Probability and Computation: Problem Sheet 5

You are encouraged to submit your solutions at student reception or by

 emailing them to luca.zanetti@cl.cam.ac.uk by 2pm Friday 28th of February
Question 1.

(i) Prove that for every $n \geq 2$ there is an unweighted, undirected n-vertex graph with conductance 1 .
(ii) (Open-Ended Bonus Question): Can you characterise all graphs with that property?

Question 2. Recall the 8-vertex graph from Lecture 11, slide 11, which has $1-\lambda_{2}(P) \approx 0.13$. To get some idea of how small (or large) this value is, prove the following bounds on the conductance of any unweighted, connected, 3-regular graph with 8 vertices:
(i) Show that for any such graph $G, \phi(G) \leq \frac{1}{2}$
(ii) Show that for any such graph $G, \phi(G) \geq 1 / 12$
(iii) Which lower and upper bounds on $1-\lambda_{2}$, where λ_{2} is associated with the transition matrix of the lazy walk on G, can you deduce from (i) and (ii) using Cheeger's inequality?

Question 3. Find the conductance of the following graphs

1. The n-vertex path.
2. The 2-dimensional $n \times m$ grid.
3. The complete binary tree of height h.

Question 4. Prove the following: A finite irreducible, aperiodic Markov chain with transition matrix P is reversible if and only if its transition probabilities satisfy

$$
p_{j_{1} j_{2}} p_{j_{2} j_{3}} \cdots p_{j_{n-1} j_{n}} p_{j_{n} j_{1}}=p_{j_{1} j_{n}} p_{j_{n} j_{n-1}} \cdots p_{j_{3} j_{2}} p_{j_{2} j_{1}}
$$

for any sequence of states $j_{1}, \ldots j_{n}$.
Question 5. Let G be a connected graph and P be the transition matrix of the simple random walk on G.

1. Show that if -1 is an eigenvalue of P then the walk is periodic.
2. Show that if G is bipartite and μ is an eigenvalue of P then $-\mu$ is also an eigenvalue of G, and that μ and $-\mu$ have the same multiplicity.

Question 6. Recall the definition of the ℓ_{1}-mixing time τ and the ℓ_{2}-mixing time τ_{2}. Prove that $\tau_{2}(\epsilon) \geq$ $\tau(2 \epsilon)$ for any $\epsilon \in(0,1 / 2]$.

Hints

Hint (Question 2(i)). Use a randomised algorithm similar to the one for MAX-CUT to find a subset with conductance at most $1 / 2$.

Hint (Question 4). Recall the Convergence Theorem for finite Markov chains.

