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Periodicity

= A Markov chain is Aperiodic if for all x,y € Z, ged{t : Py, > 0} = 1.
= Otherwise we say it is Periodic.
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Random Walks and Bipartiteness

——— Bipartite Graph

A graph is bipartite if its vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V.

Theorem

Let G be an undirected connected graph. Then the Simple random walk
on G is aperiodic if and only if G is non-bipartite

Proof on the Visualiser ®®
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Lazy Random Walks and Periodicity

The Lazy Random Walk (LRW) on G given by P = (P + /) /2,

1 g s
530 ifijje E
.

P - SRW matrix
I - ldentity matrix.

ifi=]j

P[,j = 5
0 Otherwise

Fact: for any graph G the LRW on G is Aperiodic.
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Convergence

Convergence Theorem

Let P be any finite, aperiodic, irreducible Markov chain with stationary
distribution . Then forany i,j € Z

. t
lim Pj; =m.
t—oo

= Proved : For finite irreducible Markov chains = exists, is unique and
_ 1
Ex[7]

= Luca will prove the Convergence Theorem assuming Reversibility .

Tx > 0.

= |f Pjt,i converges for all i, j we say the chain Converges to Stationarity.

Corollary

The Lazy random walk on any finite connected graph converges to sta-
tionarity.
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.
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Convergence to Stationarity for the LRW on Cy, from 0

At step t the value at vertex x is Py ,.
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How Similar are Two Probability Measures?

——— Loaded Dice
= | present to you three loaded (unfair) dice A, B, C:

= Question 1 : Which dice is the least fair ?

= Question 2 : Which dice is the most fair ?

x| 1] 2 3 4 5 6
PIA—x] | 1/3 | 1A2 | 1A2 | 1A2 | 142 | 173
PIB—x| | /4| 1/8 | 1/8 | 1/8 | 1/8 | /4
PIC—x| | 1/6 | 1/6 | /8 | 1/8 | /8 | 9724

Question 1: Most of you choose A. Why?

Question 2: Dice B and C seem “fairer” than A
but which is fairest?

Question 3 : What do we mean by “fair"?

N&
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Total Variation Distance

The Total Variation Distance between two probability distributions 1 and n on
a countable state space 2 is given by

it =l = 3 3 la() = ().

weN

= Let d(p,v) = ||u — v, then d(-, -) is a metric on the space of measures.
Loaded Dice : let D = Unif{1,2,3,4,5,6} be the law of a fair dice:

1 1 1 1 1 1
”D*NM*§(26*§+4k*T§>*§

1 1 1 1 1 1
081, =5 (2[5 4 +4[5 ) = 5

1 1 1 1 9 1
'W‘CM—§<36‘§+E‘§ﬂ)—6

Thus
|D-Bl|l,=ID-Cl, and  [[D-Cl,,[|D—-Cl, <|D-Al,-

So Ais the least “fair” however B and C are equally “fair” (in TV distance).
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Total Variation Distance

Lemma
For any probability distributions 1 and n on a countable state space Q

e =mlly = Zlu(w w)l—suplu(A) n(A)l-

wEQ

Proof by picture.
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TV Distances

Let P be a Markov Chain with stationary distribution .
= Let u be a prob. vector on Z (might be just one vertex) and t > 0. Then

PL=P,[X=]=P[X = | X~ ul,

is a probability measure on 7.

= For any p,
P —x

o

¢
P,—m

< max’
tv xXeT

tv

Convergence Theorem (rephrased)

For any finite, irreducible, aperiodic Markov Chain

P.— x| =0.

lim max’
tv

t—oo x€I
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Applications of Markov Chain Convergence

Markov Chain Monte Carlo (MCMC): Sampling, Counting, Integration, . ..
Example : Markov Chain for Sampling a Matching of G.

Pick some initial matching M (may have no edges)
1. With probability 1/2 stay at M
2. Otherwise pick uv € E and let

M — {uv} ifuve M

M — Mu{uv} if uv can be added to M
MU {uv} — {€'} if either uor vis matchedby ¢ € M
M otherwise

3. Let M = M’ and repeat steps 1 — 3.

Markov Chain on Matchings of G.
Satisfies the Convergence theorem.
Has uniform stationary distribution.

Thus run it “long enough” then halt to
return a uniform matching on G.
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Mixing Time of a Markov Chain

Convergence Theorem: “Nice” Markov chains converge to stationarity.
Question How fast do they converge?

The Mixing time 7(e) of a Markov chain P with stationary distribution = is

T(e) = min{t: mXax’ P)t(_ﬂ-HTV < e}.

= This is how long we need to wait until we are “c close” to stationarity .
= We often take ¢ = 1/4, indeed let tyix := 7(1/4).
= For any fixed 0 < e < § < 1/2 we have

SCHIEARO)

Thus forany e < 1/4
7(€) < [IogZ 671—‘ tmix -
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