
Lecture 1: Introduction
John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Lent 1920



Outline

Introduction

Probability Reviews

Our first randomised Algorithm

Lecture 1: Introduction 2



Probability and Computation

What? Randomised algorithms utilise random bits to compute their output.

Why? A randomised algorithm often provides an efficient (and elegant!)
solution or approximation to a problem that is costly to solve deterministically.

“... If somebody would ask me, what in the last 10
years, what was the most important change in the
study of algorithms I would have to say that people
getting really familiar with randomized algorithms had
to be the winner.”
- Donald E. Knuth

How? This theory course aims to strengthen your knowledge of probability
theory and apply this to analyse examples of randomised algorithm.

“ What if I don’t care about randomised algorithms?”
Much of the theory in this course (Markov Chains, Concentration of measure,
Spectral theory) is very relevant to current “hot” areas of research and
employment such as Data science and Machine learning.
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Randomised Algorithms

Ranking Websites Sampling/Counting

A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



Computer Science Mathematics

Biology Physics

. . .

Randomised
Algorithms

Graph Clustering/Sparsification Particle Processes
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Outline of the Course

Teaching Plan
Probability and Concentration (4 lectures) - Nicolas Rivera .

Markov Chains (4 lectures) - John Sylvester.

Spectral techniques for MC’s and algorithms (4 lectures) - Luca Zanetti.

Applications to randomised algorithms (4 lectures) - Thomas Sauerwald.

Running along side these lectures will be

Problem classes (6/7 total) - Hayk Saribekyan and Leran Cai.

Lecture and Problem class times
Lectures: Monday and Wednesday 2pm-3pm in LT2

Problem class: Friday 2pm-3pm in LT2 (Starting 24th Jan)

Assessment
Recall: There is a “tick style” Homework Assessment to be submitted by
2pm Monday 27th Jan via moodle and at reception.

There will also be a 1.5 hour Written Test at the end of the term (Friday
13th March)
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Some old stuff you should know

In this course we will assume some basic knowledge of probability:

random variable

computation of mean and variance

notions of independence

general ideas of how to compute probabilities (manipulation and some
counting)

You should also be familiar with some basic computer science/discrete
mathematics knowledge like

graphs

basic algorithms (sorting, some graph algorithm, etc)
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Probability Space

In Probability Theory we wish to evaluate the likelihood of certain results from
an experiment. The setting of this is the Probability Space (Ω,Σ,P).

The Sample Space Ω contains all the possible outcomes ω1, ω2, . . .
of the experiment.

The Event Space Σ is the power-set of Ω containing events, which
are combinations of outcomes (subsets of Ω including ∅ and Ω).
The Probability Measure P is a function from Σ to R satisfying

(i) 0 ≤ P[ E ] ≤ 1, for all E ∈ Σ
(ii) P[ Ω ] = 1
(iii) If E1, E2, . . . ∈ Σ are pairwise disjoint (Ei ∩ Ej = ∅ for all i 6= j) then

P

[ ∞⋃
i=1

Ei

]
=
∞∑
i=1

P[ Ei ] .

Components of the Probability Space (Ω,Σ,P)
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To ground the previous definition. Consider the outcome of a die.

Sample Space: {1, 2, 3, 4, 5, 6}
Event Space: All subsets of {1, 2, 3, 4, 5, 6}.
Example of event: “The outcome is even" ={2, 4, 6}
Probability measure: P[ E ] = |E|/6.
Example: P[ “The outcome is even" ] = P[ {2, 4, 6} ] = 3/6 = 1/2.
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We can do the same with two dice.

Sample Space: {(1, 1), (1, 2), . . . , (6, 6)}
Event Space: All subsets of {(1, 1), (1, 2), . . . , (6, 6)}.
Example of event: “ The sum of the dice is 10" ={(4, 6), (5, 5), (6, 4)}
Probability measure: P[ E ] = |E|/36.
Example: P[ “ The sum of the dice is 10" ] = 3/36 = 1/12
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Random Variables

A Random Variable X on (Ω,Σ,P) is a function X : Ω→ R mapping each
sample “outcome” to a real number.
Examples of Random variables: Consider our example with two dice.

The canonical random variables are X1 and X2 that output the value of the
first and second die, respectively
E.g. X1(2, 3) = 2, and X2(2, 3) = 3

Y takes value 1 if the second die is greater than the first one, otherwise it
is 0.
E.g. Y (2, 3) = 1, Y (6, 1) = 0

Operations between random variables give new random variables.
Z = X1 + X2 represent the sum.
E.g. Z (2, 3) = X1(2, 3) + X2(2, 3) = 2 + 3 = 5.

Usually, we do not write the X (ω) and we just write X , since we do not really
care about evaluating X , and it help us to see the idea of random behind it.

Lecture 1: Introduction 11



Random Variables

Given a random variable X . We write the events {X = k} and {X ≤ k} as
shortcut of

{X = k} = {ω ∈ Ω : X (ω) = k}
{X ≤ k} = {ω ∈ Ω : X (ω) ≤ k}

E.g. with the two dice

{X1 + X2 = 10} = {ω ∈ Ω : X1(ω) + X2(ω) = 10} = {(4, 6), (5, 5), (6, 4)}
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Moments of a Random Variable

For k ≥ 1 the k th Moment of X is denoted E
[

X k ] and given by

E
[

X k
]

=
∑
ω∈Ω

X (ω)k · P[ {ω} ] .

The variance of X , denoted Var [ X ], is given by

Var [ X ] = E
[

(X − E[ X ])2
]

The variance measures how much a random variable moves from it means.

E.g. Consider the two dice example, and let X1 and X2 the value of the first
and second die respectively.

E[ X1 ] =
6∑

i=1

6∑
j=1

X1((i, j))P[ (i, j) ] =
6∑

i=1

6∑
j=1

i
36

=
6∑

i=1

i
6

= 3.5

Exercise: Let Z1 and Z2 be two random variables, and let a, b be constants.
Prove that E[ aZ1 + bZ2 ] = aE[ Z1 ] + bE[ Z2 ].
Exercise: Prove that Var [ X ] = E

[
X 2 ]− (E[ X ])2
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Probability Mass Function

For a random variable X taking values in x1, . . . , xn, we define its probability
mass function pX : R→ R as

pX (x) = P[ X = x ] .

The cumulative distribution function FX : R→ R of the random variable X is

FX (x) = P[ X ≤ x ] .

Recall that pX or FX are enough to compute moments of random variables.

Most of the random variables in this course are of discrete nature, meaning
that they take a countable number of values. We will not discuss a lot about
continuous random variables, but it is good to be comfortable with continuous
distributions such as the Normal or Exponential distributions.
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Probability Mass Function

Most random variables are named after the shape of their pmf or cdf.

pX (x) = P[ X = x ] .

X is Bernoulli (also, X has Bernoulli distribution) of parameter p ∈ (0, 1) if
pX (1) = p and pX (0) = 1− p

X is Binomial of parameter (n, p) with n ∈ N, p ∈ (0, 1) if for
k ∈ {0, 1, . . . , n}

pX (k) =

(
n
k

)
pk (1− p)n−k

X is Geometric of parameter p if for k ∈ {1, 2, . . . , }, pX (k) = p(1− p)k−1

X is Poisson of parameter λ if for k ∈ {0, 1, . . . , }, pX (k) = λk e−λ

k!

Exercise: Compute the mean and variance of random variables with the
distributions above.
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Independency

We say that to events E1, E2 ∈ Σ are independent if and only if

P[ E1 ∩ E2 ] = P[ E1 ] P[ E2 ] .

In general, E1, . . . , En are (mutually) independent if and only if for any
subset A of {1, . . . , n} we have

P[∩i∈AEi ] =
∏
i∈A

P[ Ei ] .

Two random variables X , Y are independent if for every x , y ∈ R the
events {X ≤ x} and {Y ≤ y} are independent.

A collection of random variables X1, . . . ,Xm are (mutually) independent if
for every x1, . . . , xn ∈ R the events {X1 ≤ x1}, . . . , {Xn ≤ xn} are
(mutually) independent.

Notation: Sometimes it is easier to write P[ A,B ] instead of P[ A ∩ B ]

Lecture 1: Introduction 16



Independency

Consider again the two dice examples. Let X1 and X2 the random variables
giving the outcome of the first and second die, respectively.
We check that X1 and X2 are independent.

P[ X1 ≤ k1 ] = P[ {(i, j) : i ≤ k , j ∈ {1, 2, 3, 4, 5, 6}} ] = k1 × 6/(36) = k/6

P[ X1 ≤ k1,X2 ≤ k2 ] = P[ {(i, j) : i ≤ k1, j ≤ k2} ] = k1 × k2/36

Exercise. Let X and Y be two independent random variables with pmf pX and
pY . Suppose that X takes values x1, . . . , xn and that Y takes values
y1, . . . , ym.

1. Prove that E[ X ] =
∑n

i=1 xipX (xi ) and E[ Y ] =
∑m

i=1 yiPY (xj ).

2. Prove that if X and Y are independent. Then f (X ) and g(Y ) are also
independent for any function f and g.

3. Prove that E[ XY ] = E[ X ] E[ Y ]

4. Prove that Var [ X + Y ] = Var [ X ] + Var [ Y ]
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Conditional Probability

Given two events A and B with P[ B ] > 0. We denote the conditional
probability of A given B as P[ A|B ] and it is defined as

P[ A|B ] =
P[ A ∩ B ]

P[ B ]
.
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Max-Cut Problem

E (A,B): set of edges with one endpoint in A ⊆ V and the other in B ⊆ V .

Given: Undirected graph G = (V ,E)

Goal: Find S ⊆ V such that e(S,Sc) := |E (S,V \ S) | is maximised.

MAX-CUT Problem

Applications:

Semi-supervised learning

Data mining

Comments:

Max-Cut is NP-hard

NP-hard to approximate with ratio > 16/17 ≈ .941

a
b

c

d e
f

a

e
f

S = {a, e, f}
e(S,Sc) = 7
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Simple Randomised Algorithm for Max-Cut

Input G = (V ,E).
-Start with S = ∅.
-For each v ∈ V add v to S independently with probability 1/2.
Return S.

Algorithm: RandMaxCut

Lecture 1: Introduction 21



Simple Randomised Algorithm for Max-Cut

Running any randomised algorithm induces a probability space.

Given G = (V ,E) as input we output a cut-set S.
-Start with S = ∅.
-For each v ∈ V add v to S independently with probability 1/2.
Return S.

Algorithm: RandMaxCut

This is an example of a Product Space.

RandMaxCut on G with |V | = n generates a Probability space (Ω,Σ,P) with

Ω = {0, 1}n = {(ω1, . . . , ωn), ωi ∈ {0, 1}∀i} .1

Σ = P({0, 1}n) (the family of all subsets of Ω)

P is given by P[ω ] = 1
2n

For example the event {i ∈ S} above:
P[ i ∈ S ] = |{ω ∈ Ω : ωi = 1}|/2−n = 1/2 .

1{0, 1}n = {0, 1} × · · · × {0, 1} is a Cartesian product of sets {0, 1}.
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Simple Randomised Algorithm for Max-Cut

In practice, we don’t need to define the probability space but it is good to
know it is there.
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Simple Randomised Algorithm for Max-Cut

In this algorithm, we are interested in the size of the cut created from our
(random) set S, i.e. e(S,Sc).

In the analysis of randomised algorithm it is very important to have simple
description of random variables

Lets find a simple way of writting e(S,Sc).

Define Xi as 1 if vertex i ∈ S, 0 otherwise. Xi is what we call an indicator
random variable
For i 6= j , The event
{Xi (1− Xj ) + (1− Xi )Xj = 1} = {i ∈ S, j ∈ Sc} ∪ {i ∈ Sc , j ∈ S}, that is
Yij = Xi (1− Xj ) + (1− Xi )Xj indicates whether vertices i and j are in
different sides of the partition.

e(S,Sc) =
∑
{i,j}∈E Yij
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Simple Randomised Algorithm for Max-Cut

Define Xi as 1 if vertex i ∈ S, 0 otherwise
Yij = Xi (1− Xj ) + (1− Xi )Xj

e(S,Sc) =
∑
{i,j}∈E Yij

We can analyse the size of the cut. Let’s compute its expectation

E
[

e(S,Sc)
]

=
∑
{i,j}∈E

E[ Yij ]

=
∑
{i,j}∈E

E[ Xi (1− Xj ) + (1− Xi )Xj ]

=
∑
{i,j}∈E

E[ Xi ] E[ 1− Xj ] + E[ 1− Xi ] E[ Xj ] = (1/2)|E |

Hence, we conclude that

1
2
|E | = E

[
e(S,Sc)

]
≤ max

S
e(S,Sc) ≤ |E | ≤ 2E

[
e(S,Sc)

]
Thus, in expectation, our algorithm gives us a 2-approximation of the
Max-Cut.
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Simple Randomised Algorithm for Max-Cut

Let’s measure how much the random variable e(S,Sc) moves from its mean.
We would like to compute the variance but it is a bit hard.

In this course you don’t have
to be afraid of inequalities.

E
[

e(S,Sc)2
]

=
∑
{i,j}∈E

∑
{k,`}∈E

E[ YijYk` ]

=
∑
{i,j}∈E

E[ Yij ] +
∑
{i,j}∈E

∑
{k,`}6={i,j}

E[ YijYk` ]

≤
∑
{i,j}∈E

E[ Yij ] +
∑
{i,j}∈E

∑
{k,`}∈E

E[ Yij ] E[ Yk` ]

= E
[

e(S,Sc)
]

+ E
[

e(S,Sc)
]2
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Simple Randomised Algorithm for Max-Cut

We have
E
[

e(S,Sc)
]
≤ E

[
e(S,Sc)

]
+ E

[
e(S,Sc)

]2
Then using that Var [ X ] = E

[
X 2 ]− E[ X ]2, we get

Var
[

e(S,Sc)
]
≤ E

[
e(S,Sc)

]
.

Next class we will see that this upper bound on the variance implies that the
random variable is very close to its mean.
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