
Probability and Computation : Problem Sheet 5 Solutions

You are encouraged to submit your solutions at student reception or by
emailing them to luca.zanetti@cl.cam.ac.uk by 2pm Friday 28th of February

Question 1.

(i) Prove that for every n ≥ 2 there is an unweighted, undirected n-vertex graph with conductance 1.

(ii) (Open-Ended Bonus Question): Can you characterise all graphs with that property?

Solution: Item (i): Let G be the star graph (that is, a tree of diameter 2 – or equivalently, the tree where
n− 1 of its n vertices have degree 1). As explained in the lecture, the conductance can be alternatively
defined as

φ(G) = min
∅6=S(V :

vol(S)≤vol(V )/2

φ(S), where φ(S) =
|E(S, V \ S)|

vol(S)
.

(Since G is unweighted, w(S, V \ S) = |E(S, V \ S)|.) Note that for any subset S ⊆ V which does
not include the center vertex denoted by c, |E(S, V \ S)| = |S|, vol(S) = |S| · 1 = |S| and φ(S) = 1.
Furthermore, if S = {c}, then |E(S, V \S)| = n− 1, vol(S) = n− 1 = vol(V )/2 and φ(S) = 1. Any set S
that includes c cannot contain more vertices since then the volume of S would exceed vol(V )/2. Hence
Φ(G) = 1.
Item (ii): First, note that for n = 3, the complete graph is another example that has conductance 1,
and thus, any connected graph with n = 3 has conductance 1.

Suppose n ≥ 4 and φ(G) = 1. Let u, v, w, t be 4 unique vertices such that (u, v) ∈ E(G).
Since (u, v) ∈ E(G), then d(u) + d(v) > vol(V )/2, because otherwise φ({u, v}) < 1. Additionally,

d(u) + d(v) ≤ vol(V )− (d(w) + d(t)). It implies that

d(w) + d(t) < vol(V )/2.

Therefore, (w, t) /∈ E(G), otherwise for set φ({w, t}) < 1.
Thus, we have established that for every edge (u, v), all other edges of the graph have either u or v

as one of its endpoints. Additionally, it is not possible to have edges (w1, u) and (w2, v) for w1 6= w2, as
then the statement would not hold for the edge (w1, u). Thus, either u or v have to be an endpoint for
all edges of G. Thus, G is a star graph.

Question 2. Recall the 8-vertex graph from Lecture 11, slide 11, which has 1 − λ2(P ) ≈ 0.13. To get
some idea of how small (or large) this value is, prove the following bounds on the conductance of any
unweighted, connected, 3-regular graph with 8 vertices:

(i) Show that for any such graph G, φ(G) ≤ 1
2

(ii) Show that for any such graph G, φ(G) ≥ 1/12

(iii) Which lower and upper bounds on 1− λ2, where λ2 is associated with the transition matrix of the
lazy walk on G, can you deduce from (i) and (ii) using Cheeger’s inequality?

Solution: Item (i): We apply a method that is similar to the guessing algorithm for MAX-CUT. Let
V = {1, 2, . . . , 8}. Let S be a random subset of size 4, and for any 1 ≤ i ≤ 7, let Xi = 1 iff i ∈ S and
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Xi = 0 otherwise. As G is 3-regular, vol(S) = 4 · 3 = 12; this holds for any set S. Consider now the
number of cut edges. By linearity of expectation,

E[ |E(S, V \ S)| ] =
∑

{u,v}∈E(G)

P[ (u ∈ S ∩ v 6∈ S) ∪ (u 6∈ S ∩ v ∈ S) ]

=
∑

{u,v}∈E(G)

4

7

=
4

7
· |E(G)|

=
4

7
· 4 · 3 =

48

7
.

Now using the probabilistic method there exists a set S with |E(S, V \S)| ≤ b487 c = 6. Since vol(S) = 12,
this implies φ(G) ≤ 1/2, and thus the conductance of the lazy/weighted graph is at most 1/4.

(As a side remark, for the complete graph all sets S have the same number of edges, and a slight
modification of the above approach would establish that the complete graph has the largest conductance
among all regular graphs.)

Furthermore, the same bound can be also derived by taking S as a connected set of size 4. Since S is
connected, it must have at least 3 edges inside and thus |E(S, V \ S)| ≤ 4 · 3− 2 · 3 = 6. Thus we again
conclude that φ(G) ≤ 1/2 (for the unweighted graph). However, for larger degree, the bound obtained
by the probabilistic method is superior as it remains 1/2, while the bound derived from a connected set
would converge towards 1.

Item (ii): Since the graph is connected, for any set S, |E(S, V \ S)| ≥ 1. Furthermore, vol(S) ≤ |S| · 3.
Hence,

φ(G) ≥ min
1≤|S|≤4

1

|S| · 3
=

1

12
.

(Actually it might be possible to argue that any 3-regular graphs with 8 vertices is 2-connected, and if
this was true the lower bound could be improved by a factor of 2.)

Item (iii): Recall that Cheeger’s inequality states:

1− λ2
2

≤ φ(G) ≤
√

2(1− λ2),

and rearranging yields

Φ(G)2

2
≤ 1− λ2 ≤ 2Φ(G).

Using our estimates from (i) and (ii) yields

1

1152
≤ 1− λ2 ≤

1

2
.

Another try is to apply the bound from Lecture 10 (last line in slide 12). For that we need an upper
bound on the diameter of G. It is not hard to prove that the diameter δ of any d-regular graph satisfies
δ ≤ 3n/d. Therefore,

1− λ2 ≥
1

2 · d · (3n/d) · n
=

1

6n2
=

1

294
,

which is a bit better, although probably still far from the truth (i.e., the worst possible 3-regular graph).
We may conclude by saying that proving both general and “useful” lower bounds on 1−λ2 is not easy...

Question 3. Find the conductance of the following graphs

1. The n-vertex path.

2. The 2-dimensional n×m grid.
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3. The complete binary tree of height h.

Solution: We will give only approximate solutions and we won’t prove that these sets actually minimise
the conductance.

1. The conductance of the path is minimised by the a partition that cuts the path halfway through.
It has conductance Θ(1/n)

2. Let w.l.o.g. n ≤ m. Then, consider a set containing the first bm/2c columns. It has conductance
Θ(1/m).

3. Let r be the root of the tree and u, v its two children. Consider the subtree rooted at u. It has
conductance Θ(2−h).

Question 4. Prove the following: A finite, irreducible, aperiodic Markov chain with transition matrix
P is reversible if and only if its transition probabilities satisfy

P (j1, j2)P (j2, j3) · · ·P (jn−1, jn)P (jn, j1) = P (j1, jn)P (jn, jn−1) · · ·P (j3, j2)P (j2, j1),

for any sequence of states j1, . . . jn.

Solution: This result is known as Kolmogorov’s criterion.

Since our Markov chain Xt is finite, irreducible and aperiodic it has a unique stationary distribution
π, what is more Xt converges to π as t→∞.

( =⇒ ): Assume that P is reversible, thus for any states i, j ∈ Ω we have

P (i, j) =
π(j)P (j, i)

π(i)

It follows that

P (j1, j2)P (j2, j3) · · ·P (jn−1, jn)P (jn, j1)

=

(
π(j2)P (j2, j1)

π(j1)

)(
π(j3)P (j3, j2)

π(j2)

)
· · ·
(
π(jn)P (jn, jn−1)

π(jn−1)

)(
π(j1)P (j1, jn)

π(jn)

)
= P (j1, jn)P (jn, jn−1) · · ·P (j3, j2)P (j2, j1),

(⇐= ): Assume that

P (j1, j2)P (j2, j3) · · ·P (jn−1, jn)P (jn, j1) = P (j1, jn)P (jn, jn−1) · · ·P (j3, j2)P (j2, j1),

holds for any sequence of states j1, . . . jn.
Now fix any two states x and y and observe that for any sequence of states j1, . . . , jn−1 we have,

P (y, x) ·P[Xn = y,Xn−1 = jn−1, Xn−2 = jn−2, . . . , X0 = x | X0 = x ]

= P (y, x) · P (x, j1)P (j1, j2) · · ·P (jn−1, y)

= P (x, y) · P (y, jn−1)P (jn−1, jn−2) · · ·P (j1, x)

= P (x, y) ·P[Xn = x,Xn−1 = j1, Xn−2 = j2, . . . , X0 = y | X0 = y ] .

Thus if we sum both sides of the equality above over all possible sequences j1, . . . , jn−1 we obtain

P (y, x) · P (n)(x, y) = P (x, y) · P (n)(y, x).

Now since for any u, v ∈ Ω we have limn→∞ P (n)(u, v) = π(v) we can take limits in n to conclude that

π(x)P (x, y) = π(y)P (y, x),

as claimed.
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Question 5. Let G be a connected graph and P be the transition matrix of the simple random walk on
G.

1. Show that if −1 is an eigenvalue of P then the walk is periodic.

2. Show that if G is bipartite and µ is an eigenvalue of P then −µ is also an eigenvalue of G, and
that µ and −µ have the same multiplicity.

Solution:

1. Let f be any nonzero function such that Pf = −f . Notice that, for any u,

f(u) = −
∑

v : u∼v

f(v)

d(u)

Choose u = arg maxw |f(w)|. From the equation above it is clear that, for any v ∼ u, f(u) = −f(w).
Since the graph is connected, we can deduce that |f(x)| = |f(y)| 6= 0 for any pair of vertices x, y.
Moreover, if there exists an edge between x and y, it must hold that f(x) = −f(y). Since f is
nonzero everywhere, this condition can be only satisfied if G is bipartite, which implies that P is
periodic.

2. We need to show that if f is such that Pf = µf , then there exists g such that Pg = −µg.
Moreover, to show that multiplicities are preserved, we need to show that if pairwise orthogonal
(w.r.t. 〈·, ·〉π inner-product, where π is the stationary distribution of P ) functions f1, . . . , fk

are such that Pf i = µf i(1 ≤ i ≤ k), then there exist pairwise orthogonal g1, . . . , gk such that
Pgi = µgi(1 ≤ i ≤ k).

Since the graph is bipartite, we can write P (potentially after permuting the vertices) as a block
matrix

P =

(
0 P2

P1 0

)
,

where each block corresponds to one side of the bipartition. Let now f = (f1, f2) be such that
Pf = µf (notice that this implies Pf = (P2f2, P1f1) = (µf1, µf2)). Let g = (f1,−f2). then,

Pg = (−P2f2, P1f1) = (−µf1, µf2) = −µg.

Moreover, assume we have pairwise orthogonal f1, . . . , fk such that Pf i = µf i(1 ≤ i ≤ k). Then,
for any 1 ≤ i ≤ k, we can construct gi = (f i1,−f i2). We have shown that with this construction
Pgi = −µgi. We just need to show that, for any i 6= j, gi ⊥ gj . This can be shown as follows:

〈gi, gj〉π =
∑
x

gi(x)gj(x)π(x) =
∑
x

f i(x)f j(x)π(x) = 〈f i, f j〉π.

Question 6. Recall the definition of the `1-mixing time τ and the `2-mixing time τ2. Prove that
τ2(ε) ≥ τ(2ε) τ2(2ε) ≥ τ(ε) for any ε ∈ (0, 1/2]. (There was a typo.)

Solution: This follows simply by the convexity of (·)2, which means we can apply Jensen’s inequality
to show that, for any function f , ‖f‖2,π ≥ ‖f‖1.
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Hints

Hint (Question 2(i)). Use a randomised algorithm similar to the one for MAX-CUT to find a subset
with conductance at most 1/2.

Hint (Question 4). Recall the Convergence Theorem for finite Markov chains.
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