Probability and Computation: Problem sheet 2

You are encouraged to submit your solutions at student reception or by emailing them to nr454 by Friday 07th of February

Algorithms

Question 1. In this question we consider the following NP-complete problem called VERTEX-COVER
Instance: A graph $G=(V, E)$.
Output: Subset $S \subseteq V$ such that each edge has an end in S and $|S|$ is minimized.
(i) Can you come up with a simple randomised algorithm for VERTEX-COVER?
(ii) Is this algorithm correct? (That is, does it always output a valid vertex-cover S)
(iii) Can you show that, for any graph G, the expected size of the vertex cover S produced by your algorithm is at most twice the size of an optimal one?

Conditional Expectation

Question 2. Show properties $2-6$ of slide 7 of Lecture 5 .
Question 3. Let X_{1}, \ldots, X_{n} be independent discrete random variables and let $Z=f\left(X_{1}, \ldots, X_{n}\right)$ for some function f. Prove that

$$
\mathbf{E}\left[Z \mid X_{1}, \ldots, X_{i}\right]=\sum_{x_{i+1}, \ldots, x_{n}} f\left(X_{1}, \ldots, X_{i}, x_{i+1}, \ldots, x_{n}\right) \mathbf{P}\left[X_{i}=x_{i+1}, \ldots, X_{n}=x_{n}\right]
$$

Question 4. Conditional Variance. Define the conditional variance of Y given X as

$$
\operatorname{Var}[Y \mid X]=\mathbf{E}\left[(Y-\mathbf{E}[Y \mid X])^{2} \mid X\right]
$$

(i) Prove that $\operatorname{Var}[Y]=\mathbf{E}[\operatorname{Var}[Y \mid X]]+\operatorname{Var}[\mathbf{E}[Y \mid X]]$
(ii) Consider n bins and a random number M of balls, where $\mathbf{E}[M]=\mu$ and $\operatorname{Var}[M]=\sigma^{2}$. Compute the variance of the number of balls that are assigned to the first bin.

Question 5. Consider a coin that shows head with probability p. What is the expected number of fips required to observe a run of n consecutive heads?

Hint.

Q5: Recall how we deduce the expectation of a geometric random variable in class.

