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Stochastic Process

A Stochastic Process X = {Xt : t ∈ T} is a collection of random variables
indexed by time (often T = N) and in this case X = (Xi)

∞
i=0.

A vector µ = (µ(i))i∈I is a Probability Distribution or Probability Vector on I if
µ(i) ∈ [0, 1] and ∑

i∈I

µ(i) = 1.
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Markov Chains

We say that (Xi)
∞
i=0 is a Markov Chain on State Space I with Initial Dis-

tribution µ and Transition Matrix P if for any i ∈ I,

P[X0 = i ] = µ(i).

The Markov Property holds: for all t ≥ 0 and any i0, . . . , it+1 ∈ I,

P
[

Xt+1 = it+1

∣∣∣Xt = it , . . . ,X0 = i0
]
= P

[
Xt+1 = it+1

∣∣∣Xt = it
]
:= P(it , it+1).

Markov Chain (Discrete Time and State, Time Homogeneous)

From the definition one can deduce that (check!)
P[Xt+1 = it+1,Xt = it , . . . ,X0 = i0 ] = µ(i0) ·P(i0, i1) · · ·P(it−1, it) ·P(it , it+1)

P[Xt+m = i ] =
∑

j∈I P[Xt+m = i|Xt = j ]P[Xt = j ]

If the Markov Chain starts from as single state i ∈ I then we use the notation

Pi [Xk = j] := P[Xk = j|X0 = i ] .
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What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

Rice Pasta

Potato

1/2

1/2

1/4

3/4
2/5

3/5

This has transition matrix:

P =

Rice Pasta Potato 0 1/2 1/2 Rice

1/4 0 3/4 Pasta

3/5 2/5 0 Potato
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Transition Matrices

The Transition Matrix P of a Markov chain (µ,P) on I = {1, . . . n} is given by

P =

P(1, 1) . . . P(1, n)
...

. . .
...

P(n, 1) . . . P(n, n)

 .

ρt(i): probability the chain is in state i at time t .

ρt = (ρt(0), ρt(1), . . . , ρt(n)): State vector at time t (Row vector).

Multiplying ρt by P corresponds to advancing the chain one step:

ρt+1(i) =
∑
j∈I

ρt(j) · P(j, i) and thus ρt+1 = ρt · P.

The Markov Property and line above imply that for any k , t ≥ 0

ρt+k = ρt · Pk and thus Pk (i, j) = P[Xk = j|X0 = i ] .

Thus ρt(i) = (µP t)(i) and so ρt = µP t = (µP t(1), µP t(2), . . . , µP t(n)).
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Stopping and Hitting Times

A non-negative integer random variable τ is a Stopping Time for (Xi)i≥0 if for
every n ≥ 0 the event {τ = n} depends only on X0, . . . ,Xn.

Example - College Carbs Stopping times:
X “We had Pasta yesterday”
× “We are having Rice next Thursday”

For two states x , y ∈ I we call h(x , y) the Hitting Time of y from x :

h(x , y) := Ex [τy ] = E[ τy |X0 = x ] where τy = inf{t ≥ 0 : Xt = y}.

For x ∈ I the First Return Time Ex
[
τ+x
]

of x is defined

Ex
[
τ+x
]
= E

[
τ+x |X0 = x

]
where τ+x = inf{t ≥ 1 : Xt = x}.

Comments
Notice that h(x , x) = Ex [τx ] = 0 whereas Ex

[
τ+x
]
≥ 1.

For any y 6= x , h(x , y) = Ex
[
τ+y
]
.

Hitting times are the solution to the set of linear equations:

Ex
[
τ+y
] Markov Prop.

= 1 +
∑
z∈I

Ez [τy ] · P(x , z) ∀x , y ∈ V .
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Irreducible Markov Chains

A Markov chain is Irreducible if for every pair of states (i, j) ∈ I2 there is an
integer m ≥ 0 such that Pm(i, j) > 0.

a b

c d

1

1/4

3/4

3/4

2/5

3/5 1/4

X irreducible

a b

c d

1

1/4

3/4
2/5

3/5 1

× not-irreducible (thus reducible)

For any states x and y of a finite irreducible Markov chain Ex
[
τ+y
]
<∞.

Finite Hitting Theorem

Lecture 6: Markov Chains 10



Stationary Distribution

A probability distribution π = (π(1), . . . , π(n)) is the Stationary Distribution of
a Markov chain if πP = π, i.e. π is a left eigenvector with eigenvalue 1.

College carbs example:

(
4
13
,

4
13
,

5
13

)
π

·

 0 1/2 1/2
1/4 0 3/4
3/5 2/5 0


P

=

(
4

13
,

4
13
,

5
13

)
π

Rice Pasta

Potato

1/2

1/2

1/4

3/4

2/5

3/5

A Markov chain reaches Equilibrium if ρt = π for some t . If equilibrium is

reached it Persists: If ρt = π then ρt+k = π for all k ≥ 0 since

ρt+1 = ρtP = πP = π = ρt .
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Let P be finite, irreducible M.C., then there exists a unique probability
distribution π on I such that π = πP and π(x) = 1/Ex

[
τ+x
]
> 0, ∀x ∈ I.

Existence and Uniqueness of a Positive Stationary Distribution

Proof: [Existence ] Fix z ∈ I and define µ(y) =
∑∞

t=0 Pz
[
Xt = y , τ+z > t

]
, this

is the expected number of visits to y before returning to z. For any state y ,
we have 0 < µ(y) ≤ Ez

[
τ+z
]
<∞ since P is irreducible. To show µP = µ

µP(y) =
∑
x∈I

µ(x) · P(x , y) =
∑
x∈I

∞∑
t=0

Pz
[
Xt = x , τ+z > t

]
· P(x , y)

=
∑
x∈I

∞∑
t=0

Pz
[
Xt = x ,Xt+1 = y , τ+z > t

]
=
∞∑
t=0

∑
x∈I

Pz
[
Xt = x ,Xt+1 = y , τ+z > t

]
=
∞∑
t=0

Pz
[
Xt+1 = y , τ+z > t

]
=
∞∑
t=0

Pz
[
Xt+1 = y , τ+z > t + 1

]
+ Pz

[
Xt+1 = y , τ+z = t + 1

]
= µ(y)−

(a)

Pz
[
X0 = y , τ+z > 0

]
+
∞∑
t=0

(b)

Pz
[
Xt+1 = y , τ+z = t + 1

]
= µ(y).

Where (a) and (b) are 1 if y = z and 0 otherwise so cancel. Divide µ
though by

∑
x∈I µ(x) <∞ to turn it into a probability distribution π. �
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Let P be finite, irreducible M.C., then there exists a unique probability
distribution π on I such that π = πP and π(x) = 1/Ex

[
τ+x
]
> 0, ∀x ∈ I.

Existence and Uniqueness of a Positive Stationary Distribution

Proof: [Uniqueness ] Assume P has a stationary distribution µ and let
P[X0 = x ] = µ(x). We shall show µ is uniquely determined

µ(x) · Ex
[
τ+x
] Hw1
= P[X0 = x ] ·

∑
t≥1

P
[
τ+x ≥ t | X0 = x

]
=
∑
t≥1

P
[
τ+x ≥ t ,X0 = x

]
= P[X0 = x ] +

∑
t≥2

P[X1 6= x , . . . ,Xt−1 6= x ]− P[X0 6= x , . . . ,Xt−1 6= x ]

(a)
= P[X0 = x ] +

∑
t≥2

P[X0 6= x , . . . ,Xt−2 6= x ]− P[X0 6= x , . . . ,Xt−1 6= x ]

(b)
= P[X0 = x ] + P[X0 6= x ]− lim

t→∞
P[X0 6= x , . . . ,Xt−1 6= x ]

(c)
= 1.

Equality (a) follows as µ is stationary, equality (b) since the sum is
telescoping and (c) by Markov’s inequality and the Finite Hitting Theorem. �

A sum S is Telescoping if

S =

n−1∑
i=0

ai −ai+1 = a0−an.
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