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Periodicity

A Markov chain is Aperiodic if for all x , y ∈ I, gcd{t : P t
x,y > 0} = 1.

Otherwise we say it is Periodic.
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Random Walks and Bipartiteness

A graph is bipartite if its vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V .

Bipartite Graph

Let G be an undirected connected graph. Then the Simple random walk
on G is aperiodic if and only if G is non-bipartite

Theorem

Proof on the Visualiser
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P̃ = (P + I) /2,

P̃i,j =


1

2d(i) if ij ∈ E
1
2 if i = j
0 Otherwise

. P - SRW matrix
I - Identity matrix.

Fact: for any graph G the LRW on G is Aperiodic.
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Convergence

Let P be any finite, aperiodic, irreducible Markov chain with stationary
distribution π. Then for any i, j ∈ I

lim
t→∞

P t
j,i = πi .

Convergence Theorem

Proved : For finite irreducible Markov chains π exists, is unique and

πx =
1

Ex
[
τ+

x
] > 0.

Luca will prove the Convergence Theorem assuming Reversibility .

If P t
j,i converges for all i, j we say the chain Converges to Stationarity .

The Lazy random walk on any finite connected graph converges to sta-
tionarity.

Corollary
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .
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Convergence to Stationarity for the LRW on C12 from 0

At step t the value at vertex x is P t
0,x .
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How Similar are Two Probability Measures?

I present to you three loaded (unfair) dice A,B,C:
x 1 2 3 4 5 6

P[ A = x ] 1/3 1/12 1/12 1/12 1/12 1/3
P[ B = x ] 1/4 1/8 1/8 1/8 1/8 1/4
P[ C = x ] 1/6 1/6 1/8 1/8 1/8 9/24

Question 1 : Which dice is the least fair ?

Question 2 : Which dice is the most fair ?

Loaded Dice

Question 1: Most of you choose A. Why?

Question 2: Dice B and C seem “fairer” than A
but which is fairest?

Question 3 : What do we mean by “fair”?
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Total Variation Distance

The Total Variation Distance between two probability distributions µ and η on
a countable state space Ω is given by

‖µ− η‖tv =
1
2

∑
ω∈Ω

|µ(ω)− η(ω)|.

Let d(µ, ν) = ‖µ− ν‖tv , then d(·, ·) is a metric on the space of measures.

Loaded Dice : let D = Unif{1, 2, 3, 4, 5, 6} be the law of a fair dice:

‖D − A‖tv =
1
2

(
2
∣∣∣∣16 − 1

3

∣∣∣∣+ 4
∣∣∣∣16 − 1

12

∣∣∣∣) =
1
3

‖D − B‖tv =
1
2

(
2
∣∣∣∣16 − 1

4

∣∣∣∣+ 4
∣∣∣∣16 − 1

8

∣∣∣∣) =
1
6

‖D − C‖tv =
1
2

(
3
∣∣∣∣16 − 1

8

∣∣∣∣+

∣∣∣∣16 − 9
24

∣∣∣∣) =
1
6
.

Thus

‖D − B‖tv = ‖D − C‖tv and ‖D − C‖tv , ‖D − C‖tv < ‖D − A‖tv .

So A is the least “fair” however B and C are equally “fair” (in TV distance).
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Total Variation Distance

For any probability distributions µ and η on a countable state space Ω

‖µ− η‖tv :=
1
2

∑
ω∈Ω

|µ(ω)− η(ω)| = sup
A⊂Ω
|µ(A)− η(A)|.

Lemma

Proof by picture.
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TV Distances

Let P be a Markov Chain with stationary distribution π.

Let µ be a prob. vector on I (might be just one vertex) and t ≥ 0. Then

P t
µ := Pµ[Xt = ·] = P[ Xt = · | X0 ∼ µ ] ,

is a probability measure on I.

For any µ, ∥∥∥P t
µ − π

∥∥∥
tv
≤ max

x∈I

∥∥∥P t
x − π

∥∥∥
tv
.

For any finite, irreducible, aperiodic Markov Chain

lim
t→∞

max
x∈I

∥∥∥P t
x − π

∥∥∥
tv

= 0.

Convergence Theorem (rephrased)
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Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, . . .

Pick some initial matching M (may have no edges)

1. With probability 1/2 stay at M

2. Otherwise pick uv ∈ E and let

M ′ =


M − {uv} if uv ∈ M
M ∪ {uv} if uv can be added to M
M ∪ {uv} − {e′} if either u or v is matched by e′ ∈ M
M otherwise

3. Let M = M ′ and repeat steps 1− 3.

Example : Markov Chain for Sampling a Matching of G.

Markov Chain on Matchings of G.

Satisfies the Convergence theorem.

Has uniform stationary distribution.

Thus run it “long enough” then halt to
return a uniform matching on G.

A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0



A =



0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1
1 0 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 0 1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov chains converge to stationarity.

Question How fast do they converge?

The Mixing time τ(ε) of a Markov chain P with stationary distribution π is

τ(ε) = min
{

t : max
x

∥∥∥P t
x − π

∥∥∥
TV
≤ ε
}
.

This is how long we need to wait until we are “ε close” to stationarity .
We often take ε = 1/4, indeed let tmix := τ(1/4).

For any fixed 0 < ε < δ < 1/2 we have

τ(ε) ≤
⌈

ln ε

ln 2δ

⌉
τ(δ).

Thus for any ε < 1/4
τ(ε) ≤

⌈
log2 ε

−1
⌉

tmix .
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