Lecture 7: Random Walks & SAT

Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

Lent 2019

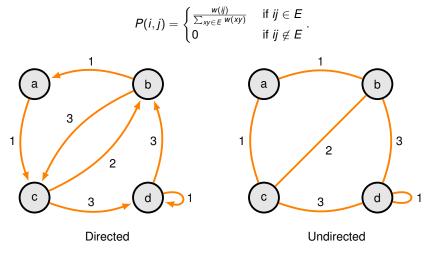
k-Sat

A Polytime Algorithm for 2-Sat

Random Walks on Weighted Graphs

An *(edge) weighted* graph G = (V, E, w) where $w : E \to \mathbb{R}_+$ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V(G) with



Reversible Markov chains

 Any Markov chain can be described as random walk on a weighted directed graph.

Definition

A Markov chain on \mathcal{I} with transition matrix P and stationary distribution π is called reversible if, for any $x, y \in \mathcal{I}$,

$$\pi(x)P(x,y)=\pi(y)P(y,x)$$

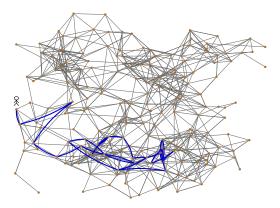
- Reversible Markov chains are equivalent to random walks on weighted <u>undirected</u> graphs.
- A reversible Markov Chain identified with the (undirected) weighted graph G = (V, E, w) has stationary distribution given by

$$\pi(i) = \frac{\sum_{j:ij\in E} w(ij)}{2\sum_{xy\in E} w(xy)}$$

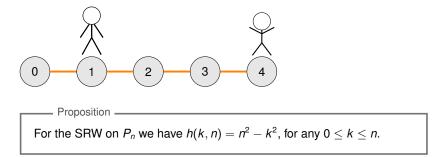
Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V(G) with

$$P(i,j) = \begin{cases} \frac{1}{d(i)} & \text{if } ij \in E \\ 0 & \text{if } ij \notin E \end{cases}, \quad \text{and} \quad \pi(i) = \frac{d(i)}{2|E|}$$



The *n*-path P_n is the graph with $V(P_n) = [n]$ and $E(P_n) = \{ij : j = i + 1\}$.



Random Walk on a path

Proposition _____

For the SRW on
$$P_n$$
 we have $h(k, n) = n^2 - k^2$, for any $0 \le k \le n$.

Recall : Hitting times are the solution to the set of linear equations:

$$h(x,y) \stackrel{\text{Markov Prop.}}{=} 1 + \sum_{z \in \mathcal{I}} h(z,y) \cdot P(x,z) \quad \forall x, y \in V.$$

Proof: Let f(k) = h(k, n) and observe that f(n) = 0. By the Markov property

$$f(0) = 1 + f(1)$$
 and $f(k) = 1 + \frac{f(k-1)}{2} + \frac{f(k+1)}{2}$ for $1 \le k \le n-1$.

System of *n* independent equations in *n* unknowns so has a unique solution. Thus it suffices to check that $f(k) = n^2 - k^2$ satisfies the above. Indeed

$$f(n) = n^2 - n^2 = 0,$$
 $f(0) = 1 + f(1) = 1 + n^2 - 1^2 = n^2,$

and for any $1 \le k \le n-1$ we have,

$$f(k) = 1 + \frac{n^2 - (k-1)^2}{2} + \frac{n^2 - (k+1)^2}{2} = n^2 - k^2.$$

k-Sat

A Polytime Algorithm for 2-Sat

SAT Problems

A *Satisfiability (SAT)* formula is a logical expression that's the conjunction (AND) of a set of *Clauses*, where a clause is the disjunction (OR) of *Literals*.

A *Solution* to a SAT formula is an assignment of the variables to the values True and False so that all the clauses are satisfied.

Example:

$$\mathsf{SAT:} \ (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_4) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

Solution: $x_1 = \text{True}, x_2 = \text{False}, x_3 = \text{False}$ and $x_4 = \text{True}.$

- If each clause has k literals we call the problem k-SAT.
- In general, determining if a SAT formula has a solution is NP-hard
- In practice solvers are fast and used to great effect
- A huge amount of problems can be posed as a SAT:
 - ightarrow Model Checking and hardware/software verification
 - ightarrow Design of experiments
 - \rightarrow Classical planning
 - $\rightarrow \dots$

k-Sat

A Polytime Algorithm for 2-Sat

2**-SAT**

RAND 2-SAT Algorithm

- (1) Start with an arbitrary truth assignment.
- (2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

- Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.
- Let α be any solution and $X_i = |$ variable values shared by A_i and $\alpha|$. Example 1 : Solution Found

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor \overline{x_3}) \land (x_4 \lor \overline{x_1})$$

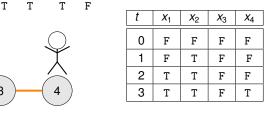
т

3

т

2

$$\alpha = (\mathsf{T}, \mathsf{T}, \mathsf{F}, \mathsf{T}).$$



0

т

F

т

F

RAND 2-SAT Algorithm

- (1) Start with an arbitrary truth assignment.
- (2) Repeat up to $2n^2$ times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of it's literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

• Call each loop of (2) a *Step*. Let A_i be the variable assignment at step i.

F

4

т ғ

• Let α be any solution and $X_i = |$ variable values shared by A_i and $\alpha|$. Example 2 : Solution Found

$$(x_1 \lor \overline{x_2}) \land (\overline{x_1} \lor \overline{x_3}) \land (x_1 \lor x_2) \land (x_4 \lor x_3) \land (x_4 \lor \overline{x_1})$$

2

т

3

$$\alpha = (\mathsf{T}, \mathsf{F}, \mathsf{F}, \mathsf{T}).$$

t	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄
0	F	F	F	F
1	F	F	F	Т
2	F	Т	F	Т
3	Т	Т	F	Т

0

т

F

F

т

2-SAT and the SRW on the path

- Expected iterations of (2) in RAND 2-SAT -

If a valid solution exists then the expected number of iterations of loop (2) before RAND 2-SAT outputs a valid solution is at most n^2 .

Proof: Fix any solution α , then for any $i \ge 0$ and $1 \le k \le n - 1$,

(i)
$$\mathbf{P}[X_{i+1} = 1 | X_i = 0] = 1$$

(ii)
$$\mathbf{P}[X_{i+1} = k+1 \mid X_i = k] \ge 1/2$$

(iii)
$$\mathbf{P}[X_{i+1} = k - 1 \mid X_i = k] \le 1/2.$$

Notice that if $X_i = n$ then $A_i = \alpha$ thus solution found (I may find another first).

Assume (pessimistically) that $X_0 = 0$ (we get non of our initial guesses right).

The stochastic process X_i is complicated to describe in full however by (i) - (iii) we can bound it by Y_i - the SRW on the *n*-path from 0. This gives

 $\mathbf{E}[\text{ time to find } \alpha] \leq \mathbf{E}_0[\inf\{t : X_t = n\}] \leq \mathbf{E}_0[\inf\{t : Y_t = n\}] = h_{0,n} = n^2. \quad \Box$

Proposition

Provided a solution exists the RAND 2-SAT Algorithm will return a valid solution in $O(n^2)$ time with probability at least 1/2.

Boosting Lemma

Suppose a randomized algorithm succeeds with probability p and let $C \ge 1$ be any integer. Then $\frac{C}{p} \cdot \log n$ repetitions of the algorithm are sufficient to succeed (in at least one repetition) with probability at least $1 - n^{-C}$.

Proof: recall that $1 - p \le e^{-p}$ for all real p. Let $t = \frac{c}{p} \log n$ and observe that

$$\mathbf{P}[t \text{ runs all fail}] \le (1-p)^t$$
$$\le e^{-pt}$$
$$= n^{-C},$$

thus the probability one of the runs succeeds is at least $1 - \frac{1}{n^{C}}$.

k-Sat

A Polytime Algorithm for 2-Sat

3**-SAT**

- Schöning's Algorithm -

- (1) Start with a random truth assignment.
- (2) Repeat up to *n* times, terminating if all clauses are satisfied:
 - (a) Choose an arbitrary clause that is not satisfied
 - (b) Choose one of it's literals UAR and switch the variables value.
- (3) If a valid solution is found return it. O/W return unsatisfiable

Theorem

Schöning's Algorithm succeeds with probability at least $(1/3)^{n/2}/2$

Since each repetition runs in O(n) time the Boosting lemma gives:

Corollary -

3-SAT can be solved in time
$$O\Big(n\cdot\sqrt{3}^n\cdot\log n\Big)=O(1.733^n)$$
 w.h.p.

- In home work you will do a refined analysis giving O(1.3334ⁿ)
- Best known algorithm is randomised and runs in time O(1.3007ⁿ) w.h.p.

Theorem

Schöning's Algorithm succeeds with probability at least $(1/3)^{n/2}/2$

Proof: Consider some arbitrary correct satisfying assignment α .

Let *A* be the event that the initial truth assignment *x* agrees with α on at least n/2 variables. Note that $\mathbf{P}[A] \ge 1/2$ by symmetry.

Now, every iteration of Step (2) has at least a 1/3 chance of increasing the agreement with α by 1. Why?

Recall each clause has three literals and α satisfies all clauses. Thus, if a clause is unsatisfied one of its literals is not in agreement with α . You then pick and flip one of these three literals uniformly.

Thus

$$\mathbf{P}[\operatorname{Success}] \geq \mathbf{P}[\operatorname{Success}|A]\mathbf{P}[A] \geq \left(\frac{1}{3}\right)^{n/2} \cdot \frac{1}{2}.$$

