Probability and Computation: Problem Sheet 4 Solutions

You are encouraged to submit your solutions at student reception or by emailing them to jas 289 by 2pm Friday 21th of February

Question 1. Let X_{n} be the sum of n independent rolls of a fair die. Show that, for any $k \geq 2$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left[X_{n} \text { is divisible by } k\right]=\frac{1}{k}
$$

Question 2. When the U bus arrives outside the Computer Lab, the next bus arrives in $1,2, \ldots, 20$ minutes with equal probability. You arrive at the bus stop without checking the schedule, at some fixed time n.
(i) How could you model X_{n}, the number of minutes until the next bus when you arrive at time n, as a Markov chain?
(ii) Buses have been coming and going all day so we can assume the chain has mixed when you arrive. What is the probability of waiting i minutes for a bus in relation to the Chain?
(iii) How long, on average, do you wait until the next bus arrives?
(iv) What is the standard deviation of this time?

Solution: Item (i): Let X_{n} be the time elapsed from time n till the arrival of the next bus. Then X_{n} is a Markov chain on $\{0,1, \ldots, 20\}$, where each state represents how long till the next bus. The transition probabilities are $p(0, k)=1 / 20$ for each $1 \leq k \leq 20$ and $p(k, k-1)=1$ for all $k>0$.

Item (ii): The idea is that since the chain is stationary when you arrive your just sampling a state according to stationary distribution. Since each state represents the minutes until the next bus, the probability of waiting i minutes for a bus is then just the stationary probability $\pi(i)$ of state i.

Item (iii): For the stationary distribution observe that

$$
\begin{aligned}
\pi(0) & =\pi(1) \\
\pi(1) & =\frac{\pi(0)}{20}+\pi(2) \\
\pi(2) & =\frac{\pi(0)}{20}+\pi(3) \\
& \vdots \\
\pi(19) & =\frac{\pi(0)}{20}+\pi(20) \\
\pi(20) & =\frac{\pi(0)}{20}
\end{aligned}
$$

Thus we have $\pi(1)=\pi(1) / 20+\pi(2)$ thus since $\pi(0)=\pi(1)$,

$$
\pi(2)=\frac{19 \pi(0)}{20} .
$$

However also we have $\pi(2)=\pi(0) / 20+\pi(3)$ thus $\pi(3)=18 \pi(0) / 19$ and in general for any $1 \leq k \leq 20$,

$$
\pi(k)=\frac{21-k}{20} \pi(0)
$$

To find the values of π all we must do is find $\pi(0)$, we do this by the fact π is a probability distribution,

$$
1=\sum_{k=0}^{20} \pi(k)=\pi(0)\left(1+\sum_{k=1}^{20} \frac{21-k}{20}\right)
$$

which implies that $\pi(0)=2 / 23$. Hence we have

$$
\mathbb{E}_{\pi}\left[X_{n}\right]=\sum_{k=0}^{20} k \pi(k)=\sum_{k=1}^{20} k \frac{2}{23} \frac{21-k}{20}=\frac{154}{23} \approx 6.7 \mathrm{mins}
$$

Item (iv): The second moment is given by

$$
\mathbb{E}_{\pi}\left[X_{n}^{2}\right]=\sum_{k=0}^{20} k^{2} \pi(k)=\sum_{k=1}^{20} k^{2} \frac{2}{23} \frac{21-k}{20}=\frac{1617}{23}
$$

Thus the s.d. is

$$
\sqrt{\frac{1617}{23}-\left(\frac{154}{23}\right)^{2}}=\frac{35 \sqrt{11}}{23} \approx 5 \mathrm{mins}
$$

Question 3. Prove the following Lemma from class: For any probability distributions μ and η on a countable state space Ω

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

Solution: Let $\Omega^{+}=\{\omega: \mu(\omega) \geq \eta(\omega)\}$ and $\Omega^{-}=\{\omega: \mu(\omega)<\eta(\omega)\}$. Then

$$
\max _{A \subseteq \Omega} \mu(A)-\eta(A)=\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)
$$

and

$$
\max _{A \subseteq \Omega} \eta(A)-\mu(A)=\eta\left(\Omega^{-}\right)-\mu\left(\Omega^{-}\right)
$$

Since $\Omega=\Omega^{+} \cup \Omega^{-}$and $\Omega^{+} \cap \Omega^{-}=\emptyset$ we have

$$
\mu\left(\Omega^{+}\right)+\mu\left(\Omega^{-}\right)=1 \quad \text { and } \quad \eta\left(\Omega^{+}\right)+\eta\left(\Omega^{-}\right)=1
$$

thus

$$
\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)=\eta\left(\Omega^{-}\right)-\mu\left(\Omega^{-}\right)
$$

Hence

$$
\sup _{a \subset \Omega}|\mu(A)-\eta(A)|=\left|\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)\right|=\left|\mu\left(\Omega^{-}\right)-\eta\left(\Omega^{-}\right)\right| .
$$

Combining the above yields

$$
2\|\mu-\eta\|_{t v}=\left|\mu\left(\Omega^{+}\right)-\eta\left(\Omega^{+}\right)\right|+\left|\mu\left(\Omega^{-}\right)-\eta\left(\Omega^{-}\right)\right|=\sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

Question 4. This question asks you to prove lower bounds on the mixing time of some lazy random walks on graphs.

1. Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a graph made of two disjoint complete graphs of n vertices, supported respectively on V_{1} and V_{2}, connected by a single edge. This is called the Barbell graph. Consider a lazy random walk on G. Prove that $t_{\text {mix }}(G)=\Omega\left(n^{2}\right)$ (recall from Lecture 8 that $t_{\text {mix }}=\tau(1 / 4)$).
2. Suppose now we add $s<n$ edges to the Barbell graph, where each edge has one endpoint in V_{1} and the other endpoint in V_{2}. What happens to $t_{\text {mix }}(G)$?
3. Consider now a version of the Barbell graph where $\left|V_{1}\right|=n,\left|V_{2}\right|=\lfloor\log (n)\rfloor$ and there exists only an edge between V_{1} and V_{2}. What is the mixing time of this graph?

Solution: For part (i) : let π be the stationary distribution of a lazy random walk in G (recall that, for any vertex $u, \pi(u)=d(u) / 2|E|$ where $d(u)$ is the degree of $u)$. Now notice that, by symmetry, $\sum_{u \in V_{1}} \pi(u)=\sum_{u \in V_{2}} \pi(u)=1 / 2$. You can prove this explicitly by using the formula for the stationary distribution mentioned above. Consider a probability distribution p such that $\sum_{u \in V_{2}} p(u) \leq \epsilon$ for some small $\epsilon \geq 0$. Then,

$$
\begin{aligned}
\|p-\pi\|_{T V} & =\frac{1}{2} \sum_{u \in V_{1}}|p(u)-\pi(u)|+\frac{1}{2} \sum_{u \in V_{2}}|p(u)-\pi(u)| \\
& \geq \frac{1}{2} \sum_{u \in V_{1}}(p(u)-\pi(u))+\frac{1}{2} \sum_{u \in V_{2}}(\pi(u)-p(u)) \\
& =\frac{1}{2}\left(\sum_{u \in V_{1}} p(u)-\sum_{u \in V_{1}} \pi(u)+\sum_{u \in V_{2}} \pi(u)-\sum_{u \in V_{2}} p(u)\right) \\
& \geq \frac{1}{2}\left(1-\epsilon-\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{2}-\epsilon\right)=\frac{1}{2}-\epsilon
\end{aligned}
$$

where the last inequality follows from the facts that $\sum_{u \in V_{2}} p(u) \leq \epsilon$ and $\sum_{u \in V_{1}} \pi(u)=\sum_{u \in V_{2}} \pi(u)=$ $1 / 2$. Therefore, a walk to be mixed must have at least probability $\epsilon \geq 1 / 4$ to be in V_{2}.

But now suppose a walk start from a vertex $u \in V_{1}$ which is not the only vertex $v \in V_{1}$ adjacent to a vertex in V_{2}. Then, at each step, if the walk it's still in V_{1}, it has probability $O\left(1 / n^{2}\right)$ to move to V_{2} (because it must move first to v and then move in V_{2}). Therefore, after t steps, $\sum_{w \in V_{2}} P^{t}(u, w)=O\left(t / n^{2}\right)$ (this follows from a union bounds on the events "at step i the walk moves from V_{1} to V_{2} " for $i=1, \ldots, t$). Hence, we need to wait $\Omega\left(n^{2}\right)$ before the walk is close to stationarity.

For part (ii) repeat the same argument as in part (i) but now at each step the probability to go from V_{1} to V_{2} is $\Omega\left(s / n^{2}\right)$. Therefore, $t_{m i x}=O\left(n^{2} / s\right)$ (when you reach V_{2}, since the subgraph supported on V_{2} is complete, after a few steps you are mixed).

For part (ii), repeating again the same argument it is clear that to be mixed we just need to move from V_{2} to V_{1} (it is important here to notice that the worst case is to start in V_{2} : since V_{2} is very small compared to V_{1}, if we start in the latter our argument doesn't work anymore). But this happens with probability $\Theta\left(1 /(\log n)^{2}\right)$. Therefore mixing happens in $O(\log n)^{2}$ steps.

Question 5. Let $\langle\cdot, \cdot\rangle_{\pi}$ be the inner product defined in the lecture. Show that it satisfies the following properties:

Symmetry For any $f, g \in \ell_{2}(\pi),\langle f, g\rangle_{\pi}=\langle g, f\rangle_{\pi}$.
Linearity For any $f, g, h \in \ell_{2}(\pi)$ and $\alpha, \beta \in \mathbb{R},\langle\alpha f+\beta g, h\rangle_{\pi}=\alpha\langle f, h\rangle_{\pi}+\beta\langle g, h\rangle_{\pi}$.
Positive definiteness For any $\underline{0} \neq f \in \ell_{2}(\pi),\langle f, f\rangle_{\pi}>0$.
Do all these properties hold if π is not always positive?
Question 6. Given a matrix M such that $M f=\lambda f$ (i.e., f is an eigenvector with eigenvalue λ of M), prove that $M^{k} f=\lambda^{k} f$

Hints

Hint (Question 1). At face value X_{n} is an (infinite) Markov chain on \mathbb{N}. We would like to consider it as a finite Markov chain, reduction $\bmod m$ (for some suitable m) will help us achieve this.

Hint (Question 4(i)). First prove that, for a distribution p such that $\sum_{u \in V_{2}} p(u) \leq \epsilon$ for some small $\epsilon \geq 0,\|p-\pi\|_{T V} \geq \frac{1}{2}-\epsilon$, where π is the stationary distribution of a random walk on the Barbell graph. Use this fact to obtain a lower bound on the mixing time (think how many steps we need so that $\sum_{u \in V_{2}} p^{t}(u)>\epsilon$, where p^{t} is the random walk distribution after t steps).

