
Probability and Computation : Problem Sheet 3

You are encouraged to submit your solutions at student reception or by
emailing them to jas289 by 2pm Friday 14th of February

Question 1 (Schöning: tighter analysis). Use the following version of Schöning’s Algorithm:

(1) Start with a random truth assignment.

(2) Repeat up to 3n times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied

(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

(i) Fix some satisfying assignment α. Let Ak be the event that the random assignment from step (1)
disagrees with α on exactly k literals/variables. What is P[Ak ]?

(ii) Let Pk be the probability that we make ≤ k incorrect steps within our first 3k steps. Prove
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k
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)k (
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.

(iii) Recall Stirling’s inequality
√
2π ≤ n!

nn+1/2e−n ≤ e, and show that Pk ≥ 2−k

3
√
k

.

(iv) Show that if a solution exists, Schöning’s Algorithm succeeds with probability at least
(
3
4

)n
/(3
√
n)

(v) Deduce a bound on the time to find a solution w.h.p. using Schöning’s Algorithm as above.

Question 2. Consider the following Markov Chains

A =


0 1/9 2/9 2/3

1/7 1/7 5/7 0
2/9 5/9 0 2/9
3/5 0 1/5 1/5



B =


0 1/2 0 1/2
0 0 2/3 1/3
0 1/3 1/3 1/3

1/3 1/3 1/3 0



C =


0 2/3 0 1/3 0 0

2/5 0 0 3/5 0 0
0 0 0 0 2/3 1/3

1/4 3/4 0 0 0 0
0 0 2/3 0 0 1/3
0 0 1/3 0 1/3 1/3


(i) Which of the above are irreducible?
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(ii) Which of the above are reversible?

(iii) Calculate the stationary distribution of the reversible irreducible chain(s) above.

(iv) In lectures we showed that any finite irreducible chain has a unique stationary distribution. Give
an example of a (finite :p ) reducible chain with more than one stationary distribution.

Question 3. Recall that an undirected weighted graph G = (V,E,w) is an undirected graph with a weight
function w : E → R+ which is positive and symmetric, that is for any ij ∈ E, w(ij) = w(ji) > 0.

(i) Let P be a Markov chain. Show that P is reversible if and only if P is a simple random walk on
an undirected weighted graph G.

(ii) Show that a simple random walk on an undirected graph G = (V,E,w) has stationary distribution

π(x) =

∑
xy∈E w(xy)

2
∑

e∈E w(e)
, for all x ∈ V.

(iii) Given a reversible Markov chain P , show that P is irreducible if and only if the associated undirected
weighted graph G is connected.

Question 4. Recall that a probability vector (distribution) is a non-negative real vector whose elements
sum to 1. A stochastic matrix is a real square matrix, where each row is a probability vector. Observe
every Stochastic matrix gives rise to a Markov chain and vice versa.

(i) Let ν ∈ Rn
+ be a probability vector and M ∈ Rn×n

+ be a stochastic matrix. Show that νM is a
probability vector.

A doubly stochastic matrix is a real square matrix, where each row and column is a probability vector.

(ii) Prove that the uniform distribution is stationary for any Markov chain whose transition matrix is
doubly stochastic.

Question 5. Show that if P is the transition matrix of a reversible Markov chain then the matrix P t

also defines a reversible Markov chain.

Question 6. Consider the Complete graph Kn which is the graph on n vertices where each pair of
vertices is connected by an edge. Let x, y ∈ V where x 6= y.

(i) Show that Ex

[
τ+y
]
= n− 1.

(ii) What is the distribution of τ+y ?

Question 7. State j is accessible from state i if, for some integer n ≥ 0, Pn
i,j > 0. If two states i

and j are accessible from each other, we say that they communicate and we write i ∼ j. Prove that
communicating relation ∼ defines an equivalence relation.

Question 8. Prove rigorously the claim made in lecture that the expected time for RAND 2-SAT to find
a given solution is at most the hitting time h(0, n) of the random walk on a path.
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