
Probability and Computation : Problem Sheet 4 Solutions

You are encouraged to submit your solutions at student reception or by
emailing them to jas289 by 2pm Friday 21th of February

Question 1. Let Xn be the sum of n independent rolls of a fair die. Show that, for any k ≥ 2,

lim
n→∞

P[Xn is divisible by k ] =
1

k
.

Question 2. When the U bus arrives outside the Computer Lab, the next bus arrives in 1, 2, . . . , 20
minutes with equal probability. You arrive at the bus stop without checking the schedule, at some fixed
time n.

(i) How could you model Xn, the number of minutes until the next bus when you arrive at time n, as
a Markov chain?

(ii) Buses have been coming and going all day so we can assume the chain has mixed when you arrive.
What is the probability of waiting i minutes for a bus in relation to the Chain?

(iii) How long, on average, do you wait until the next bus arrives?

(iv) What is the standard deviation of this time?

Solution: Item (i): Let Xn be the time elapsed from time n till the arrival of the next bus. Then Xn is
a Markov chain on {0, 1, . . . , 20}, where each state represents how long till the next bus. The transition
probabilities are p(0, k) = 1/20 for each 1 ≤ k ≤ 20 and p(k, k − 1) = 1 for all k > 0.

Item (ii): The idea is that since the chain is stationary when you arrive your just sampling a state
according to stationary distribution. Since each state represents the minutes until the next bus, the
probability of waiting i minutes for a bus is then just the stationary probability π(i) of state i.

Item (iii): For the stationary distribution observe that

π(0) = π(1)

π(1) =
π(0)

20
+ π(2)

π(2) =
π(0)

20
+ π(3)

...

π(19) =
π(0)

20
+ π(20)

π(20) =
π(0)

20
.

Thus we have π(1) = π(1)/20 + π(2) thus since π(0) = π(1),

π(2) =
19π(0)

20
.

However also we have π(2) = π(0)/20 + π(3) thus π(3) = 18π(0)/19 and in general for any 1 ≤ k ≤ 20,

π(k) =
21− k

20
π(0).
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To find the values of π all we must do is find π(0), we do this by the fact π is a probability distribution,

1 =

20∑
k=0

π(k) = π(0)

(
1 +

20∑
k=1

21− k
20

)
,

which implies that π(0) = 2/23. Hence we have

Eπ[Xn] =

20∑
k=0

kπ(k) =

20∑
k=1

k
2

23

21− k
20

=
154

23
≈ 6.7 mins.

Item (iv): The second moment is given by

Eπ[X2
n] =

20∑
k=0

k2π(k) =

20∑
k=1

k2 2

23

21− k
20

=
1617

23
.

Thus the s.d. is √
1617

23
−
(

154

23

)2

=
35
√

11

23
≈ 5 mins

Question 3. Prove the following Lemma from class: For any probability distributions µ and η on a
countable state space Ω

‖µ− η‖tv =
1

2

∑
ω∈Ω

|µ(ω)− η(ω)|.

Solution: Let Ω+ = {ω : µ(ω) ≥ η(ω)} and Ω− = {ω : µ(ω) < η(ω)} . Then

max
A⊆Ω

µ(A)− η(A) = µ(Ω+)− η(Ω+)

and
max
A⊆Ω

η(A)− µ(A) = η(Ω−)− µ(Ω−).

Since Ω = Ω+ ∪ Ω− and Ω+ ∩ Ω− = ∅ we have

µ(Ω+) + µ(Ω−) = 1 and η(Ω+) + η(Ω−) = 1,

thus
µ(Ω+)− η(Ω+) = η(Ω−)− µ(Ω−).

Hence
sup
a⊂Ω
|µ(A)− η(A)| = |µ(Ω+)− η(Ω+)| = |µ(Ω−)− η(Ω−)|.

Combining the above yields

2 ‖µ− η‖tv = |µ(Ω+)− η(Ω+)|+ |µ(Ω−)− η(Ω−)| =
∑
ω∈Ω

|µ(ω)− η(ω)|.

Question 4. This question asks you to prove lower bounds on the mixing time of some lazy random
walks on graphs.

1. Let G = (V1 ∪ V2, E) be a graph made of two disjoint complete graphs of n vertices, supported
respectively on V1 and V2, connected by a single edge. This is called the Barbell graph. Consider a
lazy random walk on G. Prove that tmix(G) = Ω(n2) (recall from Lecture 8 that tmix = τ(1/4)).

2. Suppose now we add s < n edges to the Barbell graph, where each edge has one endpoint in V1 and
the other endpoint in V2. What happens to tmix(G)?

2



3. Consider now a version of the Barbell graph where |V1| = n, |V2| = blog(n)c and there exists only
an edge between V1 and V2. What is the mixing time of this graph?

Solution: For part (i): let π be the stationary distribution of a lazy random walk in G (recall that,
for any vertex u, π(u) = d(u)/2|E| where d(u) is the degree of u). Now notice that, by symmetry,∑
u∈V1

π(u) =
∑
u∈V2

π(u) = 1/2. You can prove this explicitly by using the formula for the stationary
distribution mentioned above. Consider a probability distribution p such that

∑
u∈V2

p(u) ≤ ε for some
small ε ≥ 0. Then,

‖p− π‖TV =
1

2

∑
u∈V1

|p(u)− π(u)|+ 1

2

∑
u∈V2

|p(u)− π(u)|

≥ 1

2

∑
u∈V1

(p(u)− π(u)) +
1

2

∑
u∈V2

(π(u)− p(u))

=
1

2

(∑
u∈V1

p(u)−
∑
u∈V1

π(u) +
∑
u∈V2

π(u)−
∑
u∈V2

p(u)

)

≥ 1

2

(
1− ε− 1

2

)
+

1

2

(
1

2
− ε
)

=
1

2
− ε

where the last inequality follows from the facts that
∑
u∈V2

p(u) ≤ ε and
∑
u∈V1

π(u) =
∑
u∈V2

π(u) =
1/2. Therefore, a walk to be mixed must have at least probability ε ≥ 1/4 to be in V2.

But now suppose a walk start from a vertex u ∈ V1 which is not the only vertex v ∈ V1 adjacent to
a vertex in V2. Then, at each step, if the walk it’s still in V1, it has probability O(1/n2) to move to V2

(because it must move first to v and then move in V2). Therefore, after t steps,
∑
w∈V2

P t(u,w) = O(t/n2)
(this follows from a union bounds on the events “at step i the walk moves from V1 to V2” for i = 1, . . . , t).
Hence, we need to wait Ω(n2) before the walk is close to stationarity.

For part (ii) repeat the same argument as in part (i) but now at each step the probability to go from
V1 to V2 is Ω(s/n2). Therefore, tmix = O(n2/s) (when you reach V2, since the subgraph supported on
V2 is complete, after a few steps you are mixed).

For part (ii), repeating again the same argument it is clear that to be mixed we just need to move
from V2 to V1 (it is important here to notice that the worst case is to start in V2: since V2 is very small
compared to V1, if we start in the latter our argument doesn’t work anymore). But this happens with
probability Θ(1/(log n)2). Therefore mixing happens in O(log n)2 steps.

Question 5. Let 〈·, ·〉π be the inner product defined in the lecture. Show that it satisfies the following
properties:

Symmetry For any f, g ∈ `2(π), 〈f, g〉π = 〈g, f〉π.

Linearity For any f, g, h ∈ `2(π) and α, β ∈ R, 〈αf + βg, h〉π = α〈f, h〉π + β〈g, h〉π.

Positive definiteness For any 0 6= f ∈ `2(π), 〈f, f〉π > 0.

Do all these properties hold if π is not always positive?

Question 6. Given a matrix M such that Mf = λf (i.e., f is an eigenvector with eigenvalue λ of M),
prove that Mkf = λkf

Hints

Hint (Question 1). At face value Xn is an (infinite) Markov chain on N. We would like to consider it
as a finite Markov chain, reduction mod m (for some suitable m) will help us achieve this.

Hint (Question 4(i)). First prove that, for a distribution p such that
∑
u∈V2

p(u) ≤ ε for some small

ε ≥ 0, ‖p− π‖TV ≥
1
2 − ε, where π is the stationary distribution of a random walk on the Barbell

graph. Use this fact to obtain a lower bound on the mixing time (think how many steps we need so that∑
u∈V2

pt(u) > ε, where pt is the random walk distribution after t steps).
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