Probability and Computation: Problem Sheet 6

Question 1. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ be any vector. Now consider a random vector $y = (y_1, y_2, ..., y_n) \in \mathbb{R}^n$, where each $y_i, 1 \le i \le n$ is in $\{-1, +1\}$ uniformly at random.

- 1. Compute $\mathbf{E}[x^T y]$ and $\mathbf{E}[(x^T y)^2]$.
- 2. We are now trying to generalise these results. Which properties of the distribution the y_i 's are sampled from are needed to recover the results from Part 1?
- 3. What is the challenge in proving concentration for $(x^T y)^2$, for example, why cannot we apply a Chernoff Bound?

Question 2. (easy) What is the time complexity for applying the Random Projection Method to a set of *P* input vectors?

Question 3. Demonstrate that it is essential for the Random Projection Method to choose the linear function f randomly. Specifically, prove that for any linear function $f : \mathbb{R}^N \to \mathbb{R}^M$ there are two vectors $x_1, x_2 \in \mathbb{R}^N, x_1 \neq x_2$, such that $f(x_1) = f(x_2)$. Hint: Your proof should at some point exploit that N > M.

Question 4. Let $A, B \in \{0, 1\}^{n \times n}$ be two binary matrices, and let $C := A \cdot B$. Design a randomised algorithm of running time $O(n^2 \cdot \log n)$ that computes a matrix \widetilde{C} such that with probability at least $1 - n^{-1}$ the following holds for all $1 \le i, j \le n$:

$$\left\lfloor \frac{C_{i,j}}{4\log n} \right\rfloor \le \widetilde{C}_{i,j} \le C_{i,j} + \max\{C_{i,j}, 4\log n\}.$$

Question 5. Consider the deterministic weighted majority algorithm. [LECTURE 15]

- 1. Prove or disprove that the algorithm always makes a number of mistakes M^T within T rounds that satisfies: $M^T \ge \min_{i \in [n]} m_i^T$.
- 2. Show that for any deterministic algorithm, there exists an input such that $M^T \ge 2 \cdot \min_{i \in [n]} m_i^T$.