Lecture 2: Concentration Inequalities

Nicolás Rivera

John Sylvester Luca Zanetti Thomas Sauerwald

Concentration Inequalities

- Concentration refers to the phenomena where random variables are very close to their mean.
- This is very useful in randomised algorithms as it ensures an almost deterministic behaviour
- It gives us the best of two worlds:

1. Randomised Algorithms: Easy to Design and Implement
2. Deterministic Algorithms: They do what they claim

Outline

Basic Concentration inequalities

Boole Inequality - Union Bound

Boole Inequality is the simplest of all probabilistic inequalities but it is quite handy.
Let A_{1}, \ldots, A_{n} be a collection of events in Σ. Then

$$
\mathbf{P}\left[\bigcup_{i=1}^{n} A_{i}\right] \leq \sum_{i=1}^{n} \mathbf{P}\left[A_{i}\right]
$$

For a short proof:

1. Denote by $\mathbf{1}_{A_{i}}$ the random variable that takes value 1 if A_{i} holds, 0 otherwise ${ }^{1}$
2. $\mathbf{E}\left[\mathbf{1}_{A_{i}}\right]=\mathbf{P}\left[A_{i}\right]$ (Check this)
3. It is clear that $\mathbf{1}_{\cup_{i=1}^{n} A_{i}} \leq \sum_{i=1}^{n} \mathbf{1}_{A_{i}}$ (Check this)
4. Taking expectation we conclude the result.
[^0]
Example: Coupon Collector

This is a very important example in the design and analysis of randomised algorithms.

Coupon Collector Problem

Suppose that there are N coupons to be collected from the cereal box. Every morning you open your cereal box and get one coupon. Each coupon appears with the same probability in the box, i.e. $1 / N$.

Exercise

1. Prove it takes $N \sum_{k=1}^{N} \frac{1}{k} \approx N \log N$ expected boxes to collect all coupons
2. Use the Union Bound to prove that the probability it takes us more than $N \log (N)+c N$ boxes to collect all the coupons is smaller than or equal to e^{-c}.

- It is useful to remember that $1-x \leq e^{-x}$ for all $x<1$

Markov Inequality

Markov Inequality is the second most basic, and probably the most important inequality in probability.
_ Markov Inequality
If X is a non-negative random variable and $a>0$, then

$$
\mathbf{P}[X \geq a] \leq \mathbf{E}[X] / a .
$$

Again, we can write a short proof:

- $\mathbf{P}[X \geq a]=\mathbf{E}\left[\mathbf{1}_{\{x \geq a\}}\right]$
- $\mathbf{1}_{\{x \geq a\}} \leq \frac{X}{a} \mathbf{1}_{\{x \geq a\}} \leq \frac{X}{a}$
- Then $\mathbf{P}[X \geq a] \leq \frac{\mathrm{E} X]}{a}$

Markov Inequality
If X is a non-negative random variable and $a>0$, then

$$
\mathbf{P}[X \geq a] \leq \mathbf{E}[X] / a .
$$

From the Markov Inequality, we get the following

Chevyshev Inequality

If X is a random variable and $a>0$, then

$$
\mathbf{P}[|X-\mathbf{E}[X]| \geq a] \leq \operatorname{Var}[X] / a^{2}
$$

Exercise: Prove the Chevyshev Inequality

Why are these inequalities important?

Example: Coin flip

Consider n fair coins and let X be the total number of head. In an experiment we expect to see around $n / 2$ heads. Can we justify that? Let $\delta>0$

- Markov inequality :

$$
\mathbf{P}[X \geq(1+\delta)(n / 2)] \leq \frac{\mathbf{E}[X]}{(1+\delta)(n / 2)}=\frac{n / 2}{(1+\delta)(n / 2)}=\frac{1}{1+\delta}
$$

- Chebychev inequality :

$$
\mathbf{P}[(X-n / 2) \geq \delta(n / 2)] \leq \mathbf{P}[|X-n / 2| \geq \delta(n / 2)]
$$

$$
\leq \frac{4 \operatorname{Var}[X]}{\delta^{2} n^{2}}=\frac{1}{\delta^{2} n}
$$

Better! Linear in n

Example: RandMaxCut

Recall the Max-Cut problem from last class.

- Given a undirected graph $G=(V, E)$.
- Denote by $e\left(A, A^{c}\right)$ the number of edges with one end-point in A and the other in A^{c}.
- We want to find $\max _{A \subseteq v} e\left(A, A^{c}\right)$

Algorithm: RandMaxCut
Input $G=(V, E)$.
-Start with $S=\emptyset$.
-For each $v \in V$ add v to S independently with probability $1 / 2$.
Return S.

Example: RandMaxCut

For the analysis it is useful to define a few random variables

- Let A_{i} the event that i belongs to the random set S
- $X_{i}=\mathbf{1}_{A_{i}}$, is an indicator random variable, that takes value 1 if A_{i} holds, 0 otherwise
- Define $Y_{i j}=X_{i}\left(1-X_{j}\right)+\left(1-X_{i}\right) X_{j}$
- We are interested in the random variable $Z=e\left(S, S^{c}\right)=\sum_{\{i, j\} \in E(G)} Y_{i j}$
- $\mathrm{E}[Z]=\sum_{\{i, j\} \in E(G)} \mathrm{E}\left[Y_{i j}\right]=|E| / 2$
- Observe that

$$
\frac{\mathrm{E}[Z]}{\max u \subseteq v e\left(U, U^{c}\right)} \geq \frac{\mathrm{E}[Z]}{|E|} \geq 1 / 2
$$

- Hence, in expectation, our algorithm is a ($1 / 2$)-approximation. I.e. the expected value of our solution is at least half of the optimal solution.

Example: RandMaxCut

Lets compute the variance of Z.

$$
\begin{align*}
\mathbf{E}\left[Z^{2}\right] & =\sum_{i j \in E} \sum_{k \ell \in E} \mathbf{E}\left[Y_{i j} Y_{k \ell}\right] \tag{1}\\
& =\sum_{i j \in E} \mathbf{E}\left[Y_{i j}\right]+\sum_{i j \in E}\left(\sum_{\substack{k \ell \in E \\
k \ell \neq j=}} \mathbf{E}\left[Y_{i j} Y_{k \ell}\right]\right) \tag{2}\\
& \leq \sum_{i j \in E} \mathbf{E}\left[Y_{i j}\right]+\sum_{i j \in E}\left(\sum_{\substack{k \ell \in E \\
k \ell \neq j}} \mathbf{E}\left[Y_{i j}\right] \mathbf{E}\left[Y_{k \ell}\right]\right) \tag{3}\\
& \leq \sum_{i j \in E} \mathbf{E}\left[Y_{i j}\right]+\sum_{i j \in E}\left(\sum_{k \ell \in E} \mathbf{E}\left[Y_{i j}\right] \mathbf{E}\left[Y_{k \ell}\right]\right) \tag{4}\\
& =\mathbf{E}[Z]+\mathbf{E}[Z]^{2} \tag{5}
\end{align*}
$$

Using that $\operatorname{Var}[Z]=\mathbf{E}\left[Z^{2}\right]-\mathbf{E}[Z]^{2}$, we get

$$
\operatorname{Var}[Z] \leq \mathrm{E}[Z] .
$$

Example: RandMaxCut

- We already know that $\mathrm{E}\left[e\left(S, S^{c}\right)\right]=|E| / 2$
- Also $\operatorname{Var}\left[e\left(S, S^{c}\right)\right] \leq \mathbf{E}\left[e\left(S, S^{c}\right)\right]$.
- Chevyshev's inequality says

$$
\mathbf{P}\left[\left|e\left(S, S^{c}\right)-\mathbf{E}\left[e\left(S, S^{c}\right)\right]\right| \geq a\right] \leq \frac{\operatorname{Var}\left[e\left(S, S^{c}\right)\right]}{a^{2}} \leq \frac{\mathbf{E}\left[e\left(S, S^{c}\right)\right]}{a^{2}}
$$

- Choose $a=C \sqrt{|E|}$, where C can be a large constant. Then

$$
\mathbf{P}\left[\left|e\left(S, S^{c}\right)-\mathbf{E}\left[e\left(S, S^{c}\right)\right]\right| \geq C \sqrt{|E|}\right] \leq \frac{1}{2 C^{2}}
$$

- This means that the random solution does not moves much from its mean.

Markov and Chebychev use the first and second moment of the random variable. Can we keep going?

- Yes.

We can consider first, second, third and more moments! that is the basic idea behind the Chernoff Bounds

Chernoff Bounds

Chernoff Bounds
Suppose X_{1}, \ldots, X_{n} are independent Bernoulli random variables with parameter p_{i}. Let $X=X_{1}+\ldots+X_{n}$ and $\mu=\mathbf{E}[X]=\sum p_{i}$. Then, for any $\delta>0$ it holds that

$$
\mathbf{P}[X \geq(1+\delta) \mu] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{\mu}
$$

and for $t>\mu$ it holds that

$$
\mathbf{P}[X \geq t] \leq e^{-\mu}\left(\frac{e \mu}{t}\right)^{t}
$$

Example: Coin Flip

Consider n fair coins and let X be the total number of head. Then

$$
\mathbf{P}[X \geq(1+\delta)(n / 2)] \leq\left[\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right]^{n / 2}
$$

- Note that the above expression equals 1 only for $\delta=0$, and then it gives a value strictly less than 1 (Ex: check this!)
- Note as well the inequality is exponential in n, (for fixed δ) i.e. much better than Chebychev inequality.

Example: Coin Flip

Consider 100 independent coin flips. We wish to find an upper bound on the probability that the number of heads is greater or equal than 75 .

- Markov's inequality : $X=\sum_{i=1}^{100} X_{i}, X_{i} \in\{0,1\}$ and $\mathrm{E}[X]=100 \cdot \frac{1}{2}=50$.

$$
\mathbf{P}[X \geq 3 / 2 \cdot \mathbf{E}[X]] \leq 2 / 3=0.666 .
$$

- Chebyshev's inequality : $\operatorname{Var}[X]=\sum_{i=1}^{100} \operatorname{Var}\left[X_{i}\right]=100 \cdot(1 / 2)^{2}=25$.

$$
\mathbf{P}[|X-\mu| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

and plugging in $t=25$ gives an upper bound of $25 / 25^{2}=1 / 25=0.04$, much better than what we obtained by Markov's inequality.

- The Chernoff bound (first) with $\delta=1 / 2$ gives:

$$
\mathbf{P}[X \geq 3 / 2 \cdot \mathbf{E}[X]] \leq\left(\frac{e^{1 / 2}}{(3 / 2)^{3 / 2}}\right)^{50}=0.004472
$$

- the exact probability is $0.00000028 \ldots$

Chernoff bound yields a more accurate result but needs independence!

Histogram for number of heads

[^0]: ${ }^{1}$ Formally, this random variable is $\mathbf{1}_{A_{i}}(\omega)$ which takes value 1 if $\omega \in A_{i}, 0$ otherwise

