Probability and Computation: Problem Sheet 3

You are encouraged to submit your solutions at student reception or by
emailing them to jas289 by 2pm Friday 14th of February

Question 1 (Schoning: tighter analysis). Use the following version of Schéning’s Algorithm:

(1) Start with a random truth assignment.
(2) Repeat up to 3n times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied

(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

(i) Fiz some satisfying assignment «. Let Ay be the event that the random assignment from step (1)
disagrees with o on exactly k literals/variables. What is P[ Ay |?

(ii) Let Py, be the probability that we make < k incorrect steps within our first 3k steps. Prove
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(iii) Recall Stirling’s inequality v/2m < #’26,” < e, and show that Py > % .
w ow that if a solution exists, Schoning’s Algorithm succeeds with probability at least (3 n
w) Show that if a soluti ists, Schoning’s Algorith ds with probabili ! H" /(3

(v) Deduce a bound on the time to find a solution w.h.p. using Schoning’s Algorithm as above.

Question 2. Consider the following Markov Chains
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(i) Which of the above are irreducible?



(ii) Which of the above are reversible?
(11i) Calculate the stationary distribution of the reversible irreducible chain(s) above.

(iv) In lectures we showed that any finite irreducible chain has a unique stationary distribution. Give
an example of a (finite :p ) reducible chain with more than one stationary distribution.

Question 3. Recall that an undirected weighted graph G = (V, E,w) is an undirected graph with a weight
function w : E — Ry which is positive and symmetric, that is for any ij € E, w(ij) = w(ji) > 0.

(i) Let P be a Markov chain. Show that P is reversible if and only if P is a simple random walk on
an undirected weighted graph G.

(i) Show that a simple random walk on an undirected graph G = (V, E,w) has stationary distribution
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(iti) Given a reversible Markov chain P, show that P is irreducible if and only if the associated undirected
weighted graph G is connected.

Question 4. Recall that a probability vector (distribution) is a non-negative real vector whose elements
sum to 1. A stochastic matriz is a real square matriz, where each row is a probability vector. Observe
every Stochastic matriz gives rise to a Markov chain and vice versa.

(i) Let v € R} be a probability vector and M € R}*™ be a stochastic matriz. Show that vM is a
probability vector.

A doubly stochastic matriz is a real square matriz, where each row and column is a probability vector.

(i) Prove that the uniform distribution is stationary for any Markov chain whose transition matriz is
doubly stochastic.

Question 5. Show that if P is the transition matriz of a reversible Markov chain then the matriz P
also defines a reversible Markov chain.

Question 6. Consider the Complete graph K, which is the graph on n vertices where each pair of
vertices is connected by an edge. Let x,y € V where x # y.

(i) Show that By [} ] =n —1.
(1) What is the distribution of 7,5 ?

Question 7. State j is accessible from state i if, for some integer n > 0, P/, > 0. If two states i
and j are accessible from each other, we say that they communicate and we write i ~ j. Prove that
communicating relation ~ defines an equivalence relation.

Question 8. Prove rigorously the claim made in lecture that the expected time for RAND 2-SAT to find
a given solution is at most the hitting time h(0,n) of the random walk on a path.



