
Lecture 7: Random Walks & SAT
Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

Lent 2019

Outline

Random Walks and Reversibility

k -Sat

A Polytime Algorithm for 2-Sat

Schöning’s Algorithm for 3-Sat

Lecture 7: Random Walks & SAT 2

Random Walks on Weighted Graphs

An (edge) weighted graph G = (V ,E ,w) where w : E → R+ on the edges.

A Simple Random Walk (SRW) on a weighted graph G is a MC on V (G) with

P(i, j) =

{
w(ij)∑

xy∈E w(xy) if ij ∈ E

0 if ij 6∈ E
.

a b

c d

1

1

3

3

2

3 1

Directed

a b

c d

1

1

3
2

3 1

Undirected

Lecture 7: Random Walks & SAT 3

Reversible Markov chains

Any Markov chain can be described as random walk on a weighted
directed graph.

A Markov chain on I with transition matrix P and stationary distribution
π is called reversible if, for any x , y ∈ I,

π(x)P(x , y) = π(y)P(y , x)

Definition

Reversible Markov chains are equivalent to random walks on weighted
undirected graphs.

A reversible Markov Chain identified with the (undirected) weighted graph
G = (V ,E ,w) has stationary distribution given by

π(i) =

∑
j:ij∈E w(ij)

2
∑

xy∈E w(xy)

Lecture 7: Random Walks & SAT 4

Random Walks on Graphs

A Simple Random Walk (SRW) on a graph G is a Markov chain on V (G) with

P(i, j) =

{
1

d(i) if ij ∈ E
0 if ij 6∈ E

, and π(i) =
d(i)
2|E |

Lecture 7: Random Walks & SAT 5

Random Walk on a path

The n-path Pn is the graph with V (Pn) = [n] and E(Pn) = {ij : j = i + 1}.

0 1 2 3 4

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Lecture 7: Random Walks & SAT 6

Random Walk on a path

For the SRW on Pn we have h(k , n) = n2 − k2, for any 0 ≤ k ≤ n.

Proposition

Recall : Hitting times are the solution to the set of linear equations:

h(x , y)
Markov Prop.

= 1 +
∑
z∈I

h(z, y) · P(x , z) ∀x , y ∈ V .

Proof: Let f (k) = h(k , n) and observe that f (n) = 0. By the Markov property

f (0) = 1 + f (1) and f (k) = 1 +
f (k − 1)

2
+

f (k + 1)
2

for 1 ≤ k ≤ n − 1.

System of n independent equations in n unknowns so has a unique solution.

Thus it suffices to check that f (k) = n2 − k2 satisfies the above. Indeed

f (n) = n2 − n2 = 0, f (0) = 1 + f (1) = 1 + n2 − 12 = n2,

and for any 1 ≤ k ≤ n − 1 we have,

f (k) = 1 +
n2 − (k − 1)2

2
+

n2 − (k + 1)2

2
= n2 − k2.

Lecture 7: Random Walks & SAT 7

Outline

Random Walks and Reversibility

k -Sat

A Polytime Algorithm for 2-Sat

Schöning’s Algorithm for 3-Sat

Lecture 7: Random Walks & SAT 8

SAT Problems

A Satisfiability (SAT) formula is a logical expression that’s the conjunction
(AND) of a set of Clauses, where a clause is the disjunction (OR) of Literals.

A Solution to a SAT formula is an assignment of the variables to the values
True and False so that all the clauses are satisfied.

Example:

SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

Solution: x1 = True, x2 = False, x3 = False and x4 = True.

If each clause has k literals we call the problem k-SAT .

In general, determining if a SAT formula has a solution is NP-hard

In practice solvers are fast and used to great effect
A huge amount of problems can be posed as a SAT:
→ Model Checking and hardware/software verification
→ Design of experiments
→ Classical planning
→ . . .

Lecture 7: Random Walks & SAT 9

Outline

Random Walks and Reversibility

k -Sat

A Polytime Algorithm for 2-Sat

Schöning’s Algorithm for 3-Sat

Lecture 7: Random Walks & SAT 10

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let α be any solution and Xi = |variable values shared by Ai and α|.

Example 1 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T T T F

0 1 2 3 4

α = (T, T, F, T).

t x1 x2 x3 x4

0 F F F F
1 F T F F
2 T T F F
3 T T F T

Lecture 7: Random Walks & SAT 11

2-SAT

(1) Start with an arbitrary truth assignment.

(2) Repeat up to 2n2 times, terminating if all clauses are satisfied:
(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

RAND 2-SAT Algorithm

Call each loop of (2) a Step. Let Ai be the variable assignment at step i .
Let α be any solution and Xi = |variable values shared by Ai and α|.

Example 2 : Solution Found

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x4 ∨ x3) ∧ (x4 ∨ x1)

T F F T T T T F T F

0 1 2 3 4

α = (T, F, F, T).

t x1 x2 x3 x4

0 F F F F
1 F F F T
2 F T F T
3 T T F T

Lecture 7: Random Walks & SAT 12

2-SAT and the SRW on the path

If a valid solution exists then the expected number of iterations of loop
(2) before RAND 2-SAT outputs a valid solution is at most n2.

Expected iterations of (2) in RAND 2-SAT

Proof: Fix any solution α, then for any i ≥ 0 and 1 ≤ k ≤ n − 1,
(i) P[Xi+1 = 1 | Xi = 0] = 1
(ii) P[Xi+1 = k + 1 | Xi = k] ≥ 1/2
(iii) P[Xi+1 = k − 1 | Xi = k] ≤ 1/2.

Notice that if Xi = n then Ai = α thus solution found (I may find another first).

Assume (pessimistically) that X0 = 0 (we get non of our initial guesses right).

The stochastic process Xi is complicated to describe in full however by
(i)− (iii) we can bound it by Yi - the SRW on the n-path from 0. This gives

E[time to find α] ≤ E0[inf{t : Xt = n}] ≤ E0[inf{t : Yt = n}] = h0,n = n2.

Provided a solution exists the RAND 2-SAT Algorithm will return a valid
solution in O

(
n2) time with probability at least 1/2.

Proposition

Lecture 7: Random Walks & SAT 13

Boosting Success Probabilities

Suppose a randomized algorithm succeeds with probability p and let C ≥
1 be any integer. Then C

p · log n repetitions of the algorithm are sufficient
to succeed (in at least one repetition) with probability at least 1− n−C .

Boosting Lemma

Proof: recall that 1− p ≤ e−p for all real p. Let t = C
p log n and observe that

P[t runs all fail] ≤ (1− p)t

≤ e−pt

= n−C ,

thus the probability one of the runs succeeds is at least 1− 1
nC .

There is a O
(
n2 log n

)
-time algorithm for 2-SAT which succeeds w.h.p.

RAND2-SAT

Lecture 7: Random Walks & SAT 14

Outline

Random Walks and Reversibility

k -Sat

A Polytime Algorithm for 2-Sat

Schöning’s Algorithm for 3-Sat

Lecture 7: Random Walks & SAT 15

3-SAT

(1) Start with a random truth assignment.
(2) Repeat up to n times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied
(b) Choose one of it’s literals UAR and switch the variables value.

(3) If a valid solution is found return it. O/W return unsatisfiable

Schöning’s Algorithm

Schöning’s Algorithm succeeds with probability at least (1/3)n/2/2

Theorem

Since each repetition runs in O(n) time the Boosting lemma gives:

3-SAT can be solved in time O
(

n ·
√

3
n · log n

)
= O(1.733n) w.h.p.

Corollary

In home work you will do a refined analysis giving O(1.3334n)
Best known algorithm is randomised and runs in time O(1.3007n) w.h.p.

Lecture 7: Random Walks & SAT 16

Schöning’s Algorithm: Basic Analysis

Schöning’s Algorithm succeeds with probability at least (1/3)n/2/2

Theorem

Proof: Consider some arbitrary correct satisfying assignment α.

Let A be the event that the initial truth assignment x agrees with α on at least
n/2 variables. Note that P[A] ≥ 1/2 by symmetry.

Now, every iteration of Step (2) has at least a 1/3 chance of increasing the
agreement with α by 1. Why?

Recall each clause has three literals and α satisfies all clauses. Thus, if a
clause is unsatisfied one of its literals is not in agreement with α. You then
pick and flip one of these three literals uniformly.

Thus

P[Success] ≥ P[Success|A]P[A] ≥
(

1
3

)n/2

· 1
2
.

Lecture 7: Random Walks & SAT 17

	Random Walks and Reversibility
	k-Sat
	A Polytime Algorithm for 2-Sat
	Schöning's Algorithm for 3-Sat

