
Probability and Computation: Problem sheet 2 Solutions

You are encouraged to submit your solutions at student reception or by
emailing them to nr454 by 2pm Friday 07th of February

Algorithms

Question 1. In this question we consider the following NP-complete problem called VERTEX-COVER

Instance: A graph G = (V,E).
Output: Subset S ⊆ V such that each edge has an end in S and |S| is minimized.

(i) Can you come up with a simple randomised algorithm for VERTEX-COVER?

(ii) Is this algorithm correct? (That is, does it always output a valid vertex-cover S)

(iii) Can you show that, for any graph G, the expected size of the vertex cover S produced by your
algorithm is at most twice the size of an optimal one?

Solution: Our algorithm Rand-VC is as follows:

For each e = uv ∈ E, if e is not already covered, add u to S with probability 1/2, otherwise add v.

To see part (ii), each edge has at least one of its endpoints in S and so every edge is covered.

Part (iii) is the following result:

Proposition. Let S be the vertex cover output by Rand-VC and C be an optimal vertex cover. Then

E[ |S| ] ≤ 2|C|.

Proof. To begin we partition the edges by assigning them to vertices in C, an optimal vertex cover. Let
e1, . . . , ek be the edges assigned to some v ∈ C. For each edge ei examined by the algorithm, at most
one vertex was added to the vertex cover S output by Rand-VC. Let Sv denote the set of such vertices
added to S by the edges e1, . . . , ekv

assigned to v ∈ C.

Claim. For all v ∈ C, E[ |Sv| ] ≤ 2.

Proof of claim. We prove the claim by induction on the number of edges k = kv associated with v. If
kv = 0 the claim holds vacuously since no edge is adjacent to v and so cannot contribute any vertices to
Sv. Assume the claim holds for any n ≤ k− 1 edges then if v is associated with k edges and we start by
considering ek = uv then

E[Sv ] = E[ |Sv| | vadded to Sv ] ·P[ vadded to Sv ] + E[ |Sv| |uadded to Sv ] ·P[uadded to Sv ]

≤ 1 · (1/2) + (1 + E[S′ ]) · (1/2),

where S′ is the set of vertices added Rand-VC when it considers the edges e1, . . . , ek−1. Thus by the
inductive hypothesis E[ |S′| ] ≤ 2 and so

E[Sv ] ≤ 1/2 + (1 + 2) · (1/2) ≤ 2,

as claimed. Alternatively one could see that, if the number of edges covered by v in the optimal cover
was infinite, then |Sv| ∼ Geo(1/2) would have geometric distribution with parameter 1/2. This is since
each time we terminate with probability 1/2 if we pick v and add it to Sv, or we add the other endpoint
to Sv and keep going. ♦

1



Now to prove the proposition, by the Claim, we have

E[ |S| ] =
∑
v∈C

E[ |S| ] ≤
∑
v∈C

2 ≤ 2|C|,

since the total number of vertices in the cover S found by Rand-VC is the sum of the vertices added
by the edges associated with each v ∈ C.

Conditional Expectation

Question 2. Show properties 2− 6 of slide 7 of Lecture 5.

Solution: Property 4: Let a be a possible value of X. Since X is independent of Y we have
P[Y = y|X = a ] = P[Y = y ] then

E[Y |X = a ] =
∑
y

yP[Y = y|X = a ]
indep

=
∑
y

yP[Y = y ] = E[Y ] ,

deducing that E[Y |X ] = E[Y ].
Property 5: Let a be a possible value of X, then

E[Y Z|X = a ] = E[F (X)Z|X = a ] =
∑
x

∑
z

F (x)zP[X = x, Z = z|X = a ]

= F (a)
∑
z

zP[Z = z|X = a ] = F (a)E[Z|X = a ] ,

deducing that E[Y Z|X ] = YE[Z|X ].

Question 3. Let X1, . . . , Xn be independent discrete random variables and let Z = f(X1, . . . , Xn) for
some function f . Prove that

E[Z|X1, . . . , Xi ] =
∑

xi+1,...,xn

f(X1, . . . , Xi, xi+1, . . . , xn)P[Xi = xi+1, . . . , Xn = xn ]

Solution: Let (a1, . . . , an) be a possible value of (X1, . . . , Xn), then

E[Z|X1 = a1, . . . , Xn = an ] =
∑
x1

∑
x2

· · ·
∑
xn

f(x1, . . . , xn)P[X1 = x1, . . . , Xn = xn|X1 = a1, . . . , Xi = ai ]

=
∑
xi+1

· · ·
∑
xn

f(a1, . . . , ai, xi+1, . . . , xn)P[Xi+1 = xi+1, . . . , Xn = xn ] .

Question 4. Conditional Variance. Define the conditional variance of Y given X as

Var [Y |X ] = E
[

(Y −E[Y |X ])2|X
]
.

(i) Prove that Var [Y ] = E[Var [Y |X ] ] + Var [E[Y |X ] ]

(ii) Consider n bins and a random number M of balls, where E[M ] = µ and Var [M ] = σ2. Compute
the variance of the number of balls that are assigned to the first bin.
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Solution: Remember that Var [Y ] = E
[

(Y −E[Y ])2
]
, and, equivalently, Var [Y ] = E

[
Y 2
]
−E[Y ]

2

By definition we have that

E[Var [Y |X ] ] = E
[
E
[

(Y −E[Y |X ])2|X
] ] p1

= E
[

(Y −E[Y |X ])2)
]

= E
[
Y 2 − 2YE[Y |X ] + E[Y |X ]

2
]

(p1 refers to the properties of Lecture 6, slide 19). By p1 we get

E[YE[Y |X ] ]
p1
= E[E[YE[Y |X ] |X ] ]

p5
= E

[
E[Y |X ]

2
]

by linearity of conditional expectation (p3) we get

E[Var [Y |X ] ] = E
[
Y 2
]
−E

[
E[Y |X ]

2
]

(1)

Also, note that E[E[Y |X ] ] = E[Y ] then

Var [E[Y |X ] ] = E
[
E[Y |X ]

2
]
−E[Y ]

2
(2)

By adding equations (1) and (2) we get the result.
For the second part, let X be the number of balls that are assigned to the first bin. We com-

pute Var [X ] = E[Var [X|M ] ] + Var [E[X|M ] ]. In lecture 6 slide 24 we computed E[X|M ] =∑∞
i=1 1{i≤M} = M/n. Moreover, by definition of conditional variance, we get

Var [X|M ] = E
[

(X −M/n)2
∣∣∣M ]

p3,p5
= E

[
X2|M

]
− 2(M/n)E[X|M ] + (M/n)2

= E
[
X2|M

]
− (M/n)2

We just need to compute E
[
X2|M

]
. Let Xi be 1 if ball number i is assigned to the first bin, otherwise

Xi is 0. Then X =
∑∞

i=1Xi1{i≤M} and therefore

X2 =

∞∑
i=1

∞∑
j=1

XiXj1{i,j≤M}

Note that X2
i = Xi, then

E
[
X2|M

]
=

∞∑
i=1

E[Xi|M ] + 2
∑

1=i<j<∞
E[XiXj |M ]1{i,j≤M}

Finally, use that the location of a ball is independent of how many balls we assigned in total. Therefore
E[Xi|M ] = 1/n and E[XiXj |M ] = 1/n2 for i 6= j. We conclude that

Var [X|M ] = M/n+M(M − 1)/n2 − (M/n)2 = M/n−M/n2

and E[Var [X|M ] ] = (µ/n)
(
1− 1

n

)
On the other hand, remember that E[X|M ] = M/n. Then

Var [E[X|M ] ] = Var [M/n ] =
1

n2
Var [M ] = σ2/n2.

By adding Var [E[X|M ] ] and E[Var [X|M ] ] we get the result.

Question 5. Consider a coin that shows head with probability p. What is the expected number of flips
required to observe a run of n consecutive heads?

Solution: To get a run of n heads, we first need to get a run of n − 1 head. After that we either get
another head, or we get a tail and restart the process. Denote by Tn the number of coins needed to get
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a run of n heads, and T ′n be the number of coins needed to get a run of n heads after restarting. Denote
by Xn the indicator variable that tells us if we have to restart after Tn−1 or not. Then

Tn = Tn−1 + 1 +XnT
′
n

Note that Xn is independent of T ′n since T ′n does not dependent on the previous coins. Then
E[Tn ] = E[Tn−1 ] + 1 + E[Xn ]E[T ′n ] = E[Tn−1 ] + 1 + (1− p)E[T ′n ] Using that E[T ′n ] = ETn we

get the recursion

E[Tn ] =
1

p
E[Tn−1 ] +

1

p
.

By iterating the previous recursion, and by using that E[T1 ] = 1
p we conclude that

E[Tn ] =
1

pn
+ . . .+

1

p
.

Hint.

Q5: Recall how we deduce the expectation of a geometric random variable in class.
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