 1√

1− 2λ
·
∫ ∞
−∞

e−z2/2dz

=
1√

1− 2λ

1√
2π

∫ x
−∞ e−z2/2dz is the CDF of N (0, 1)
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Proof of JL-Lemma (4/4)

Hence with α = (1 + ε)2M,

P
[

X > (1 + ε)2M
]
≤ e−λ(1+ε)

2M ·
(

1
1− 2λ

)M/2

We choose λ = (1− 1/(1 + ε)2)/2, giving

P
[

X > (1 + ε)2M
]
≤ e(M−M(1+ε)2)/2 · (1 + ε)−M

The last term can be rewritten as

exp
(

M
2

(
1− (1 + ε)2

)
− M

2
ln
(

1
(1 + ε)2

))
= exp

(
−M

(
ε+ ε2/2− ln(1 + ε)

))
Using ln(1 + x) ≤ x for x ≥ 0, implies

P
[

X > (1 + ε)2M
]
≤ exp

(
−M

(
ε+ ε2/2− ε

))
≤ exp

(
−Mε2/2

)
.

With M = 6 ln P/ε2, the last term becomes 2
P3 .

Lower bound is derived similarly⇒ proof complete

Lecture 13: Dimensionality Reduction 25



Outline

Introduction

Warm-up: Freivalds’ Algorithm for Matrix Verification

Dimensionality Reduction

Recap: Chernoff Bounds and Concentration of Measure

Proof of JL-Lemma via Chernoff Bound

Conclusions

Lecture 13: Dimensionality Reduction 26



General Comments on the JL-Lemma

Use Random Projection to a Subspace
similar to projection on the bottom k eigenvectors, but with different aim here
exploits redundancy in “Wide-Data” (high-dimensional data)
also powerful method in approximation algorithms (see SPD algorithm for
MAX-CUT!)

Why do we use a Random Projection?
If projection f is chosen deterministically, easy to find vectors u, v with
‖u − v‖ large but f (u) = f (v).

⇒ Randomisation prevents the input to foil a specific deterministic algorithm
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Generic Application of Preprocessing

Dense/Big Input Exact OutputExact Output
Algorithm

(slow!)

Sparse/Low-Dim. Input

D
im

ensionality
R

eduction

G
raph

S
parsification

Approx Output
Algorithm

(now fast!)

Approximation Error
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Further Reading (1/2)

This had been an open problem for many years

Theoretical results eventually established that the dependence is
basically optimal (see research articles for more details)

Is the dependence on the dimension optimal?

Random Matrix contains only three values: {−1, 0,+1}
“Database-Friendly” Version of JL

many streaming algorithms based on JL

one basic example is to estimate the frequencies

often use projections based on sparse matrices which have a
succinct representation

Applications of JL in Streaming
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Further Reading (2/2)

Applications of JL in Machine Learning

Streaming Algorithms

Preprocessing of many Machine Learning Methods like Clustering

. . .

Random Projection, Margins, Kernels,

and Feature-Selection

Avrim Blum

Department of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213-3891

Abstract. Random projection is a simple technique that has had a
number of applications in algorithm design. In the context of machine
learning, it can provide insight into questions such as “why is a learning
problem easier if data is separable by a large margin?” and “in what sense
is choosing a kernel much like choosing a set of features?” This talk is
intended to provide an introduction to random projection and to survey
some simple learning algorithms and other applications to learning based
on it. I will also discuss how, given a kernel as a black-box function, we
can use various forms of random projection to extract an explicit small
feature space that captures much of what the kernel is doing. This talk
is based in large part on work in [BB05, BBV04] joint with Nina Balcan
and Santosh Vempala.

1 Introduction

Random projection is a technique that has found substantial use in the area
of algorithm design (especially approximation algorithms), by allowing one to
substantially reduce dimensionality of a problem while still retaining a significant
degree of problem structure. In particular, given n points in Euclidean space
(of any dimension but which we can think of as Rn), we can project these
points down to a random d-dimensional subspace for d ! n, with the following
outcomes:

1. If d = ω( 1
γ2 log n) then Johnson-Lindenstrauss type results (described below)

imply that with high probability, relative distances and angles between all
pairs of points are approximately preserved up to 1 ± γ.

2. If d = 1 (i.e., we project points onto a random line) we can often still get
something useful.

Projections of the first type have had a number of uses including fast approxi-
mate nearest-neighbor algorithms [IM98, EK00] and approximate clustering al-
gorithms [Sch00] among others. Projections of the second type are often used
for “rounding” a semidefinite-programming relaxation, such as for the Max-CUT
problem [GW95], and have been used for various graph-layout problems [Vem98].

The purpose of this survey is to describe some ways that this technique can
be used (either practically, or for providing insight) in the context of machine

C. Saunders et al. (Eds.): SLSFS 2005, LNCS 3940, pp. 52–68, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Lecture 13: Dimensionality Reduction 30



Summary: Using Chernoff Bounds for Dimensionality Reduction

Chernoff Bounds

Chernoffs bounds are “strong” bounds on the tail
probabilities of sums of independent random variables
(random variables can be discrete or continuous)

usually these bounds decrease exponentially as
opposed to a polynomial decrease in Markov’s or
Chebysheff’s inequality (see example later)
have found various applications in:

Random Projections
Approximation and Sampling Algorithms
Learning Theory (e.g., PAC-learning)
Statistics
...

Hermann Chernoff (1923-)

(1 + �)µ(1 � �)µ µ

Lecture 9-10: Randomised Algorithms T.S. 5

ELEN

Applications of such a problem? Many!
Linear Dimensionality Reduction

6

sums of independent random variables

Chernoff Bounds: concrete tail inequalities
that are exponential in the deviation

Proof Method: Moment Generating
Function & Markov’s Inequality

Random Projection Method
multiply by a random matrix
preserves distances up to 1± ε
new dimension O(log P/ε2)
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