Lecture 8: Convergence and Mixing Time

Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

Outline

Periodicity and Convergence

Total Variation Distance

Mixing Times

Periodicity

- A Markov chain is Aperiodic if for all $x, y \in \mathcal{I}, \operatorname{gcd}\left\{t: P_{x, y}^{t}>0\right\}=1$.
- Otherwise we say it is Periodic.

\checkmark Aperiodic

\times Periodic

Random Walks and Bipartiteness

Bipartite Graph

A graph is bipartite if its vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V.

Theorem

Let G be an undirected connected graph. Then the Simple random walk on G is aperiodic if and only if G is non-bipartite

Proof on the Visualiser

Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by $\widetilde{P}=(P+I) / 2$,

$$
\widetilde{P}_{i, j}=\left\{\begin{array}{ll}
\frac{1}{2 d(i)} & \text { if } i j \in E \\
\frac{1}{2} & \text { if } i=j \\
0 & \text { Otherwise }
\end{array} .\right.
$$

Fact: for any graph G the LRW on G is Aperiodic.

SRW on C_{4}, Periodic

LRW on C_{4}, Aperiodic

Convergence

Convergence Theorem

Let P be any finite, aperiodic, irreducible Markov chain with stationary distribution π. Then for any $i, j \in \mathcal{I}$

$$
\lim _{t \rightarrow \infty} P_{j, i}^{t}=\pi_{i}
$$

- Proved: For finite irreducible Markov chains π exists, is unique and

$$
\pi_{x}=\frac{1}{\mathbf{E}_{x}\left[\tau_{x}^{+}\right]}>0
$$

- Luca will prove the Convergence Theorem assuming Reversibility .
- If $P_{j, i}^{t}$ converges for all i, j we say the chain Converges to Stationarity.

Corollary

The Lazy random walk on any finite connected graph converges to stationarity.

Convergence to Stationarity for the LRW on C_{12} from 0

At step t the value at vertex x is $P_{0, x}^{t}$.

Convergence to Stationarity for the LRW on C_{12} from 0

At step t the value at vertex x is $P_{0, x}^{t}$.

Convergence to Stationarity for the LRW on C_{12} from 0
At step t the value at vertex x is $P_{0, x}^{t}$.

Convergence to Stationarity for the LRW on C_{12} from 0
At step t the value at vertex x is $P_{0, x}^{t}$.

Outline

Periodicity and Convergence

Total Variation Distance

Mixing Times

How Similar are Two Probability Measures?

Loaded Dice

- I present to you three loaded (unfair) dice A, B, C :

x	1	2	3	4	5	6
$\mathrm{P}[A=x]$	$1 / 3$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 12$	$1 / 3$
$\mathrm{P}[B=x]$	$1 / 4$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 4$
$\mathrm{P}[C=x]$	$1 / 6$	$1 / 6$	$1 / 8$	$1 / 8$	$1 / 8$	$9 / 24$

- Question 1 : Which dice is the least fair ?
- Question 2 : Which dice is the most fair ?

Question 1: Most of you choose A. Why?
Question 2: Dice B and C seem "fairer" than A but which is fairest?

Question 3 : What do we mean by "fair"?

Total Variation Distance

The Total Variation Distance between two probability distributions μ and η on a countable state space Ω is given by

$$
\|\mu-\eta\|_{t v}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)| .
$$

- Let $d(\mu, \nu)=\|\mu-\nu\|_{t v}$, then $d(\cdot, \cdot)$ is a metric on the space of measures.

Loaded Dice : let $D=\operatorname{Unif}\{1,2,3,4,5,6\}$ be the law of a fair dice:

$$
\begin{aligned}
& \|D-A\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{3}\right|+4\left|\frac{1}{6}-\frac{1}{12}\right|\right)=\frac{1}{3} \\
& \|D-B\|_{t v}=\frac{1}{2}\left(2\left|\frac{1}{6}-\frac{1}{4}\right|+4\left|\frac{1}{6}-\frac{1}{8}\right|\right)=\frac{1}{6} \\
& \|D-C\|_{t v}=\frac{1}{2}\left(3\left|\frac{1}{6}-\frac{1}{8}\right|+\left|\frac{1}{6}-\frac{9}{24}\right|\right)=\frac{1}{6} .
\end{aligned}
$$

Thus

$$
\|D-B\|_{t v}=\|D-C\|_{t v} \quad \text { and } \quad\|D-C\|_{t v},\|D-C\|_{t v}<\|D-A\|_{t v} .
$$

So A is the least "fair" however B and C are equally "fair" (in TV distance).

Total Variation Distance

Lemma

For any probability distributions μ and η on a countable state space Ω

$$
\|\mu-\eta\|_{t v}:=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\eta(\omega)|=\sup _{A \subset \Omega}|\mu(A)-\eta(A)| .
$$

Proof by picture.

TV Distances

Let P be a Markov Chain with stationary distribution π.

- Let μ be a prob. vector on \mathcal{I} (might be just one vertex) and $t \geq 0$. Then

$$
P_{\mu}^{t}:=\mathbf{P}_{\mu}\left[X_{t}=\cdot\right]=\mathbf{P}\left[X_{t}=\cdot \mid X_{0} \sim \mu\right],
$$

is a probability measure on \mathcal{I}.

- For any μ,

$$
\left\|P_{\mu}^{t}-\pi\right\|_{t v} \leq \max _{x \in \mathcal{I}}\left\|P_{x}^{t}-\pi\right\|_{t v} .
$$

Convergence Theorem (rephrased)
For any finite, irreducible, aperiodic Markov Chain

$$
\lim _{t \rightarrow \infty} \max _{x \in \mathcal{I}}\left\|P_{x}^{t}-\pi\right\|_{t v}=0
$$

Outline

Periodicity and Convergence

Total Variation Distance

Mixing Times

Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, . . . Example : Markov Chain for Sampling a Matching of G.

Pick some initial matching M (may have no edges)

1. With probability $1 / 2$ stay at M
2. Otherwise pick $u v \in E$ and let

$$
M^{\prime}= \begin{cases}M-\{u v\} & \text { if } u v \in M \\ M \cup\{u v\} & \text { if } u v \text { can be added to } M \\ M \cup\{u v\}-\left\{e^{\prime}\right\} & \text { if either } u \text { or } v \text { is matched by } e^{\prime} \in M \\ M & \text { otherwise }\end{cases}
$$

3. Let $M=M^{\prime}$ and repeat steps $1-3$.

- Markov Chain on Matchings of G.
- Satisfies the Convergence theorem.
- Has uniform stationary distribution.
- Thus run it "long enough" then halt to return a uniform matching on G.

Mixing Time of a Markov Chain

Convergence Theorem: "Nice" Markov chains converge to stationarity.
Question How fast do they converge?
The Mixing time $\tau(\epsilon)$ of a Markov chain P with stationary distribution π is

$$
\tau(\epsilon)=\min \left\{t: \max _{x}\left\|P_{x}^{t}-\pi\right\|_{T V} \leq \epsilon\right\} .
$$

- This is how long we need to wait until we are " ε close" to stationarity .
- We often take $\varepsilon=1 / 4$, indeed let $t_{\text {mix }}:=\tau(1 / 4)$.
- For any fixed $0<\epsilon<\delta<1 / 2$ we have

$$
\tau(\epsilon) \leq\left\lceil\frac{\ln \epsilon}{\ln 2 \delta}\right\rceil \tau(\delta) .
$$

Thus for any $\epsilon<1 / 4$

$$
\tau(\epsilon) \leq\left\lceil\log _{2} \epsilon^{-1}\right\rceil t_{\text {mix }}
$$

