
Probability and Computation : Problem Sheet 3 Solutions

You are encouraged to submit your solutions at student reception or by
emailing them to jas289 by 2pm Friday 14th of February

Question 1 (Schöning: tighter analysis). Use the following version of Schöning’s Algorithm:

(1) Start with a random truth assignment.

(2) Repeat up to 3n times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied

(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

(i) Fix some satisfying assignment α. Let Ak be the event that the random assignment from step (1)
disagrees with α on exactly k literals/variables. What is P[Ak ]?

(ii) Let Pk be the probability that we make ≤ k incorrect steps within our first 3k steps. Prove

Pk ≥
(

3k

k

)(
2

3

)k (
1

3

)2k

.

(iii) Recall Stirling’s inequality
√

2π ≤ n!
nn+1/2e−n ≤ e, and show that Pk ≥ 2−k

3
√
k

.

(iv) Show that if a solution exists, Schöning’s Algorithm succeeds with probability at least
(
3
4

)n
/(3
√
n)

(v) Deduce a bound on the time to find a solution w.h.p. using Schöning’s Algorithm as above.

Solution: Part (i): Consider some arbitrary correct satisfying assignment α. Then since the random
initial truth assignment x was uniformly random each literal is the same as in α with probability 1/2
and each independently. So number which disagree is thus binomially distributed Bin(n, 1/2) and thus,

P[Ak ] =

(
n

k

)
1

2n
.

Part (ii): The probability Pk we make ≤ k incorrect steps within our first 3k steps is at least the
probability we make exactly k incorrect steps in the first 3k, which is(

3k

k

)(
2

3

)k (
1

3

)2k

.

Part (iii): We have

Pk ≥
(

3k

k

)(
2

3

)k (
1

3

)2k

≥
√

6πk
(
3k
e

)3k
e
√
k
(
2k
e

)2k · e√k (ke )k ·
2k

33k
≥ 2−k

3
√
k

Where above we used the exact form of Stirling’s ineq:
√

2π ≤ n!
nn+1/2e−n ≤ e.
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Part (iv): By the previous two parts P[S|Ak ] ≥ 2−k/3
√
k, where S is the event of success. Hence,

P[S ] =

n∑
k=0

P[S|Ak ]P[Ak ]

≥ 2−n +

n∑
k=1

2−k

3
√
k

(
n

k

)
1

2n

≥ 2−n

3
√
n

n∑
k=0

(
n

k

)
1

2k

=
2−n

3
√
n

(
1 +

1

2

)n
=

(
3

4

)n
/(3
√
n).

Part (iv): By the boosting lemma this is O
(
n ·
√
n
(
4
3

)n · log n
)

= O
(
n1.33334

)
since each run of the

algorithm takes O(n) time.

Question 2. Consider the following Markov Chains

A =


0 1/9 2/9 2/3

1/7 1/7 5/7 0
2/9 5/9 0 2/9
3/5 0 1/5 1/5



B =


0 1/2 0 1/2
0 0 2/3 1/3
0 1/3 1/3 1/3

1/3 1/3 1/3 0



C =


0 2/3 0 1/3 0 0

2/5 0 0 3/5 0 0
0 0 0 0 2/3 1/3

1/4 3/4 0 0 0 0
0 0 2/3 0 0 1/3
0 0 1/3 0 1/3 1/3


(i) Which of the above are irreducible?

(ii) Which of the above are reversible?

(iii) Calculate the stationary distribution of the reversible irreducible chain(s) above.

(iv) In lectures we showed that any finite irreducible chain has a unique stationary distribution. Give
an example of a (finite :p ) reducible chain with more than one stationary distribution.

Question 3. Recall that an undirected weighted graph G = (V,E,w) is an undirected graph with a weight
function w : E → R+ which is positive and symmetric, that is for any ij ∈ E, w(ij) = w(ji) > 0.

(i) Let P be a Markov chain. Show that P is reversible if and only if P is a simple random walk on
an undirected weighted graph G.

(ii) Show that a simple random walk on an undirected graph G = (V,E,w) has stationary distribution

π(x) =

∑
xy∈E w(xy)

2
∑
e∈E w(e)

, for all x ∈ V.

(iii) Given a reversible Markov chain P , show that P is irreducible if and only if the associated undirected
weighted graph G is connected.
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Solution: Part (i): We start showing that a random walk on an undirected graph is always reversible,
i.e., it satisfies the detailed balance condition: π(u)P (u, v) = π(v)P (v, u) for any u, v ∈ V . For ease of
notation define d(v) =

∑
z∈V

w(v, z), this is the weighted analogue of the degree. Let u, v be arbitrary

vertices. Then,

π(u)P (u, v) =
d(u)∑
z∈V d(z)

· w(u, v)

d(u)
=

d(v)∑
z∈V d(z)

· w(v, v)

d(v)
= π(v)P (v, u)

where the second equation follows from the fact that, since G is undirected, w(u, v) = w(v, u).
We now show the reverse implication: we are given a transition matrix P on Ω with stationary distribution
π such that π(u)P (u, v) = π(v)P (v, u) for any u, v ∈ Ω, and we want to show we can construct an
undirected weighted graph G = (V,E,w) such that P is the transition matrix of a random walk on
G. First of all, we choose Ω = V . Then, we construct the weight function w : V → R≥0 as w(u, v) =
π(u)P (u, v), and we set E = {{u, v} : w(u, v) > 0}. We need to show that w is a proper weight function.
Clearly, w is nonnegative and strictly positive exactly on E. Moreover,

w(u, v) = π(u)P (u, v) = π(v)P (v, u) = w(v, u),

since P is reversible. Finally,

w(u)∑
z∈V w(u, z)

=
π(u)P (u, v)∑
z∈V π(u)P (u, z)

=
P (u, v)∑
z∈V P (u, z)

= P (u, v),

where the last equality follows from the fact that each row of P sum up to 1 (by definition of transition
matrix). Hence, we have shown that a random walk on G has transition matrix P .

Part (ii): Let π : V → R such that π(u) = d(u)∑
z∈V d(z) . Then, π is stationary for P . To prove this, we just

need to check that πP = π. Let u be an arbitrary vertex. Then,

(πP )(u) =
∑
v∈V

π(v)P (v, u) =
∑
v∈V

d(v)P (v, u)∑
z∈V d(z)

∑
v∈V

w(v, u)∑
z∈V d(z)

=
d(v)∑
z∈V d(z)

= π(v).

where the third equality follows from P (v, u) = w(v, u)/d(v).

Question 4. Recall that a probability vector (distribution) is a non-negative real vector whose elements
sum to 1. A stochastic matrix is a real square matrix, where each row is a probability vector. Observe
every Stochastic matrix gives rise to a Markov chain and vice versa.

(i) Let ν ∈ Rn+ be a probability vector and M ∈ Rn×n+ be a stochastic matrix. Show that νM is a
probability vector.

A doubly stochastic matrix is a real square matrix, where each row and column is a probability vector.

(ii) Prove that the uniform distribution is stationary for any Markov chain whose transition matrix is
doubly stochastic.

Question 5. Show that if P is the transition matrix of a reversible Markov chain then the matrix P t

also defines a reversible Markov chain.

Solution: Assuming that π(x)Px,y = π(y)Py,x we aim to prove

π(x)P tx,y = π(y)P ty,x, (1)

by induction. Observe that π(x)Px,y = π(y)Py,x is the base case. Lets assume (1) holds, then

π(x)P (x, y)t+1 = π(x)
∑
z∈V

P (x, z)t · P (z, y)

= π(x)
∑
z∈V

π(z)

π(x)
P (z, x)t · π(y)

π(z)
P (y, z)

= π(y)
∑
z∈V

P (y, z) · P (z, x)t

= π(y)P (y, x)t+1.
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BONUS SOLUTION after typing this I found another proof typed by Luca last year:

The easiest way is probably to use the fact that P is reversible if and only if 〈Pf, g〉π = 〈f, Pg〉π for
any f, g ∈ V → R. Hence, we need to show that, for arbitrary f, g ∈ V → R, 〈P tf, g〉π = 〈f, P tg〉π:

〈P tf, g〉π = 〈P t−1f, Pg〉π = 〈P t−2f, P 2g〉π = · · · = 〈f, P tg〉π

where at each step we have applied the reversibility of P .

Question 6. Consider the Complete graph Kn which is the graph on n vertices where each pair of
vertices is connected by an edge. Let x, y ∈ V where x 6= y.

(i) Show that Ex
[
τ+y
]

= n− 1.

(ii) What is the distribution of τ+y ?

Question 7. State j is accessible from state i if, for some integer n ≥ 0, Pni,j > 0. If two states i
and j are accessible from each other, we say that they communicate and we write i ∼ j. Prove that
communicating relation ∼ defines an equivalence relation.

Question 8. Prove rigorously the claim made in lecture that the expected time for RAND 2-SAT to find
a given solution is at most the hitting time h(0, n) of the random walk on a path.

Solution: (Credit: Dmitros Los) Let h′(i) be the expected time for Rand-2-SAT to find our favourite
solution α starting from i literals in agreement with α. A conceptually simple proof that h(0) is at most
the hitting time of n from 0 by the SRW on a path is to show directly that

h′(k) ≤ h′(k + 1) + 2k + 1,

by induction. The reason is that then

h′(0) ≤ h′(1) + 1 ≤ (h′(2) + 2 + 1) + 1

≤ h′(3) + 2 · 2 + 1 + 2 + 1 + 1

≤ · · ·

≤ 2

n−1∑
k=1

k + n

= n2,

which just so happens to be h(0), the hitting time of n from the random walk started at 0.
(Base case) For k = 0 , we have h′(0) = h′(1) + 1 = h′(1) + 2 · 0 + 1 .
(Inductive step) Assume that it holds for k , then for k + 1 we have

h′(k + 1) ≤ 1

2
(h′(k) + h′(k + 2)) + 1

≤ 1

2
(h′(k + 1) + 2k + 1 + h′(k + 2)) + 1

Rearranging this yields

h′(k + 1) ≤ 2k + 1 + h′(k + 2) + 2 = h′(k + 2) + 2(k + 1) + 1,

as claimed.

4


