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A question from last class

Last lecture a student asked me how it is possible to have random variables
X and Y such that X ≤ Y .

This is one of the reasons to recall that random variables are actually
functions.
Hence, when we say that X ≤ Y what we actually mean is that the event

E = {ω ∈ Ω : X (ω) ≤ Y (ω)}

is such that P[ E ] = 1.

It is very important for you to understand this notion as it is used in the proof
of Markov inequality, but it will appear in some examples later
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A question from last class

For example: Suppose you flip a fair coin 100 times. Here the outcome space
is the values of the 100 coins, i.e Ω = {H,T}100, and the probability of each
particular outcome is (1/2)100. Define the random variables

X (ω) =

{
min{i : ωi = H} ω 6= (T , . . . ,T )

0 ω = (T , . . . ,T )
,

and

Y (ω) =

{
max{i : ωi = H} ω 6= (T , . . . ,T )

0 ω = (T , . . . ,T )
.

Hence X ≤ Y .

In practice, we don’t describe random variables like that as it is too messy.

We would just say X is the position of the first Head and Y is the position of
the last Head (and if there are no heads, we just define X and Y as 0).
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Today class: Chernoff bounds
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Recall the Markov and Chebyshev inequalities from the previous lecture

If X is a non-negative random variable and a > 0, then

P[ X ≥ a ] ≤ E[ X ] /a.

Markov Inequality

If X is a random variable and a > 0, then

P[ |X − E[ X ] | ≥ a ] ≤ Var [ X ] /a2.

Chevyshev Inequality

Let f : R→ [0,∞) and increasing, then Y = f (X ) ≥ 0, and thus

P[ X ≥ a ] ≤ P[ f (X ) ≥ f (a) ] ≤ E[ f (X ) ] /f (a).

Similarly, if g : R→ [0,∞) and decreasing, then Y = g(X ) ≥ 0, and thus

P[ X ≤ a ] ≤ P[ g(X ) ≥ g(a) ] ≤ E[ g(X ) ] /g(a).

By choosing an appropriate function we can obtain inequalities that are much
sharper than the Markov and Chevyshev Inequality.
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Example: coin flip

Consider n fair coins and let X be the total number of head. In an experiment
we expect to see around n/2 heads. Can we justify that? Let δ > 0

Markov inequality :

P[ X ≥ (1 + δ)(n/2) ] ≤ E[ X ]

(1 + δ)(n/2)
=

n/2
(1 + δ)(n/2)

=
1

1 + δ

Not good! Independent of n
Chebychev inequality :

P[ (X − n/2) ≥ δ(n/2) ] ≤ P
[

(X − n/2)2 ≥ (δ(n/2))2
]

≤ 4Var [ X ]

δ2n2 =
1
δ2n

Better! Linear in n
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Markov and Chebychev use the first and second moment of the random
variable. Can we keep going?

Yes.

We can consider first, second, third and more moments! that is the basic idea
behind the Chernoff Bounds
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Chernoff Bounds

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . . + Xn and µ = E[ X ] =

∑
pi . Then, for any

δ > 0 it holds that

P[ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

and for t > µ it holds that

P[ X ≥ t ] ≤ e−µ
(eµ

t

)t
,

Chernoff Bounds
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Example: Coin Flip

Consider n fair coins and let X be the total number of head. Then

P[ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

Node that the above expression equals 1 only for δ = 0, and then it gives a
value strictly less than 1 (Ex: check this!). Note as well the inequality is
exponential in n, (for fixed δ) i.e. much better than Chebychev inequality.
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Example: Coin Flip

Consider 100 independent coin flips . We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

Markov’s inequality : X =
∑100

i=1 Xi , Xi ∈ {0, 1} and E[ X ] = 100 · 1
2 = 50.

P[ X ≥ 3/2 · E[ X ] ] ≤ 2/3 = 0.666.

Chebyshev’s inequality : Var [ X ] =
∑100

i=1 Var [ Xi ] = 100 · (1/2)2 = 25.

P[ |X − µ| ≥ t ] ≤ Var [ X ]

t2 ,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

The Chernoff bound (first) with δ = 1/2 gives:

P[ X ≥ 3/2 · E[ X ] ] ≤
(

e1/2

(3/2)3/2

)50

= 0.004472

the exact probability is 0.00000028 . . .

Chernoff bound yields a more accurate result but needs independence!
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Example: Balls into Bins

Balls into Bins is another important problem in the design and analysis of
randomised algorithm.

You have n boxes and m balls. Each ball is allocated in a box uniformly
at random.

Balls into Bins Problem

In the context of Computer Science there are several interpretations

1. Boxes are a Hash Table, balls are items

2. Boxes are processors and balls are jobs

3. Boxes are servers and ball are queries

Exercise: Think about the relation between the Balls into Bins problem and
the Coupon Collector Problem.

Lecture 3: Concentration Inequalities 14



You have n boxes and m balls. Each ball is allocated in a box uniformly
at random.

Balls into Bins Problem

How large is the maximum load?
Balls into Bins question

Focus on one bin. Let Xi the indicator variable that indicates if ball i is
assigned to this bin. The total balls in the bin is given by X =

∑
i Xi . Note

that pi = P[ Xi = 1 ] = 1/n.

Suppose that m = 2n log n, then µ = E[ X ] = 2 log n

P[ X ≥ t ] ≤ e−µ(eµ/t)t

By the Chernoff Bound,

P[ X ≥ 6 log n ] ≤ e−2 log n
(

2e log n
6 log n

)6 log n
≤ e−2 log n = n−2
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Example: Balls into Bins

Let Ej be the event that bin j receives more than 6 log n balls.

We are interested in the probability that at least one bin receives more
than 6 log n balls

This is the event ∪n
j=1Ej

By the Union Bound, P
[
∪n

j=1Ej
]
≤
∑n

j=1 P[ Ej ] ≤ n × n−2 = n−1

Therefore whp, no bin receives more than 6 log n balls

Note that the max loaded bin receives at least 2 log n balls (why?). So our
bound is pretty sharp.

whp stands for with high probability :
An event E (that implicitly depends on an input parameter n) occurs whp if

P[ Ec ]→ 0 as n→∞.
This is a very standard notation in randomised algorithms

but it may very from author to author. Be careful!
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Example: Balls into Bins

Consider now the case m = n, i.e. same number of balls and bins.
Using the Chernoff Bounds

P[ X > t ] ≤ e−1
(e

t

)t
≤
(e

t

)t

P[ X ≥ t ] ≤ e−µ(eµ/t)t

By setting t = 4 log n/ log log n, we obtain that P[ X > t ] ≤ n−2. Indeed

(
e log log n

4 log n

)4 log n/ log log n

= exp

(
4 log n

log log n
· log

(
e log log n

4 log n

))
(1)

The term inside the exponential is(
4 log n

log log n
· (log(4/e) + log log log n − log log n)

)
≤
(

4 log n
log log n

(
−1

2
log log n

))
obtaining that P[ X > t ] ≤ n−4/2 = n−2. This inequality only works

for large enough n
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Example: Balls into Bins

We just proved that

P[ X > 4 log n/ log log n ] ≤ n−2,

thus by the union bound , no bin receives more than O (log n/ log log n) balls
with probability at least 1− 1/n.

You will see in your Exercise class how to prove that whp at least one bin
receives at least c log n/ log log n balls, for some c. You will learn a proof
strategy called the Probabilistic Method.
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Example: Balls into Bins

Conclusions
If the number of balls is 2 log n times n (the number of bins), then to
distribute balls at random is a good algorithm

This is because the worst case load is whp. 6 log n, while the expected
number of balls is 2 log n

For the case n = m, the algorithm is not good, because the maximum
load is whp. Θ(log n/ log log n), while the expected number of balls per bin
is 1.

For the case n = m, we can improve the balls into bin process by
sampling two bins in each step, then assigning the ball into the bin with
lesser load. This gives a maximum load Θ(log log n) with probability at
least 1− 1/n.

This is called the power of two choices :
It is a standard technique to improve the
performance of randomised algorithms.
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Chernoff Bound: Proof

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . . + Xn and µ = E[ X ] =

∑
pi . Then, for any

δ > 0 it holds that

P[ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

Chernoff Bound

Proof:
1. For λ > 0,

P[ X ≥ (1 + δ)µ ] ≤
eλx is incr

P
[

eλX ≥ eλ(1+δ)µ
]
≤

Markov
e−λ(1+δ)µE

[
eλX

]
2. E

[
eλX ] = E

[
eλ

∑
Xi
]

=
indep

∏n
i=1 E

[
eλXi

]
3.

E
[

eλXi
]

= eλpi + (1− pi ) = 1 + pi (eλ − 1) ≤
1+x≤ex

for x>0

epi (e
λ−1)
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Chernoff Bound: Proof

1. For λ > 0,

P[ X ≥ (1 + δ)µ ] =
eλx is incr

P
[

eλX ≥ eλ(1+δ)µ
]
≤

Markov
e−λ(1+δ)µE

[
eλX

]
2. E

[
eλX ] = E

[
eλ

∑
Xi
]

=
indep

∏n
i=1 E

[
eλXi

]
3.

E
[

eλXi
]

= eλpi + (1− pi ) = 1 + pi (eλ − 1) ≤
1+x≤ex

for x>0

epi (e
λ−1)

4. Putting all together

P[ X ≥ (1 + δ)µ ] ≤ e−λ(1+δ)µ
n∏

i=1

epi (e
λ−1) = e−λ(1+δ)µeµ(e

λ−1)

5. Choose λ = log(1 + δ) > 0 to get the result.
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Chernoff Bound: The recipe

The proof of the Chernoff bound is based in three key steps. These are

1. Let λ > 0, then

P[ X ≥ (1 + δ)µ ] ≤ e−λ(1+δ)µE
[

eλX
]

2. Compute an upper bound for E
[

eλX ] (This is the hard one)
3. Optimise the value of λ > 0.

The function λ→ E
[

eλX ] is called the moment-generating function of X
and it is very important to obtain sharp concentration inequalities.
Exercise: prove that P[ X ≥ t ] ≤ e−µ

( eµ
t

)t
,
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Chernoff Bounds: Lower Tails

We can also use Chernoff Bounds to shows that a random variable is not too
small compared to its mean.

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . . + Xn and µ = E[ X ] =

∑
pi . Then, for any

δ > 0 it holds that

P[ X ≤ (1− δ)µ ] ≤
[

e−δ

(1− δ)1−δ

]µ
.

and for any t < µ

P[ X ≤ t ] ≤ e−µ
(eµ

t

)t
.

Chernoff Bounds: Lower Tails

Exercise: Prove it.
Hint: multiply both sides by −1 and repeat the proof of the Chernoff Bound
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The useful Chernoff Bounds

Our current form of the Chernoff Bound is rather atrocious. We can derive a
slightly weaker but more readable version.

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . .+ Xn and µ = E[ X ] =

∑
pi . Then,

For all t > 0,
P[ X ≥ E[ X ] + t ] ≤ e−2t2/n

P[ X ≤ E[ X ]− t ] ≤ e−2t2/n

For 0 < δ < 1,

P[ X ≥ (1 + δ)E[ X ] ] ≤ exp

(
−δ

2E[ X ]

3

)

P[ X ≤ (1− δ)E[ X ] ] ≤ exp

(
−δ

2E[ X ]

2

)

Nicer Chernoff Bounds

Exercise: Prove it
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Applications: QuickSort

Quick sort is a sorting algorithm that works as following.

Input: Array of different number A.
Output: array A sorted in increasing order

Pick an element from the array, the so-called pivot .

If |A| = 0 or |A| = 1; return A.
Else

Generate two subarrays A1 and A2:
A1 contains the elements that are smaller than the pivot ;
A2 contains the elements that are greater than the pivot ;
Recursively sort A1 and A2.

Algorithm: QuickSort

E.g. Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4), choose 6 as pivot, then we get
A1 = (2, 1, 5, 3, 4) and A2 = (8, 9, 7).
It is well-known that the worst-case complexity (number of comparisons) of
quick sort is O(n2). This happens when pivots are pretty bad, generating one
large array and one small array.
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Applications: QuickSort

(2,8,9,1,7,5,6,3,4)

2,1,5,3,4

1 5,3,4

3 5

8,9,7

8,9

8

Note that the number of comparison performed in quick sort is equiv-
alent to the sum of the height of all nodes in the tree. In this case

0 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 = 17.
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Applications: QuickSort

How to pick a good pivot ? we don’t, just pick one at random.

This should be your stan-
dard answer in this course

Let’s analyse quicksort with random pivots.

1. Consider n different number, wlog, {1, . . . , n}
2. let Hi be the last level where i appears in the tree. Then the number of

comparison is H =
∑n

i=1 Hi

3. we will prove that exists C > 0 such that

P[ ∀i,Hi ≤ C log n ] ≥ 1− 1/n

4. actually, we will prove something equivalent but easier: we will prove that
all leaves of the tree are at distance at most C log n from the root with
probability at least 1− 1/n.

5. then H =
∑n

i=1 Hi ≤ Cn log n, with probability at least 1− 1/n.
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Applications: QuickSort

Let P be a path from the root to a leaf. A node in P is called good if the
corresponding pivot partition the array into two subarrays each of size at
least 1/3 of the previous one, the node is bad otherwise.
Denote by st the size of the array at level t in P.

(2,8,9,1,7,5,6,3,4)

2,1,5,3,4

1 5,3,4

3 5

8,9,7

8,9

8

E.g. Path: (2, 8, 9, 1, 7, 5, 6, 3, 4)→ (2, 1, 5, 3, 4)→ (5, 3, 4)→ (5)
The vertices are: good, bad, good
s0 = 9, s1 = 5, s2 = 3, s3 = 1.
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Applications: QuickSort

Let P be a path from the root to a leaf. A node in P is called good if the
corresponding pivot partition the array into two subarrays each of size at
least 1/3 of the previous one, the node is bad otherwise.

Denote by st the size of the array at level t in P.

After a good vertex we have that st ≤ (2/3)st−1.

Therefore, there are at most T = log n
log(3/2) ≤ 2 log n good nodes in a path P,

Set C = 21 and suppose that |P| > C log n.

this implies that the number of bad vertices in the first 21 log n nodes is
more than 19 log n.
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Consider the first b21 log nc vertices of P. Denote by Xi = 1 if the node at
height i of P is bad, and Xi = 0 if it is good. Let X =

∑b21 log nc
i=1 Xi .

Note that the Xi ’s are independent and P[ Xi = 1 ] = 2/3, and
E[ X ] = (2/3)21 log n = 14 log n. Then, by the (nicer) Chernoff Bounds

P[ X > E[ X ] + t ] ≤ e−2t2/n

P[ X > 19 log n ] = P[ X > E[ X ] + 5 log n ] ≤ e−2(5 log n)2/(21 log n)

= e−(50/21) log n ≤ 1/n2.

Hence, we conclude the path has more than 21 log n nodes with
probability at most n−2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n−1
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Applications: QuickSort

Remarks

It is know that no sorting algorithm based on comparison takes less than
Ω(n log n)

The constant C can be improved a little bit, but in any case we will obtain
that our randomised version of QuickSort that whp compares O(n log n)
pairs

It is possible to deterministically choose the best pivot that divide the array
into two subarrays of the same size.

The later requires to compute the median of the array in linear time, which
is not easy to do

Randomised solution for QuickSort is much easier to implement.
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