Probability and Computation: Problem Sheet 6

Question 1. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ be any vector. Now consider a random vector $y=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$, where each $y_{i}, 1 \leq i \leq n$ is in $\{-1,+1\}$ uniformly at random.

1. Compute $\mathbf{E}\left[x^{T} y\right]$ and $\mathbf{E}\left[\left(x^{T} y\right)^{2}\right]$.
2. We are now trying to generalise these results. Which properties of the distribution the y_{i} 's are sampled from are needed to recover the results from Part 1?
3. What is the challenge in proving concentration for $\left(x^{T} y\right)^{2}$, for example, why cannot we apply a Chernoff Bound?

Question 2. (easy) What is the time complexity for applying the Random Projection Method to a set of P input vectors?

Question 3. Demonstrate that it is essential for the Random Projection Method to choose the linear function f randomly. Specifically, prove that for any linear function $f: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ there are two vectors $x_{1}, x_{2} \in \mathbb{R}^{N}, x_{1} \neq x_{2}$, such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
Hint: Your proof should at some point exploit that $N>M$.
Question 4. Let $A, B \in\{0,1\}^{n \times n}$ be two binary matrices, and let $C:=A \cdot B$. Design a randomised algorithm of running time $O\left(n^{2} \cdot \log n\right)$ that computes a matrix \widetilde{C} such that with probability at least $1-n^{-1}$ the following holds for all $1 \leq i, j \leq n$:

$$
\left\lfloor\frac{C_{i, j}}{4 \log n}\right\rfloor \leq \widetilde{C}_{i, j} \leq C_{i, j}+\max \left\{C_{i, j}, 4 \log n\right\}
$$

Question 5. Consider the deterministic weighted majority algorithm. [LECTURE 15]

1. Prove or disprove that the algorithm always makes a number of mistakes M^{T} within T rounds that satisfies: $M^{T} \geq \min _{i \in[n]} m_{i}^{T}$.
2. Show that for any deterministic algorithm, there exists an input such that $M^{T} \geq 2 \cdot \min _{i \in[n]} m_{i}^{T}$.
