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Concentration Inequalities

Concentration refers to the phenomena where random variables are very
close to their mean.

This is very useful in randomised algorithms as it ensures an almost
deterministic behaviour
It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim
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Outline

Basic Concentration inequalities
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Boole Inequality - Union Bound

Boole Inequality is the simplest of all probabilistic inequalities but it is quite
handy.

Let A1, . . . ,An be a collection of events in Σ. Then

P

[
n⋃

i=1

Ai

]
≤

n∑
i=1

P[ Ai ]

Union-Bound

For a short proof:

1. Denote by 1Ai the random variable that takes value 1 if Ai holds, 0
otherwise1

2. E[ 1Ai ] = P[ Ai ] (Check this)

3. It is clear that 1⋃n
i=1 Ai

≤
∑n

i=1 1Ai (Check this)

4. Taking expectation we conclude the result.

1Formally, this random variable is 1Ai (ω) which takes value 1 if ω ∈ Ai , 0 otherwise
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Example: Coupon Collector

This is a very important example in the design and analysis of randomised
algorithms.

Suppose that there are N coupons to be collected from the cereal box.
Every morning you open your cereal box and get one coupon. Each
coupon appears with the same probability in the box, i.e. 1/N.

Coupon Collector Problem

Exercise

1. Prove it takes N
∑N

k=1
1
k ≈ N log N expected boxes to collect all coupons

2. Use the Union Bound to prove that the probability it takes us more than
N log(N) + cN boxes to collect all the coupons is smaller than or equal to
e−c .

It is useful to remember that 1− x ≤ e−x for all x < 1
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Markov Inequality

Markov Inequality is the second most basic, and probably the most important
inequality in probability.

If X is a non-negative random variable and a > 0, then

P[ X ≥ a ] ≤ E[ X ] /a.

Markov Inequality

Again, we can write a short proof:

P[ X ≥ a ] = E
[

1{X≥a}
]

1{X≥a} ≤ X
a 1{X≥a} ≤ X

a

Then P[ X ≥ a ] ≤ E[ X ]
a
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If X is a non-negative random variable and a > 0, then

P[ X ≥ a ] ≤ E[ X ] /a.

Markov Inequality

From the Markov Inequality, we get the following

If X is a random variable and a > 0, then

P[ |X − E[ X ] | ≥ a ] ≤ Var [ X ] /a2.

Chevyshev Inequality

Exercise: Prove the Chevyshev Inequality

Why are these inequalities important?
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Example: Coin flip

Consider n fair coins and let X be the total number of head. In an experiment
we expect to see around n/2 heads. Can we justify that? Let δ > 0

Markov inequality :

P[ X ≥ (1 + δ)(n/2) ] ≤ E[ X ]

(1 + δ)(n/2)
=

n/2
(1 + δ)(n/2)

=
1

1 + δ

Not good! Independent of n
Chebychev inequality :

P[ (X − n/2) ≥ δ(n/2) ] ≤ P[ |X − n/2| ≥ δ(n/2) ]

≤ 4Var [ X ]

δ2n2 =
1
δ2n

Better! Linear in n
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Example: RandMaxCut

Recall the Max-Cut problem from last class.

Given a undirected graph G = (V ,E).

Denote by e(A,Ac) the number of edges with one end-point in A and the
other in Ac .

We want to find maxA⊆V e(A,Ac)

Input G = (V ,E).
-Start with S = ∅.
-For each v ∈ V add v to S independently with probability 1/2.
Return S.

Algorithm: RandMaxCut

Lecture 2: Concentration Inequalities 9



Example: RandMaxCut

For the analysis it is useful to define a few random variables

Let Ai the event that i belongs to the random set S

Xi = 1Ai , is an indicator random variable, that takes value 1 if Ai holds,
0 otherwise

Define Yij = Xi (1− Xj ) + (1− Xi )Xj

We are interested in the random variable Z = e(S,Sc) =
∑
{i,j}∈E(G) Yij

E[ Z ] =
∑
{i,j}∈E(G) E[ Yij ] = |E |/2

Observe that
E[ Z ]

maxU⊆V e(U,Uc)
≥ E[ Z ]

|E | ≥ 1/2

Hence, in expectation, our algorithm is a (1/2)-approximation. I.e. the
expected value of our solution is at least half of the optimal solution.
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Example: RandMaxCut

Lets compute the variance of Z .

E
[

Z 2
]

=
∑
ij∈E

∑
k`∈E

E[ YijYk` ] (1)

=
∑
ij∈E

E[ Yij ] +
∑
ij∈E

∑
k`∈E
k` 6=ij

E[ YijYk` ]

 (2)

≤
∑
ij∈E

E[ Yij ] +
∑
ij∈E

∑
k`∈E
k` 6=ij

E[ Yij ] E[ Yk` ]

 (3)

≤
∑
ij∈E

E[ Yij ] +
∑
ij∈E

(∑
k`∈E

E[ Yij ] E[ Yk` ]

)
(4)

= E[ Z ] + E[ Z ]2 (5)

Using that Var [ Z ] = E
[

Z 2 ]− E[ Z ]2, we get

Var [ Z ] ≤ E[ Z ] .
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Example: RandMaxCut

We already know that E[ e(S,Sc) ] = |E |/2
Also Var [ e(S,Sc) ] ≤ E[ e(S,Sc) ].

Chevyshev’s inequality says

P
[
|e(S,Sc)− E

[
e(S,Sc)

]
| ≥ a

]
≤ Var [ e(S,Sc) ]

a2 ≤ E[ e(S,Sc) ]

a2

Choose a = C
√
|E |, where C can be a large constant. Then

P
[
|e(S,Sc)− E

[
e(S,Sc)

]
| ≥ C

√
|E |
]
≤ 1

2C2

This means that the random solution does not moves much from its mean.
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Markov and Chebychev use the first and second moment of the random
variable. Can we keep going?

Yes.

We can consider first, second, third and more moments! that is the basic idea
behind the Chernoff Bounds
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Chernoff Bounds

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . . + Xn and µ = E[ X ] =

∑
pi . Then, for any

δ > 0 it holds that

P[ X ≥ (1 + δ)µ ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
.

and for t > µ it holds that

P[ X ≥ t ] ≤ e−µ
(eµ

t

)t
,

Chernoff Bounds
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Example: Coin Flip

Consider n fair coins and let X be the total number of head. Then

P[ X ≥ (1 + δ)(n/2) ] ≤
[

eδ

(1 + δ)(1+δ)

]n/2

Note that the above expression equals 1 only for δ = 0, and then it gives a
value strictly less than 1 (Ex: check this!)
Note as well the inequality is exponential in n, (for fixed δ) i.e. much better
than Chebychev inequality.
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Example: Coin Flip

Consider 100 independent coin flips . We wish to find an upper bound on the
probability that the number of heads is greater or equal than 75.

Markov’s inequality : X =
∑100

i=1 Xi , Xi ∈ {0, 1} and E[ X ] = 100 · 1
2 = 50.

P[ X ≥ 3/2 · E[ X ] ] ≤ 2/3 = 0.666.

Chebyshev’s inequality : Var [ X ] =
∑100

i=1 Var [ Xi ] = 100 · (1/2)2 = 25.

P[ |X − µ| ≥ t ] ≤ Var [ X ]

t2 ,

and plugging in t = 25 gives an upper bound of 25/252 = 1/25 = 0.04,
much better than what we obtained by Markov’s inequality.

The Chernoff bound (first) with δ = 1/2 gives:

P[ X ≥ 3/2 · E[ X ] ] ≤
(

e1/2

(3/2)3/2

)50

= 0.004472

the exact probability is 0.00000028 . . .

Chernoff bound yields a more accurate result but needs independence!
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Histogram for number of heads
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