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Stochastic Processes and Markov Chains
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Stochastic Process

A Stochastic Process X = {X; : t € T} is a collection of random variables
indexed by time (often T = N) and in this case X = (Xi),.
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A vector pu = (pu(f));c7 is @ Probability Distribution or Probability Vector on T if

u(i) € [0,1] and
> u(iy=1.
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Markov Chains

Markov Chain (Discrete Time and State, Time Homogeneous)

We say that (X;);5, is @ Markov Chain on State Space I with Initial Dis-
tribution p and Transition Matrix P if forany i € Z,

= P[Xo = i] = p(i).
= The Markov Property holds: for all t > 0 and any i, .. ., i1 € Z,

P[Xm = it+1’Xt =it..., X0 = fo] = P[Xm = lpy1 ’Xt = it] = P(it, 1)

From the definition one can deduce that (check!)
* P[Xevr = ippr, Xe =, ..., Xo = lo] = p(lo) - P(lo, in) -+ - Plit—1, it) - Pt its1)

* P[Xeem = 1] = 22z P[ Xeem = 1|1 X = J]P[ X = /]

If the Markov Chain starts from as single state i € Z then we use the notation

P,‘[Xk :j] = P[Xk :j|Xo = i].
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What does a Markov Chain Look Like?

Example : the carbohydrate served with lunch in the college cafeteria.

This has transition matrix:

@ “ Rice Pasta  Potato
N — W 0o 1/2 12
P= /

1/4 0  3/4
3/5 2/5 0

1/2
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Rice
Pasta
Potato
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Transition Matrices

The Transition Matrix P of a Markov chain (., P) on Z = {1,...n} is given by

P(1,1) ... P(1,n)

P=| .
P(n,1) ... P(n,n)

= p!(i): probability the chain is in state i at time .

= pt = (p'(0), p'(1), ..., p'(n)): State vector at time t (Row vector).

Multiplying p' by P corresponds to advancing the chain one step:

p (i) =>"p'()- P(.i)  andthus T =p"-P.

jET

The Markov Property and line above imply that for any k,t > 0
pR=ptPX andthus  PA(i,j) = P[ Xk = j|Xo = i].
Thus p'(7) = (uP")(i) and s0 p' = uP' = (uP'(1), uP'(2),. .., uP'(n)).
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Stopping and Hitting Times
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Stopping and Hitting Times

A non-negative integer random variable 7 is a Stopping Time for (Xi),~, if for
every n > 0 the event {r = n} depends only on Xy, ..., Xy. B

Example - College Carbs Stopping times:
“We had Pasta yesterday”
x “We are having Rice next Thursday”

For two states x, y € Z we call h(x, y) the Hiiting Time of y from x:
h(x,y) = Ex[ry] = E[7y|Xo = x] where r, =inf{t >0: X =y}.
For x € I the First Return Time Ex[7{ ] of x is defined
Ex[rv] =E[~|Xo =x] where 7 =inf{t>1:X =x}.
Comments
= Notice that h(x, x) = Ex[7x] = 0 whereas Ex[r{] > 1.

» Forany y # x, h(x,y) = Ex[7,/].
= Hitting times are the solution to the set of linear equations:

Edr] =" 14+ Y Euln] - P(x,2)  Wxye V.
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Irreducibility and Stationarity
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Irreducible Markov Chains

A Markov chain is Irreducible if for every pair of states (i, j) € Z? there is an
integer m > 0 such that P™(i,j) > 0.

1/4 1/4
3/4
3/4 1 3/4
2/5
2/5
3/5 1/4 3/5 @:31
/ irreducible x not-irreducible (thus reducible)

Finite Hitting Theorem

For any states x and y of a finite irreducible Markov chain Ex [, ] < occ.
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Stationary Distribution

A probability distribution = = (7(1), ..., w(n)) is the Stationary Distribution of
a Markov chain if 7P = =, i.e. w is a left eigenvector with eigenvalue 1.

1/4
5
3 3/5 3/4

1/2 2/5

A Markov chain reaches Equilibrium if p' = 7 for some t.  If equilibrium is

College carbs example:

0 1/2 1/2
4 4 5 B
(ﬁﬁﬁ) (;j;‘ 25 3{;‘) = (1
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reached it Persists: If p' = & then p!** = for all k > 0 since

pt+1 =pP=nP=n=/p".
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Existence and Uniqueness of a Positive Stationary Distribution

Let P be finite, irreducible M.C., then there exists a unique probability
distribution 7 on Z such that 7 = 7P and m(x) = 1/Ex[rJ] > 0, Vx € T.

Proof: [Existence ] Fix z € Z and define pu(y) = > 15 Pz [Xi = y, 7 > t], this
is the expected number of visits to y before returning to z. For any state y,
we have 0 < u(y) < Ez[77] < oo since P is irreducible. To show pP =

=> pu(x)-Pxy)=> > P Xi=x,77 > t]-P(x,y)

XeT XET t=0

=D > PeXi=x X1 =y, > ]
XeZ t=0

=Y Y P Xi=xXg1=y, 7 >t] =) P X =y, >
t=0 x€Z t=0

:sz[XtJﬂ :y,T;r > t—|—1] —|—PZ[XI+1 :y77-;r = t_|_1]

(a) o (b)
=u(y) = Pz[Xo =y, 7 >0] +sz[xr+1 =y, =t+1] =uy).
t=0
Where (a) and (b) are 1 if y = z and 0 otherwise so cancel. Divide n
though by >~ ., 1(x) < oo to turn it into a probability distribution 7. O

afin

Lecture 6: Markov Chains 12



Existence and Uniqueness of a Positive Stationary Distribution

Let P be finite, irreducible M.C., then there exists a unique probability
distribution 7 on Z such that 7 = 7P and m(x) = 1/Ex[rJ] > 0, Vx € T.

Proof: [Uniqueness ] Assume P has a stationary distribution 1 and let
P[ Xo = x] = u(x). We shall show p is uniquely determined

N(X)'EX[T;] s P[Xo :X]'ZP[T; >t X :X] A sum S is Telescoping if

1>1
- n—1
:ZP[T;—Zt,X():X] S=Y a—ay=a—an
>1 =0
= P[Xo = x]+ S PIXi # X, Xy # X1 = P[Xo # X, .0, Xt £ X]

t>2

ZPXo=x]+ Y P[Xo#X, ..., Xi2 # Xx] —P[Xo # X,..., Xie1 # X]

t>2

DPXo = x]+P[Xo £ x] — lim P[Xo# x,..., X1 #x] €1,

Equality (a) follows as p is stationary, equality (b) since the sum is
telescoping and (c¢) by Markov’s inequality and the Finite Hitting Theorem. O
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