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A question from last class

Last lecture a student asked me how it is possible to have random variables
Xand Ysuchthat X <.

This is one of the reasons to recall that random variables are actually
functions.
Hence, when we say that X < Y what we actually mean is that the event

E={we: X(w)<Y(w)}
issuch that P[£] = 1.

It is very important for you to understand this notion as it is used in the proof
of Markov inequality, but it will appear in some examples later
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A question from last class

For example: Suppose you flip a fair coin 100 times. Here the outcome space
is the values of the 100 coins, i.e Q = {H, T}'®, and the probability of each
particular outcome is (1/2)'%. Define the random variables

X(w)_{min{i:w,-:H} w#(T,...,T)

0 w=(T,...,T)’
and
max{i:wi=H} w#(T,...,T)
Y(w)= .
«) {o w=(T,...,T)
Hence X < Y.

In practice, we don’t describe random variables like that as it is too messy.

We would just say X is the position of the first Head and Y is the position of
the last Head (and if there are no heads, we just define X and Y as 0).
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Today class: Chernoff bounds
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Recall the Markov and Chebyshev inequalities from the previous lecture
Markov Inequality
If X is a non-negative random variable and a > 0, then

P[X > a] <E[X]/a

—— Chevyshev Inequality
If X is a random variable and a > 0, then

P[|X — E[X]| > a] < Var[X] /&

Let f: R — [0, 00) and increasing, then Y = f(X) > 0, and thus
PIX > a] < P[/(X) > f(a)] < E[f(X)] /f(a).

Similarly, if g : R — [0, c0) and decreasing, then Y = g(X) > 0, and thus
P[X < a] <P[g(X) > g(a)] <E[g(X)]/9(a).

By choosing an appropriate function we can obtain inequalities that are much
sharper than the Markov and Chevyshev Inequality.
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Example: coin flip

Consider n fair coins and let X be the total number of head. In an experiment
we expect to see around n/2 heads. Can we justify that? Let 6 > 0

= Markov inequality :
E[ X] _ n/2 1
(1+98)(n/2) — (1+d6)(n/2)  1+6

PIX > (1 +8)(n/2)] <

(Not good! Independent of n)

= Chebychev inequality :

PI(X—n/2) > 8(n/2)] < P[(X-n/2> (3(n/2)]
4Var[X] 1
= 82m 82n

AN

( Better! Linear in n )
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Markov and Chebychev use the first and second moment of the random
variable. Can we keep going?

= Yes.
We can consider first, second, third and more moments! that is the basic idea
behind the Chernoff Bounds
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Outline

Chernoff Bounds
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Chernoff Bounds

Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = Xi + ...+ X, and u = E[X] = >_ pi. Then, for any
6 > 0 it holds that

s M
P[X > (1+0)u] < {ﬁ} .

and for t > p it holds that

PIx> < (%)

ﬁl;
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Example: Coin Flip

Consider n fair coins and let X be the total number of head. Then

& n/2
P[X > (1+0)(n/2)] < {W}
Node that the above expression equals 1 only for § = 0, and then it gives a
value strictly less than 1 (Ex: check this!). Note as well the inequality is
exponential in n, (for fixed d) i.e. much better than Chebychev inequality.
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Example: Coin Flip

Consider 100 independent coin flips . We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality : X = 321 X;, X € {0,1} and E[X] = 100 - } = 50.
P[X >3/2-E[X]] <2/3 = 0.666.
* Chebyshev’s inequality : Var[X] = >"1% Var [ X;] = 100 - (1/2)? = 25.

Var[ X]
©

P[IX —pl = t] <

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= The Chernoff bound (first) with § = 1/2 gives:

1/2 50

e ) — 0.004472

(3/2)32
= the exact probability is 0.00000028 . ..

P[X >3/2 E[X]] < <

[Chernoff bound yields a more accurate result but needs independence! ]
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Density

Histogram for number of heads
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Outline

Balls into Bins
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Example: Balls into Bins

Balls into Bins is another important problem in the design and analysis of
randomised algorithm.

Balls into Bins Problem
You have n boxes and m balls. Each ball is allocated in a box uniformly
at random.

In the context of Computer Science there are several interpretations
1. Boxes are a Hash Table, balls are items

2. Boxes are processors and balls are jobs

3. Boxes are servers and ball are queries

Exercise: Think about the relation between the Balls into Bins problem and
the Coupon Collector Problem.
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Balls into Bins Problem

You have n boxes and m balls. Each ball is allocated in a box uniformly
at random.

Balls into Bins question
How large is the maximum load?

= Focus on one bin. Let X; the indicator variable that indicates if ball / is
assigned to this bin. The total balls in the bin is given by X = 3", Xi. Note
thatp=P[X;=1]=1/n.

= Suppose that m = 2nlog n, then u =E[X] =2logn

[ P[X > t] < e "(eu/t)! ]

- By the Chernoff Bound,/

6logn
PIX > Blogn] < e 2" (2esn) ™ < g2len — 2
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Example: Balls into Bins

Let &; be the event that bin j receives more than 6 log n balls.

= We are interested in the probability that at least one bin receives more
than 6 log n balls

= This is the event U]_;&;
= By the Union Bound, P[U]&] < Y7 P[§] <nxn?=n""
= Therefore whp, no bin receives more than 6 log n balls

= Note that the max loaded bin receives at least 2 log n balls (why?). So our
bound is pretty sharp.

whp stands for with high probability :
An event & (that implicitly depends on an input parameter n) occurs whp if
P[£°] - 0as n— oo.
This is a very standard notation in randomised algorithms
but it may very from author to author. Be careful!
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Example: Balls into Bins

Consider now the case m = n, i.e. same number of balls and bins.
Using the Chernoff Bounds

rox-n<g (3 =(5)

([ Pix>1] < etenn) )

By setting t = 4 log n/ log log n, we obtain that P[ X > t] < n~2. Indeed

4logn/ loglogn
eloglogn —exp 4logn log eloglogn (1)
4logn log log n 4logn

The term inside the exponential is

4logn 4logn 1
. — < J—
(Iog log 1 (log(4/e) + logloglog n — log log n)) %Iog n ( > log log n) )

obtaining that P[X > t] < n™*/2 = n72, This inequality only works
for large enough n

affin
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Example: Balls into Bins

We just proved that

P[X > 4logn/loglogn] < n2,
thus by the union bound , no bin receives more than O (log n/ log log n) balls
with probability at least 1 — 1/n.

= You will see in your Exercise class how to prove that whp at least one bin
receives at least clog n/ log log n balls, for some c. You will learn a proof
strategy called the Probabilistic Method.

i
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Example: Balls into Bins

Conclusions

= If the number of balls is 2 log n times n (the number of bins), then to

distribute balls at random is a good algorithm
= This is because the worst case load is whp. 6 log n, while the expected
number of balls is 2 log n

= For the case n = m, the algorithm is not good, because the maximum
load is whp. ©(log n/ log log n), while the expected number of balls per bin
is 1.

= For the case n = m, we can improve the balls into bin process by
sampling two bins in each step, then assigning the ball into the bin with
lesser load. This gi¥es a maximum load ©(loglog n) with probability at
least1 —1/n.

This is called the power of two choices :
It is a standard technique to improve the
performance of randomised algorithms.

affn
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Proof of Chernoff Bounds
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Chernoff Bound: Proof

Chernoff Bound

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = X1 + ...+ Xy and p = E[ X] = 3" p;. Then, for any
4 > 0 it holds that

b 3
P[X > (1+06)u] < {ﬁ} .

Proof:
1. For A >0,

PIX>(1+0)u] < P[eAX > e)\(1+5),u:| < e’A(”‘S)“E[eAX]

e X isincr Markov

2 E[e¥] =E[e* =] — I E[e™]

indep
3. N
E[e¥] =e'o+(1-p)=1+pe-1) < &
1+x<e’
for x>0

~;, 5
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Chernoff Bound: Proof

1. For A >0,

PIX2 (4ol = P[> on] < g tiong] o]

e)‘xi_sincr Markov
2. E[¢¥] =E[e* =% ]
3.

- H/n:1 E[eAXi]

indep

E[eAX"] _ e)\pi+(1 —,0/) -1 +Pi(e)\ _ 1)1 §< ) ePi(eA71)
fc;xx3eo

4. Putting all together

n
PLX > (14 d)u] < e 0 T @2 =1 = g M(1+0hgue =1
i=1

5. Choose X = log(1 + §) > 0 to get the result.
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Chernoff Bound: The recipe

The proof of the Chernoff bound is based in three key steps. These are
1. Let A > 0, then
PIX > (1+0)u] < e "rE[ ]

2. Compute an upper bound for E[ &** ] (This is the hard one)

3. Optimise the value of A > 0.

The function A — E| e*X] is called the moment-generating function of X
and it is very important to obtain sharp concentration inequalities.
Exercise: prove that P[X > t] < e™* ()",

23
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to shows that a random variable is not too
small compared to its mean.
Chernoff Bounds: Lower Tails
Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = X1 + ...+ Xy, and p = E[ X] = }_ pi. Then, for any
6 > 0 it holds that

—s n
PIX < (1 — o)) < [#] .

and forany t <
t
PIX<t]<e™” (%) .

Exercise: Prove it.
Hint: multiply both sides by —1 and repeat the proof of the Chernoff Bound
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The useful Chernoff Bounds

Our current form of the Chernoff Bound is rather atrocious. We can derive a
slightly weaker but more readable version.
Nicer Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = X1 + ...+ Xy and p = E[X] = > p;. Then,

= Forall t > 0, ,
P[X>E[X]+t]<e 2/

P[X <E[X]—t] <e2/n
=ForO0<d <1,

P[X > (1+)E[X]] <exp (—@

2

PLX < (1 - )E[X]] < exp (fﬁ)

Exercise: Prove it
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Outline

Randomised QuickSort
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Applications: QuickSort

Quick sort is a sorting algorithm that works as following.
~——— Algorithm: QuickSort N

Input: Array of different number A.
Output: array A sorted in increasing order

= Pick an element from the array, the so-called pivot .
= If |JA] = 0or |A] = 1; return A.
= Else

= Generate two subarrays Ay and A,:
Aq contains the elements that are smaller than the pivot ;
A, contains the elements that are greater than the pivot ;
= Recursively sort Ay and As.

E.g. LetA=(2,8,9,1,7,5,6,3,4), choose 6 as pivot, then we get

A =(2,1,5,3,4) and A, = (8,9,7).

It is well-known that the worst-case complexity (number of comparisons) of
quick sort is O(n?). This happens when pivots are pretty bad, generating one
large array and one small array.

-
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Applications: QuickSort

(2,8,9,1,7,5,6,3,4)

21534 @&ﬁ

Note that the number of comparison performed in quick sort is equiv-
alent to the sum of the height of all nodes in the tree. In this case

O+14+1+2+2+2+3+3+3=17.

affn
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Applications: QuickSort

How to pick a good pivot ? we don't, just pick one at random.

AN

This should be your stan-
dard answer in this course

Let’'s analyse quicksort with random pivots.
1. Consider n different number, wlog, {1, ..., n}

2. let H; be the last level where i appears in the tree. Then the number of
comparisonis H=>"", H;

3. we will prove that exists C > 0 such that
P[Vi,H; < Clogn]>1—-1/n

4. actually, we will prove something equivalent but easier: we will prove that
all leaves of the tree are at distance at most C log n from the root with
probability at least 1 — 1/n.

5. then H=Y""_, H; < Cnlog n, with probability at least 1 — 1/n.
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Applications: QuickSort

= Let P be a path from the root to a leaf. A node in P is called good if the
corresponding pivot partition the array into two subarrays each of size at
least 1/3 of the previous one, the node is bad otherwise.

= Denote by s; the size of the array at level t in P.

(2,8,9,1,7,5,6,3,4)

21534 @,s@

E.g. Path: (2,8,9,1,7,5,6,3,4) — (2,1,5,3,4) — (5,3,4) — (5)
The vertices are: good, bad, good

o0 =~ 9,51=5,8=3,5=1.
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Applications: QuickSort

= Let P be a path from the root to a leaf. A node in P is called good if the
corresponding pivot partition the array into two subarrays each of size at
least 1/3 of the previous one, the node is bad otherwise.

= Denote by s; the size of the array at level t in P.

= After a good vertex we have that s; < (2/3)s;—1.

= Therefore, there are at most T = Iogzg/”z < 2log n good nodes in a path P,

= Set C = 21 and suppose that |P| > Clog n.

= this implies that the number of bad vertices in the first 21 log n nodes is
more than 19 log n.
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= Consider the first |21 log n| vertices of P. Denote by X; = 1 if the node at
height i of P is bad, and X; = 0 if it is good. Let X = S 121"¢" x;.

= Note that the Xi’s are independent and P[ X; = 1] =2/3, and
E[ X] = (2/3)21log n = 14 log n. Then, by the (nicer) Chernoff Bounds

N

[P[X > E[X]+1] < e—212/n]

P[X > 19logn] = P[X > E[X] +5logn] < e 2G1en*/@lleen)
o (50/21)logn 1/n2.

= Hence, we conclude the path has more than 21 log n nodes with
probability at most n=2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n~"
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Applications: QuickSort

Remarks

= |t is know that no sorting algorithm based on comparison takes less than
Q(nlog n)

= The constant C can be improved a little bit, but in any case we will obtain
that our randomised version of QuickSort that whp compares O(nlog n)
pairs

= It is possible to deterministically choose the best pivot that divide the array
into two subarrays of the same size.

= The later requires to compute the median of the array in linear time, which
is not easy to do

= Randomised solution for QuickSort is much easier to implement.
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