Lecture 5: Conditional Expectation

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Outline

Conditional Expectation

Quick-Sort

Coin Flips and Balls-in-Bins

Conditional Probability and Expectation

- Given two events A, B with $\mathbf{P}[A]>0$ define the Conditional Probability

$$
\mathbf{P}[B \mid A]=\mathbf{P}[B \cap A] / \mathbf{P}[A] .
$$

If $\mathbf{P}[A]=0$, the usual convention is that $\mathbf{P}[B \mid A]=0$.

- Given a discrete random variable Y, we define its Conditional Expectation with respect to the event A by

$$
\mathbf{E}[Y \mid A]=\sum_{\omega \in \Omega} Y(\omega) \mathbf{P}[\{\omega\} \mid A]=\sum_{b} b \mathbf{P}[Y=b \mid A]
$$

- When the event $A=\{X=a\}$ where X is another discrete random variable, we define the function $f(a)$ by

$$
f(a)=\mathbf{E}[Y \mid X=a],
$$

- We define the conditional expectation $\mathrm{E}[Y \mid X]$, as the random variable that takes the value $\mathrm{E}[Y \mid X=a]$ then $X=$ a, i.e. $f(X)$.

Important Remarks

- The conditional expectation $\mathrm{E}[Y \mid A]$ of Y w.r.t an event A is a deterministic number .
- The conditional expectation $\mathrm{E}[Y \mid X]$ of Y w.r.t a random variable X is a random variable.
- In the definition of $\mathrm{E}[Y \mid X]$ above X can be a random vector $\left(X_{1}, \ldots, X_{N}\right)$.

Example: Single Dice

- Let Y be 1 if the dice rolls 1 and 0 otherwise
- Let X_{1} be 1 if the dice shows odd number, 0 otherwise
- Let X_{2} be 1 is the dice shows a number $\leq 2,0$ otherwise

$$
\mathrm{E}\left[Y \mid X_{1}\right]=X_{1} / 3 \quad \mathrm{E}\left[Y \mid X_{2}\right]=X_{2} / 2 \quad \mathrm{E}\left[Y \mid\left(X_{1}, X_{2}\right)\right]=X_{1} \cdot X_{2}
$$

Important Remarks (continued)

- The conditional expectation $\mathrm{E}[Y \mid X]$ is always a function of X.
- Behind conditional expectation there is the notion of information.
- The standard notion of expectation $\mathbf{E}[Y]$ can be thought of as

'the best estimate of a random variable Y given no information about it,'

while the conditional expectation $\mathrm{E}[Y \mid \mathcal{I}]$ given \mathcal{I} can be thought of as

'the best estimate of a random variable Y given information \mathcal{I},'

where \mathcal{I} above may be an event or a random variable etc.

Conditional Expectation: Two Dice

Suppose we independently roll two standard 6-sided dice. Let X_{1} and X_{2} the observed number in the first and second dice respectively. Then,

$$
\mathrm{E}\left[X_{1}+X_{2} \mid X_{1}\right]=3.5+X_{1} .
$$

Why? Because if $X_{1}=a$ then

$$
\begin{aligned}
\mathbf{E}\left[X_{1}+X_{2} \mid X_{1}=a\right] & =\sum_{b=1}^{12} b \mathbf{P}\left[X_{1}+X_{2}=b \mid X_{1}=a\right] \\
& =\sum_{b=1}^{12} b \mathbf{P}\left[X_{1}+X_{2}=b, X_{1}=a\right] / \mathbf{P}\left[X_{1}=a\right] \\
& =\sum_{b=1}^{12} b \mathbf{P}\left[X_{2}=b-a, X_{1}=a\right] / \mathbf{P}\left[X_{1}=a\right] \\
\left(X_{1} \text { independent of } X_{2}\right) & =\sum_{b=1}^{12} b \mathbf{P}\left[X_{2}=b-a\right] \\
& =\sum_{c=1}^{6}(c+a) \mathbf{P}\left[X_{2}=c\right] \\
& =3.5+a
\end{aligned}
$$

Conditional Expectation: Properties

(1) $\mathbf{E}[\mathbf{E}[Y \mid X]]=\mathbf{E}[Y]$.
(2) $\mathrm{E}[1 \mid X]=1$
(3) Linearity:

- For any constant $c \in \mathbb{R}, \mathbf{E}[c Y \mid X]=c \mathbf{E}[Y \mid X]$
- $\mathrm{E}[Y+Z \mid X]=\mathrm{E}[Y \mid X]+\mathrm{E}[Z \mid X]$
(4) If X is independent of Y, then $\mathrm{E}[Y \mid X]=\mathrm{E}[Y]$.
(5) if Y is a function of X, i.e. $Y=f(X)$, then $\mathrm{E}[Y Z \mid X]=Y \mathrm{E}[Z \mid X]$.

Particularly, $\mathrm{E}[X \mid X]=X$
(6) Tower Property:

- $\mathrm{E}[\mathrm{E}[X \mid(Z, Y)] \mid Y]=\mathrm{E}[X \mid Y]$.
(7) Jensen Inequality:
- if f is a convex real function, then $f(\mathrm{E}[X \mid Y]) \leq \mathrm{E}[f(X) \mid Y]$.

These properties greatly simplify calculations. Example: for our two dice

$$
\mathbf{E}\left[X_{1}+X_{2} \mid X_{1}\right] \stackrel{p 3}{=} \mathbf{E}\left[X_{1} \mid X_{1}\right]+\mathbf{E}\left[X_{2} \mid X_{1}\right] \stackrel{p 5, p 4}{=} X_{1}+\mathbf{E}\left[X_{2}\right]=X_{1}+3.5
$$

Exercise: Prove the properties from slide 7
Example: we can prove Property (1), that is $\mathbf{E}[\mathbf{E}[Y \mid X]]=\mathbf{E}[Y]$, as follows:

$$
\begin{aligned}
\mathbf{E}[\mathbf{E}[Y \mid X]] & =\sum_{\omega \in \Omega} \mathbf{E}[Y \mid X](\omega) \cdot \mathbf{P}[\{\omega\}] \\
& =\sum_{x} \mathbf{E}[Y \mid X=x] \mathbf{P}[X=x] \\
& =\sum_{x} \sum_{y} y \mathbf{P}[Y=y \mid X=x] \mathbf{P}[X=x] \\
& =\sum_{x} \sum_{y} y \mathbf{P}[Y=y, X=x] \\
& =\sum_{y} y \mathbf{P}[Y=y] \\
& =\mathbf{E}[Y]
\end{aligned}
$$

Bonus Exercise: Prove Property (1) using Properties (4) and (2).

Outline

Conditional Expectation

Quick-Sort

Coin Flips and Balls-in-Bins

Quick-Sort with Random Pivot

Algorithm: QuickSort
Input: Array of different number A.
Output: array A sorted in increasing order

- Pick an element uniformly from the array, the so-called pivot .
- If $|A|=0$ or $|A|=1$; return A.
- Else
- Generate two subarrays A_{1} and A_{2} :
A_{1} contains the elements that are smaller than the pivot ;
A_{2} contains the elements that are greater than the pivot ;
- Recursively sort A_{1} and A_{2}.

Let C_{n} be the number of comparisons made by Qucik-Sort on n elements.
Recall that Nicolas showed something along the lines of

$$
\mathbf{P}\left[C_{n} \geq 21 n \log n\right]=1 / n .
$$

What is $\mathrm{E}\left[C_{n}\right]$ - the expected number of comparisons?

The expected number of comparisons in Quick-Sort

Let $M_{n}=\mathbf{E}\left[C_{n}\right]$ be the expected number of comparisons needed by quick-sort to sort n distinct values. Conditioning on the rank of the pivot gives

$$
M_{n}=\sum_{j=1}^{n} \mathbf{E}\left[C_{n} \mid \text { pivot selected is } j \text { th smallest value }\right] \cdot \frac{1}{n}
$$

If the initial pivot selected is the j th smallest value, then the set of values smaller than it has size $j-1$, and the set of values greater has size $n-j$. Hence, as $n-1$ comparisons with the pivot must be made, we have

$$
M_{n}=\sum_{j=1}^{n}\left(n-1+M_{j-1}+M_{n-j}\right) \frac{1}{n}=n-1+\frac{2}{n} \sum_{j=1}^{n-1} M_{j} .
$$

Thus

$$
(n+1) M_{n+1}-n M_{n}=2 n+2 M_{n}
$$

Or equivalently

$$
(n+1) M_{n+1}=2 n+(n+2) M_{n}
$$

The expected number of comparisons in Quick-Sort

Rearranging $(n+1) M_{n+1}=2 n+(n+2) M_{n}$ we have

$$
\begin{aligned}
\frac{M_{n+1}}{n+2} & =\frac{2 n}{(n+1)(n+2)}+\frac{M_{n}}{n+1} \\
& =\frac{2 n}{(n+1)(n+2)}+\frac{2(n-1)}{n(n+1)}+\frac{M_{n-1}}{n} \\
& =2 \sum_{k=0}^{n-1} \frac{n-k}{(n+1-k)(n+2-k)} \\
& =2 \sum_{i=0}^{n} \frac{i}{(i+1)(i+2)} \\
& =2\left[\sum_{i=1}^{n} \frac{2}{i+2}-\sum_{i=1}^{n} \frac{1}{i+1}\right] \sim 2 \log n .
\end{aligned}
$$

Thus Quick-Sort makes $\mathbf{E}\left[C_{n}\right] \sim 2 n \log n$ comparisons in expectation.

Outline

Conditional Expectation

Quick-Sort

Coin Flips and Balls-in-Bins

Example: Expectation of a Geometric Random Variable

Suppose X_{1}, X_{2}, \ldots, is an infinite sequence of independent $\operatorname{Bernoulli} \operatorname{Ber}(p)$ random variables with parameter p. That is

$$
\mathbf{P}\left[X_{i}=1\right]=p, \quad \mathbf{P}\left[X_{i}=0\right]=1-p .
$$

We shall think of the $X_{i}^{\prime} s$ as coin flips.

Let $G=\min \left\{k \geq 1: X_{k}=1\right\}$, the number of coin flips until we get a head.
G has geometric distribution $\mathrm{Geo}(p)$ with parameter p. Indeed,

$$
\mathbf{P}[G=k]=p(1-p)^{k-1} .
$$

The expectation of G is given by the formula

$$
\mathbf{E}[G]=\sum_{k=1}^{\infty} k p(1-p)^{k-1}
$$

Let say that we forgot how to compute sums of this type...

We can compute $\mathbf{E}[G]$ by other means.

- $\mathrm{E}[G] \stackrel{p 1}{=} \mathrm{E}\left[\mathrm{E}\left[G \mid X_{1}\right]\right]$
- Conditional on X_{1},

$$
G=X_{1}+\left(1-X_{1}\right)\left(1+G^{\prime}\right),
$$

where G^{\prime} is the number of coins we need to wait to see a head after the first coin.

- $\mathrm{E}\left[X_{1}+\left(1-X_{1}\right)\left(1+G^{\prime}\right) \mid X_{1}\right] \stackrel{{ }^{p 3, p 5}}{=} X_{1}+\left(1-X_{1}\right) \mathbf{E}\left[1+G^{\prime} \mid X_{1}\right]$
- G^{\prime} has geometric distribution of parameter p and it is independent of X_{1}. Hence

$$
\mathbf{E}\left[1+G^{\prime} \mid X_{1}\right] \stackrel{p 4}{=} \mathbf{E}\left[1+G^{\prime}\right]=1+\mathbf{E}[G]
$$

- Solve

$$
\mathbf{E}[G]=p+(1-p)(1+\mathbf{E}[G])
$$

- To give

$$
\mathrm{E}[G]=1 / p .
$$

Example: Balls into Bins

Suppose we have n bins but a random number of balls, say M. Suppose M has finite expectation. What is the expected number of balls in the first bin?

Set Up:

- Balls are assigned to bins uniformly and independently at random
- Let $X_{i}=1$ if the ball i falls in bin 1,0 otherwise
- The total number of balls in bin 1 is $\sum_{i=1}^{M} X_{i}$
- M is a random variable, and M is independent of all X_{i} 's

Question Rephrased
Let X_{i} be i.i.d. and M be independent of $\left\{X_{i}\right\}_{i \geq 0}$. If $\mathrm{E}\left[X_{i}\right]<\infty$ and $\mathbf{E}[M]<\infty$ then what is $\mathbf{E}\left[\sum_{i=1}^{M} X_{i}\right]$?

Expectation of the Compound Random Variable $\sum_{i=1}^{M} X_{i}$

We shall use $\mathbf{E}\left[\sum_{i=1}^{M} X_{i}\right] \stackrel{P 1}{=} \mathbf{E}\left[\mathbf{E}\left[\sum_{i=1}^{M} X_{i} \mid M\right]\right]$. Observe that for any $k \in \mathbb{N}$

$$
\begin{aligned}
f(k) & :=\mathbf{E}\left[\sum_{i=1}^{M} X_{i} \mid M=k\right]=\mathbf{E}\left[\sum_{i=1}^{k} X_{i} \mid M=k\right] \\
& \stackrel{P 3}{=} \sum_{i=1}^{k} \mathbf{E}\left[X_{i} \mid M=k\right] \stackrel{P 4}{=} \sum_{i=1}^{k} \mathbf{E}\left[X_{i}\right]=k \cdot \mathbf{E}\left[X_{i}\right],
\end{aligned}
$$

since X_{i} are all equidistributed. Thus $\mathbf{E}\left[\sum_{i=1}^{M} X_{i} \mid M\right]=f(M)=M \cdot \mathbf{E}\left[X_{i}\right]$.
To conclude we have

$$
\mathbf{E}\left[\sum_{i=1}^{M} X_{i}\right]=\mathbf{E}\left[M \mathbf{E}\left[X_{i}\right]\right] \stackrel{P 3}{=} \mathbf{E}[M] \mathbf{E}\left[X_{i}\right] .
$$

