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Random Walks on Weighted Graphs

An (edge) weighted graph G = (V, E, w) where w : E — R, on the edges.
A Simple Random Walk (SRW) on a weighted graph Gis a MC on V(G) with

w(i) it i
pij) = | Socenom TIEE
0 ifjj ¢ E

Directed Undirected

ﬁla

v,,l,‘ Lecture 7: Random Walks & SAT



Reversible Markov chains

= Any Markov chain can be described as random walk on a weighted
directed graph.

Definition

A Markov chain on Z with transition matrix P and stationary distribution
« is called reversible if, for any x,y € Z,

m(X)P(x,y) = m(y)P(y,x)

= Reversible Markov chains are equivalent to random walks on weighted
undirected graphs.

= A reversible Markov Chain identified with the (undirected) weighted graph
G = (V, E, w) has stationary distribution given by

> jijce W)

"= 35, e woy)

ol
' Lecture 7: Random Walks & SAT



Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with
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Random Walk on a path

The n-path P, is the graph with V(P,) = [n] and E(P,) = {ij : j =i+ 1}.

O

Proposition

For the SRW on P, we have h(k,n) = n* — k?, forany 0 < k < n.
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Random Walk on a path

Proposition

For the SRW on P, we have h(k,n) = n* — k2, forany 0 < k < n.

Recall : Hitting times are the solution to the set of linear equations:
h(x, y) "Ly > h(z,y)-P(x,z)  ¥x,yeV.
zel
Proof: Let f(k) = h(k, n) and observe that f(n) = 0. By the Markov property

k+1)

f(0)=1+f(1) and f(k):1+f(k;1)+f( 5 fort <k<n-1.

System of n independent equations in n unknowns so has a unique solution.
Thus it suffices to check that f(k) = n? — k? satisfies the above. Indeed
f(ny=n"—n*=0, f0)=1+f1)=14+n"—-12=r?

and forany 1 < k < n— 1 we have,

2—(k—1)2+n2—(k+1)2

_ 2 g2
5 5 =n" — Kk"“. O

fk)y=1+"2
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k-Sat
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SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (X1 VXe VX)) A (X1 VXa) A (X1 VX2V Xa)A(XaV X3)A(Xa V X7)
Solution: xy = True, X, = False, X3 =False and xy; = True.

If each clause has k literals we call the problem k-SAT.
= In general, determining if a SAT formula has a solution is NP-hard

= In practice solvers are fast and used to great effect
= A huge amount of problems can be posed as a SAT:
— Model Checking and hardware/software verification
— Design of experiments
— Classical planning
— ...
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A Polytime Algorithm for 2-Sat
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let « be any solution and X; = |variable values shared by A; and «.
Example 1 : Solution Found

(X1 \/Xiz)/\(X71\/X73)/\(X1 \/X2)/\(X4 VYa)A(X4V71)
T T T T F

a=(T,T,F,T).

[t x| xe][x][x
% ofefelelr
@ () —(+) SEAERERE
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2-SAT

RAND 2-SAT Algorithm

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n? times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

= Call each loop of (2) a Step. Let A; be the variable assignment at step /.

= Let « be any solution and X; = |variable values shared by A; and «.
Example 2 : Solution Found

(X1 \/Xiz)/\(X71\/X73)/\(X1 VX2)A(X4VX3)A(X4V71)

o = (T,F,F,T).
T F F T T T T F T F
[t x| xe][x][x
0 F F F F
1| F|F|F|T
2 F T F T
06— Gl
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2-SAT and the SRW on the path

Expected iterations of (2) in RAND 2-SAT

If a valid solution exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n?.

Proof: Fix any solution «, thenforany i >0and1 <k<n-1,

(i) P[Xisr =1]X=0]=1

(i) P[Xiptn =k+1 | Xi=k]>1/2

(i) P[ X1 =k —1| Xi=k] < 1/2.

Notice that if X; = nthen A; = « thus solution found (I may find another first).
Assume (pessimistically) that X, = 0 (we get non of our initial guesses right).

The stochastic process X; is complicated to describe in full however by
(f) — (iii) we can bound it by Y;- the SRW on the n-path from 0. This gives

E[time to find o] < Eo[inf{t : X; = n}] < Eo[inf{t: Yi = n}] = hyn = n*. [

Proposition

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in O(n?) time with probability at least 1/2.
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Boosting Success Probabilities

Boosting Lemma

Suppose a randomized algorithm succeeds with probability p and let C >
1 be any integer. Then % - log n repetitions of the algorithm are sufficient

to succeed (in at least one repetition) with probability at least 1 — n=C.

Proof: recall that 1 — p < e~ P for all real p. Let t = % log n and observe that

P[t runs all fail] < (1 — p)'
<e™
= n_C

thus the probability one of the runs succeeds is at least 1 — n‘—c

RAND2-SAT
There is a O(n2 log n) -time algorithm for 2-SAT which succeeds w.h.p.

i
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Schéning’s Algorithm for 3-Sat
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3-SAT

~——— Schoning’s Algorithm
(1) Start with a random truth assignment.

(2) Repeat up to ntimes, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

\.

Theorem

Schéning’s Algorithm succeeds with probability at least (1/3)"/2/2

Since each repetition runs in O(n) time the Boosting lemma gives:

Corollary

3-SAT can be solved in time O(n~ V3" - log n) = 0(1.733") w.h.p.

= In home work you will do a refined analysis giving O(1.3334")
= Best known algorithm is randomised and runs in time O(1.3007") w.h.p.
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Schoning’s Algorithm: Basic Analysis

Theorem

Schéning’s Algorithm succeeds with probability at least (1/3)"/2/2

Proof: Consider some arbitrary correct satisfying assignment a.

Let A be the event that the initial truth assignment x agrees with « on at least
n/2 variables. Note that P[A] > 1/2 by symmetry.

Now, every iteration of Step (2) has at least a 1/3 chance of increasing the
agreement with o by 1. Why?

Recall each clause has three literals and « satisfies all clauses. Thus, if a
clause is unsatisfied one of its literals is not in agreement with «.. You then
pick and flip one of these three literals uniformly.

Thus

n/2
P[Success] > P[Success|A]P[A] > (%) : %
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