## Lecture 6: Markov Chains

Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald



## Outline

## Stochastic Processes and Markov Chains

## Stopping and Hitting Times

## Irreducibility and Stationarity

## Stochastic Process

A Stochastic Process $X=\left\{X_{t}: t \in T\right\}$ is a collection of random variables indexed by time (often $T=\mathbb{N}$ ) and in this case $X=\left(X_{i}\right)_{i=0}^{\infty}$.


A vector $\mu=(\mu(i))_{i \in \mathcal{I}}$ is a Probability Distribution or Probability Vector on $\mathcal{I}$ if $\mu(i) \in[0,1]$ and

$$
\sum_{i \in \mathcal{I}} \mu(i)=1 .
$$

## Markov Chains

## Markov Chain (Discrete Time and State, Time Homogeneous)

We say that $\left(X_{i}\right)_{i=0}^{\infty}$ is a Markov Chain on State Space $\mathcal{I}$ with Initial Distribution $\mu$ and Transition Matrix $P$ if for any $i \in \mathcal{I}$,

- $\mathbf{P}\left[X_{0}=i\right]=\mu(i)$.
- The Markov Property holds: for all $t \geq 0$ and any $i_{0}, \ldots, i_{t+1} \in \mathcal{I}$,
$\mathbf{P}\left[X_{t+1}=i_{t+1} \mid X_{t}=i_{t}, \ldots, X_{0}=i_{0}\right]=\mathbf{P}\left[X_{t+1}=i_{t+1} \mid X_{t}=i_{t}\right]:=P\left(i_{t}, i_{t+1}\right)$.

From the definition one can deduce that (check!)

- $\mathbf{P}\left[X_{t+1}=i_{t+1}, X_{t}=i_{t}, \ldots, X_{0}=i_{0}\right]=\mu\left(i_{0}\right) \cdot P\left(i_{0}, i_{1}\right) \cdots P\left(i_{t-1}, i_{t}\right) \cdot P\left(i_{t}, i_{t+1}\right)$
- $\mathbf{P}\left[X_{t+m}=i\right]=\sum_{j \in \mathcal{I}} \mathbf{P}\left[X_{t+m}=i \mid X_{t}=j\right] \mathbf{P}\left[X_{t}=j\right]$

If the Markov Chain starts from as single state $i \in \mathcal{I}$ then we use the notation

$$
\mathbf{P}_{i}\left[X_{k}=j\right]:=\mathbf{P}\left[X_{k}=j \mid X_{0}=i\right] .
$$

## What does a Markov Chain Look Like?

## Example : the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:


$P=$| Rice | Pasta | Potato |
| :---: | :---: | :---: |
| $\left[\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 4 & 0 & 3 / 4 \\ 3 / 5 & 2 / 5 & 0\end{array}\right]$Rice <br> Pasta <br> Potato Prern |  |  |



## Transition Matrices

The Transition Matrix $P$ of a Markov chain $(\mu, P)$ on $\mathcal{I}=\{1, \ldots n\}$ is given by

$$
P=\left(\begin{array}{ccc}
P(1,1) & \ldots & P(1, n) \\
\vdots & \ddots & \vdots \\
P(n, 1) & \ldots & P(n, n)
\end{array}\right)
$$

- $\rho^{t}(i)$ : probability the chain is in state $i$ at time $t$.
- $\rho^{t}=\left(\rho^{t}(0), \rho^{t}(1), \ldots, \rho^{t}(n)\right)$ : State vector at time $t$ (Row vector).
- Multiplying $\rho^{t}$ by $P$ corresponds to advancing the chain one step:

$$
\rho^{t+1}(i)=\sum_{j \in \mathcal{I}} \rho^{t}(j) \cdot P(j, i) \quad \text { and thus } \quad \rho^{t+1}=\rho^{t} \cdot P
$$

- The Markov Property and line above imply that for any $k, t \geq 0$

$$
\rho^{t+k}=\rho^{t} \cdot P^{k} \quad \text { and thus } \quad P^{k}(i, j)=\mathbf{P}\left[X_{k}=j \mid X_{0}=i\right] .
$$

Thus $\rho^{t}(i)=\left(\mu P^{t}\right)(i)$ and so $\rho^{t}=\mu P^{t}=\left(\mu P^{t}(1), \mu P^{t}(2), \ldots, \mu P^{t}(n)\right)$.

## Outline

## Stochastic Processes and Markov Chains

## Stopping and Hitting Times

## Irreducibility and Stationarity

## Stopping and Hitting Times

A non-negative integer random variable $\tau$ is a Stopping Time for $\left(X_{i}\right)_{i \geq 0}$ if for every $n \geq 0$ the event $\{\tau=n\}$ depends only on $X_{0}, \ldots, X_{n}$.

Example - College Carbs Stopping times:
$\checkmark$ "We had Pasta yesterday"
$\times$ "We are having Rice next Thursday"
For two states $x, y \in \mathcal{I}$ we call $h(x, y)$ the Hitting Time of $y$ from $x$ :

$$
h(x, y):=\mathbf{E}_{x}\left[\tau_{y}\right]=\mathbf{E}\left[\tau_{y} \mid X_{0}=x\right] \quad \text { where } \tau_{y}=\inf \left\{t \geq 0: X_{t}=y\right\} .
$$

For $x \in \mathcal{I}$ the First Return Time $\mathbf{E}_{x}\left[\tau_{x}^{+}\right]$of $x$ is defined

$$
\mathbf{E}_{x}\left[\tau_{x}^{+}\right]=\mathbf{E}\left[\tau_{x}^{+} \mid X_{0}=x\right] \quad \text { where } \tau_{x}^{+}=\inf \left\{t \geq 1: X_{t}=x\right\} .
$$

## Comments

- Notice that $h(x, x)=\mathbf{E}_{x}\left[\tau_{x}\right]=0$ whereas $\mathbf{E}_{x}\left[\tau_{x}^{+}\right] \geq 1$.
- For any $y \neq x, h(x, y)=\mathbf{E}_{x}\left[\tau_{y}^{+}\right]$.
- Hitting times are the solution to the set of linear equations:

$$
\mathbf{E}_{x}\left[\tau_{y}^{+}\right] \stackrel{\text { Markov Prop. }}{=} 1+\sum_{z \in \mathcal{I}} \mathbf{E}_{z}\left[\tau_{y}\right] \cdot P(x, z) \quad \forall x, y \in V .
$$

## Outline

## Stochastic Processes and Markov Chains

## Stopping and Hitting Times

## Irreducibility and Stationarity

## Irreducible Markov Chains

A Markov chain is Irreducible if for every pair of states $(i, j) \in \mathcal{I}^{2}$ there is an integer $m \geq 0$ such that $P^{m}(i, j)>0$.

$\checkmark$ irreducible

$\times$ not-irreducible (thus reducible)

Finite Hitting Theorem
For any states $x$ and $y$ of a finite irreducible Markov chain $\mathbf{E}_{x}\left[\tau_{y}^{+}\right]<\infty$.

## Stationary Distribution

A probability distribution $\pi=(\pi(1), \ldots, \pi(n))$ is the Stationary Distribution of a Markov chain if $\pi P=\pi$, i.e. $\pi$ is a left eigenvector with eigenvalue 1 .

College carbs example:
$\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{13}\right) \cdot\left(\begin{array}{ccc}0 & 1 / 2 & 1 / 2 \\ 1 / 4 & 0 & 3 / 4 \\ 3 / 5 & 2 / 5 & 0\end{array}\right)=\left(\frac{4}{13}, \frac{4}{13}, \frac{5}{13}\right)$


A Markov chain reaches Equilibrium if $\rho^{t}=\pi$ for some $t$. If equilibrium is reached it Persists: If $\rho^{t}=\pi$ then $\rho^{t+k}=\pi$ for all $k \geq 0$ since

$$
\rho^{t+1}=\rho^{t} P=\pi P=\pi=\rho^{t} .
$$

Let $P$ be finite, irreducible M.C., then there exists a unique probability distribution $\pi$ on $\mathcal{I}$ such that $\pi=\pi P$ and $\pi(x)=1 / \mathbf{E}_{x}\left[\tau_{x}^{+}\right]>0, \forall x \in \mathcal{I}$.

Proof: [Existence ] Fix $z \in \mathcal{I}$ and define $\mu(y)=\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t}=y, \tau_{z}^{+}>t\right]$, this is the expected number of visits to $y$ before returning to $z$. For any state $y$, we have $0<\mu(y) \leq \mathbf{E}_{z}\left[\tau_{z}^{+}\right]<\infty$ since $P$ is irreducible. To show $\mu P=\mu$ $\mu P(y)=\sum_{x \in \mathcal{I}} \mu(x) \cdot P(x, y)=\sum_{x \in \mathcal{I}} \sum_{t=0} \mathbf{P}_{z}\left[X_{t}=x, \tau_{z}^{+}>t\right] \cdot P(x, y)$

$$
=\sum_{x \in \mathcal{I}} \sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t}=x, X_{t+1}=y, \tau_{z}^{+}>t\right]
$$

$$
=\sum_{t=0}^{\infty} \sum_{x \in \mathcal{I}} \mathbf{P}_{z}\left[X_{t}=x, X_{t+1}=y, \tau_{z}^{+}>t\right]=\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}>t\right]
$$

$$
=\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}>t+1\right]+\mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}=t+1\right]
$$

$$
=\mu(y)-\mathbf{P}_{z}\left[X_{0}=y, \tau_{z}^{+}>0\right]+\sum_{t=0}^{\infty} \mathbf{P}_{z}\left[X_{t+1}=y, \tau_{z}^{+}=t+1\right]=\mu(y)
$$

Where (a) and (b) are 1 if $y=z$ and 0 otherwise so cancel. Divide $\mu$ though by $\sum_{x \in \mathcal{I}} \mu(x)<\infty$ to turn it into a probability distribution $\pi$. $\square$

Let $P$ be finite, irreducible M.C., then there exists a unique probability distribution $\pi$ on $\mathcal{I}$ such that $\pi=\pi P$ and $\pi(x)=1 / \mathbf{E}_{x}\left[\tau_{x}^{+}\right]>0, \forall x \in \mathcal{I}$.

Proof: [Uniqueness ] Assume $P$ has a stationary distribution $\mu$ and let $\mathbf{P}\left[X_{0}=x\right]=\mu(x)$. We shall show $\mu$ is uniquely determined

$$
\begin{aligned}
& \mu(x) \cdot \mathbf{E}_{x}\left[\tau_{x}^{+}\right] \stackrel{H \mathrm{Hw} 1}{=} \mathbf{P}\left[X_{0}=x\right] \cdot \sum_{t \geq 1} \mathbf{P}\left[\tau_{x}^{+} \geq t \mid X_{0}=x\right] \mathrm{A}_{\mathrm{A} \text { sum } S \text { is Telescoping if }} \\
& \quad=\sum_{t \geq 1} \mathbf{P}\left[\tau_{x}^{+} \geq t, X_{0}=x\right] a_{i=0}^{n-1} a_{i}-a_{i+1}=a_{0}-a_{n} . \\
& \quad=\mathbf{P}\left[X_{0}=x\right]+\sum_{t \geq 2} \mathbf{P}\left[X_{1} \neq x, \ldots, X_{t-1} \neq x\right]-\mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-1} \neq x\right] \\
& \quad \stackrel{\text { (a) }}{=} \mathbf{P}\left[X_{0}=x\right]+\sum_{t \geq 2} \mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-2} \neq x\right]-\mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-1} \neq x\right] \\
& \stackrel{\text { (b) }}{=} \mathbf{P}\left[X_{0}=x\right]+\mathbf{P}\left[X_{0} \neq x\right]-\lim _{t \rightarrow \infty} \mathbf{P}\left[X_{0} \neq x, \ldots, X_{t-1} \neq x\right] \stackrel{\text { (c) }}{=} 1 .
\end{aligned}
$$

Equality (a) follows as $\mu$ is stationary, equality $(b)$ since the sum is telescoping and (c) by Markov's inequality and the Finite Hitting Theorem.

