Lecture 6: Markov Chains

Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

Lent 2020

Stochastic Processes and Markov Chains

Stopping and Hitting Times

Irreducibility and Stationarity

Stochastic Process

A *Stochastic Process* $X = \{X_t : t \in T\}$ is a collection of random variables indexed by time (often $T = \mathbb{N}$) and in this case $X = (X_i)_{i=0}^{\infty}$.

A vector $\mu = (\mu(i))_{i \in \mathcal{I}}$ is a *Probability Distribution* or *Probability Vector* on \mathcal{I} if $\mu(i) \in [0, 1]$ and

$$\sum_{i\in\mathcal{I}}\mu(i)=1.$$

Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous) —

We say that $(X_i)_{i=0}^{\infty}$ is a *Markov Chain* on *State Space* \mathcal{I} with *Initial Distribution* μ and *Transition Matrix* P if for any $i \in \mathcal{I}$,

• $\mathbf{P}[X_0 = i] = \mu(i).$

• The *Markov Property* holds: for all $t \ge 0$ and any $i_0, \ldots, i_{t+1} \in \mathcal{I}$,

$$\mathbf{P}\Big[X_{t+1} = i_{t+1} \Big| X_t = i_t, \dots, X_0 = i_0\Big] = \mathbf{P}\Big[X_{t+1} = i_{t+1} \Big| X_t = i_t\Big] := P(i_t, i_{t+1}).$$

From the definition one can deduce that (check!)

•
$$\mathbf{P}[X_{t+1} = i_{t+1}, X_t = i_t, \dots, X_0 = i_0] = \mu(i_0) \cdot \mathbf{P}(i_0, i_1) \cdots \mathbf{P}(i_{t-1}, i_t) \cdot \mathbf{P}(i_t, i_{t+1})$$

•
$$\mathbf{P}[X_{t+m} = i] = \sum_{j \in \mathcal{I}} \mathbf{P}[X_{t+m} = i | X_t = j] \mathbf{P}[X_t = j]$$

If the Markov Chain starts from as single state $i \in \mathcal{I}$ then we use the notation

$$\mathbf{P}_{i}[X_{k}=j] := \mathbf{P}[X_{k}=j|X_{0}=i].$$

What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

	Rice	Pasta	Potato	
<i>P</i> =	Γο	1/2	1/2]	Rice
	1/4	0	3/4	Pasta
	3/5	2/5	0]	Potato

Transition Matrices

The *Transition Matrix P* of a Markov chain (μ, P) on $\mathcal{I} = \{1, ..., n\}$ is given by

$$P = \begin{pmatrix} P(1,1) & \dots & P(1,n) \\ \vdots & \ddots & \vdots \\ P(n,1) & \dots & P(n,n) \end{pmatrix}$$

- $\rho^t(i)$: probability the chain is in state *i* at time *t*.
- $\rho^t = (\rho^t(0), \rho^t(1), \dots, \rho^t(n))$: *State vector* at time *t* (Row vector).
- Multiplying ρ^t by *P* corresponds to advancing the chain one step:

$$ho^{t+1}(i) = \sum_{j \in \mathcal{I}}
ho^t(j) \cdot P(j,i)$$
 and thus $ho^{t+1} =
ho^t \cdot P.$

• The Markov Property and line above imply that for any $k, t \ge 0$

$$\rho^{t+k} = \rho^t \cdot P^k$$
 and thus $P^k(i,j) = \mathbf{P}[X_k = j | X_0 = i].$

Thus $\rho^{t}(i) = (\mu P^{t})(i)$ and so $\rho^{t} = \mu P^{t} = (\mu P^{t}(1), \mu P^{t}(2), \dots, \mu P^{t}(n)).$

Stochastic Processes and Markov Chains

Stopping and Hitting Times

Irreducibility and Stationarity

Stopping and Hitting Times

A non-negative integer random variable τ is a *Stopping Time* for $(X_i)_{i\geq 0}$ if for every $n \geq 0$ the event $\{\tau = n\}$ depends only on X_0, \ldots, X_n .

Example - College Carbs Stopping times:

✓ "We had Pasta yesterday"

× "We are having Rice next Thursday"

For two states $x, y \in \mathcal{I}$ we call h(x, y) the *Hitting Time* of *y* from *x*:

$$h(x, y) := \mathbf{E}_x[\tau_y] = \mathbf{E}[\tau_y | X_0 = x]$$
 where $\tau_y = \inf\{t \ge 0 : X_t = y\}$.

For $x \in \mathcal{I}$ the *First Return Time* $\mathbf{E}_x[\tau_x^+]$ of *x* is defined

$$\mathbf{E}_{x}[\tau_{x}^{+}] = \mathbf{E}[\tau_{x}^{+}|X_{0} = x] \quad \text{where } \tau_{x}^{+} = \inf\{t \geq 1 : X_{t} = x\}.$$

Comments

- Notice that $h(x, x) = \mathbf{E}_x[\tau_x] = 0$ whereas $\mathbf{E}_x[\tau_x^+] \ge 1$.
- For any $y \neq x$, $h(x, y) = \mathbf{E}_x[\tau_y^+]$.
- Hitting times are the solution to the set of linear equations:

$$\mathbf{E}_{x}[\tau_{y}^{+}] \stackrel{\text{Markov Prop.}}{=} \mathbf{1} + \sum_{z \in \mathcal{I}} \mathbf{E}_{z}[\tau_{y}] \cdot \mathbf{P}(x, z) \qquad \forall x, y \in \mathbf{V}.$$

Stochastic Processes and Markov Chains

Stopping and Hitting Times

Irreducibility and Stationarity

Irreducible Markov Chains

A Markov chain is *Irreducible* if for every pair of states $(i, j) \in \mathcal{I}^2$ there is an integer $m \ge 0$ such that $P^m(i, j) > 0$.

Stationary Distribution

A probability distribution $\pi = (\pi(1), ..., \pi(n))$ is the *Stationary Distribution* of a Markov chain if $\pi P = \pi$, i.e. π is a left eigenvector with eigenvalue 1.

College carbs example:

$$\begin{pmatrix} \frac{4}{13}, \frac{4}{13}, \frac{5}{13} \\ \pi \end{pmatrix} \cdot \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 0 & 3/4 \\ 3/5 & 2/5 & 0 \end{pmatrix} = \begin{pmatrix} \frac{4}{13}, \frac{4}{13}, \frac{5}{13} \\ \pi \end{pmatrix}$$
Rice
$$\begin{pmatrix} 1/4 \\ 1/2 \\ P \\ 1$$

A Markov chain reaches *Equilibrium* if $\rho^t = \pi$ for some *t*. If equilibrium is

reached it *Persists*: If $\rho^t = \pi$ then $\rho^{t+k} = \pi$ for all $k \ge 0$ since

$$\rho^{t+1} = \rho^t \boldsymbol{P} = \pi \boldsymbol{P} = \pi = \rho^t.$$

Existence and Uniqueness of a Positive Stationary Distribution -

Let *P* be finite, irreducible M.C., then there exists a unique probability distribution π on \mathcal{I} such that $\pi = \pi P$ and $\pi(x) = 1/\mathbf{E}_x[\tau_x^+] > 0, \forall x \in \mathcal{I}$.

$$\begin{aligned} & \text{Proof: } [\text{Existence }] \text{ Fix } z \in \mathcal{I} \text{ and define } \mu(y) = \sum_{t=0}^{\infty} \mathsf{P}_{z} [X_{t} = y, \tau_{z}^{+} > t], \text{ this is the expected number of visits to } y \text{ before returning to } z. \text{ For any state } y, \\ & \text{we have } 0 < \mu(y) \leq \mathsf{E}_{z} [\tau_{z}^{+}] < \infty \text{ since } P \text{ is irreducible. To show } \mu P = \mu \\ & \mu P(y) = \sum_{x \in \mathcal{I}} \mu(x) \cdot P(x, y) = \sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathsf{P}_{z} [X_{t} = x, \tau_{z}^{+} > t] \cdot P(x, y) \\ & = \sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathsf{P}_{z} [X_{t} = x, X_{t+1} = y, \tau_{z}^{+} > t] \\ & = \sum_{t=0}^{\infty} \sum_{x \in \mathcal{I}} \mathsf{P}_{z} [X_{t} = x, X_{t+1} = y, \tau_{z}^{+} > t] = \sum_{t=0}^{\infty} \mathsf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} > t] \\ & = \sum_{t=0}^{\infty} \mathsf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} > t+1] + \mathsf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} = t+1] \\ & = \mu(y) - \mathsf{P}_{z} [X_{0} = y, \tau_{z}^{+} > 0] + \sum_{t=0}^{\infty} \mathsf{P}_{z} [X_{t+1} = y, \tau_{z}^{+} = t+1] = \mu(y). \end{aligned}$$

Where (a) and (b) are 1 if y = z and 0 otherwise so cancel. Divide μ though by $\sum_{x \in \mathcal{I}} \mu(x) < \infty$ to turn it into a probability distribution π . \Box

Existence and Uniqueness of a Positive Stationary Distribution -

Let *P* be finite, irreducible M.C., then there exists a unique probability distribution π on \mathcal{I} such that $\pi = \pi P$ and $\pi(x) = 1/\mathbf{E}_x[\tau_x^+] > 0, \forall x \in \mathcal{I}$.

Proof: [Uniqueness] Assume *P* has a stationary distribution μ and let $\mathbf{P}[X_0 = x] = \mu(x)$. We shall show μ is uniquely determined

Equality (a) follows as μ is stationary, equality (b) since the sum is telescoping and (c) by Markov's inequality and the Finite Hitting Theorem. \Box

