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Concentration Inequalities

= Concentration refers to the phenomena where random variables are very
close to their mean.

= This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour
= |t gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim

Sl
Lecture 2: Concentration Inequalities



Outline

Basic Concentration inequalities
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Boole Inequality - Union Bound

Boole Inequality is the simplest of all probabilistic inequalities but it is quite
handy.

Union-Bound

Let A, ..., A, be a collection of events in X. Then

P[OA/} < iP[Ai]

For a short proof:

1. Denote by 1,4 the random variable that takes value 1 if A; holds, 0
otherwise'

2. E[14,] = P[Ai] (Check this)
3. ltis clearthat 1,yp » < 3" 14 (Check this)
4. Taking expectation we conclude the result.

‘Formally, this random variable is 1Ai(“’) which takes value 1 if w € A;, 0 otherwise

Sl
' Lecture 2: Concentration Inequalities



Example: Coupon Collector

This is a very important example in the design and analysis of randomised
algorithms.

Coupon Collector Problem

Suppose that there are N coupons to be collected from the cereal box.
Every morning you open your cereal box and get one coupon. Each
coupon appears with the same probability in the box, i.e. 1/N.

Exercise

1. Prove it takes NS~ . 1 ~ Nlog N expected boxes to collect all coupons
k=1 k p

2. Use the Union Bound to prove that the probability it takes us more than
Nlog(N) + cN boxes to collect all the coupons is smaller than or equal to
efc

= It is useful to remember that 1 — x < e * for all x < 1
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Markov Inequality

Markov Inequality is the second most basic, and probably the most important
inequality in probability.
Markov Inequality
If X is a non-negative random variable and a > 0, then

P[X > a] <E[X]/a

Again, we can write a short proof:
* P[X >a] =E[1(x2a)]
“1pca < Flpca <3
* Then P[X > a] < 841
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Markov Inequality

If X is a non-negative random variable and a > 0, then

P[X > a] <E[X]/a

From the Markov Inequality, we get the following
Chevyshev Inequality

If X is a random variable and a > 0, then

P[|X —E[X]| > a] < Var[X] /2.

Exercise: Prove the Chevyshev Inequality

Why are these inequalities important?
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Example: Coin flip

Consider n fair coins and let X be the total number of head. In an experiment
we expect to see around n/2 heads. Can we justify that? Let§ > 0

= Markov inequality :

Ex] __ 2
PIX= (1 +0)(0/2)]s G 5yi72) = Gxo)n2) ~ 140

/1l

(Not good! Independent of n)

= Chebychev inequality :

P[(X—n/2)>4(n/2)] < P[IX—n/2|>5(n/2)]
4var[ X] 1

22 82n
AN

( Better! Linear in n )

IN
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Example: RandMaxCut

Recall the Max-Cut problem from last class.
= Given a undirected graph G = (V, E).

= Denote by e(A, A°) the number of edges with one end-point in A and the
other in A°.

= We want to find maxacv e(A, A°)

Algorithm: RandMaxCut

Input G = (V, E).

-Start with S = (.

-For each v € V add v to S independently with probability 1/2.
Return S.
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Example: RandMaxCut

For the analysis it is useful to define a few random variables
= Let A, the event that i belongs to the random set S

&

Xi = 14, is an indicator random variable, that takes value 1 if A; holds,
0 otherwise

Define Yj = Xi(1 — X;) + (1 — Xi)X;

We are interested in the random variable Z = (S, S°) = > e Yi
E[Z] = Z{i,j}eE(G) E[Y;]=|E|/2

Observe that

E[Z] E[Z]

> >1/2

maxycv e(U,U°) — |E| — /

Hence, in expectation, our algorithm is a (1/2)-approximation. l.e. the
expected value of our solution is at least half of the optimal solution.
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Example: RandMaxCut

Lets compute the variance of Z.

E[ZZ] = S ST E[V Vel

ji€E kecE
= D> E[Yil+ > [ D E[ViYel
icE jeE \ kece
ke
< D CEYI+> | DD ELYGIE] Yiel
i€E j€E \ keeE
ke
< D EY+Y. <Z E[Yff]E[Yke]>
jcE j€E \kecE

= E[Z]+E[Z)
Using that Var [ Z] = E[ Z2] — E[ Z]?, we get

Var[Z] < E[Z].
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Example: RandMaxCut

= We already know that E[ e(S, S°)] = |E|/2
= Also Var[e(S,S%)] < E[e(S,S9)].
= Chevyshev’s inequality says

]<Var[e(

S, 591 _ E[e(S, )]
a2 - a2

P[le(S,S°) —E[e(S,S%)]| > a

= Choose a = C+/|E|, where C can be a large constant. Then

P[le(s,5%) ~ E[e(5,89)] | > CVIET] < 55

= This means that the random solution does not moves much from its mean.
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Markov and Chebychev use the first and second moment of the random
variable. Can we keep going?

= Yes.
We can consider first, second, third and more moments! that is the basic idea
behind the Chernoff Bounds
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Chernoff Bounds

Chernoff Bounds

Suppose Xi, ..., X, are independent Bernoulli random variables with pa-
rameter p;. Let X = Xi + ...+ X, and u = E[X] = >_ pi. Then, for any
6 > 0 it holds that

s M
P[X > (1+0)u] < {ﬁ} .

and for t > p it holds that

PIx> < (%)

ﬁl;
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Example: Coin Flip

Consider n fair coins and let X be the total number of head. Then

5 n/2
P[X > (1+0)(n/2)] < {U;;w}

= Note that the above expression equals 1 only for § = 0, and then it gives a
value strictly less than 1 (Ex: check this!)

= Note as well the inequality is exponential in n, (for fixed §) i.e. much better
than Chebychev inequality.
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Example: Coin Flip

Consider 100 independent coin flips . We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

= Markov’s inequality : X = 321 X;, X € {0,1} and E[X] = 100 - } = 50.
P[X >3/2-E[X]] <2/3 = 0.666.
* Chebyshev’s inequality : Var[X] = >"1% Var [ X;] = 100 - (1/2)? = 25.

Var[ X]
©

P[IX —pl = t] <

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

= The Chernoff bound (first) with § = 1/2 gives:

1/2 50

e ) — 0.004472

(3/2)32
= the exact probability is 0.00000028 . ..

P[X >3/2 E[X]] < <

[Chernoff bound yields a more accurate result but needs independence! ]

affn
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Density

Histogram for number of heads
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