Probability and Computation: Problem Sheet 6 Solutions

Question 1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be any vector. Now consider a random vector $y=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, where each $y_{i}, 1 \leq i \leq n$ is in $\{-1,+1\}$ uniformly at random.

1. Compute $\mathbf{E}\left[x^{T} y\right]$ and $\mathbf{E}\left[\left(x^{T} y\right)^{2}\right]$.
2. We are now trying to generalise these results. Which properties of the distribution the y_{i} 's are sampled from are needed to recover the results from Part 1?
3. What is the challenge in proving concentration for $\left(x^{T} y\right)^{2}$, for example, why cannot we apply a Chernoff Bound?

Question 2. (easy) What is the time complexity for applying the Random Projection Method to a set of P input vectors?

Solution: We first need to construct the random $M \times N$-matrix, which takes $O(M N)$ time. Then we need to multiply the random matrix to each of the P input vectors, each of which takes $O(M N)$ time, amounting to a total time of $O(M N P)$.

Question 3. Demonstrate that it is essential for the Random Projection Method to choose the linear function f randomly. Specifically, prove that for any linear function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ there are two vectors $x_{1}, x_{2} \in \mathbb{R}^{N}, x_{1} \neq x_{2}$, such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Hint: Your proof should at some point exploit that $N>M$.

Solution: As in the description of the Random Projection Method, the linear function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ applied to any vector $w \in \mathbb{R}^{N}$ is the same as the matrix-vector product

$$
f(w)=R \cdot w
$$

where R is a $M \times N$ matrix. Or written more explicitly,

$$
f\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
\vdots \\
w_{N}
\end{array}\right)=\left(\begin{array}{cccc}
\vdots & \vdots & & \vdots \\
r_{1} & r_{2} & \cdots & r_{N} \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots
\end{array}\right) \cdot\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
\vdots \\
w_{N}
\end{array}\right)
$$

where $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$ is a set of M-dimensional vectors. Since $N>M$ and the due to the fact that N is the largest number of linearly independent vectors, it follows that the set of vectors $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$ is not linearly independent. Thus there are coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}$, not all being equal to zero, such that

$$
\sum_{j=1}^{N} \alpha_{j} \cdot r_{j}=\overrightarrow{0}
$$

Thus for every entry $1 \leq i \leq M$,

$$
\sum_{i=1}^{N} \alpha_{j} \cdot r_{i, j}=\sum_{i=1}^{N} r_{i, j} \cdot \alpha_{j}=0
$$

This implies that

$$
f\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\vdots \\
\alpha_{N}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Based on this finding, it is straightforward to pick two vectors $x_{1} \in \mathbb{R}^{N}$ and $x_{2} \in \mathbb{R}^{N}$ such that $x_{1} \neq x_{2}$ but $f\left(x_{1}\right)=f\left(x_{2}\right)$. Let $x_{1} \in \mathbb{R}^{n}$ be arbitrary and $x_{2}=x_{1}+\alpha$. Then, thanks to the linearity of f,

$$
f\left(x_{2}\right)=f\left(x_{1}+\alpha\right)=f\left(x_{1}\right)+f(\alpha)=f\left(x_{1}\right)
$$

Question 4. Consider the deterministic weighted majority algorithm. [LECTURE 15]

1. Prove or disprove that the algorithm always makes a number of mistakes M^{T} within T rounds that satisfies: $M^{T} \geq \min _{i \in[n]} m_{i}^{T}$.
2. Show that for any deterministic algorithm, there exists an input such that $M^{T} \geq 2 \cdot \min _{i \in[n]} m_{i}^{T}$.
