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Conditional Probability and Expectation

Given two events A,B with P[A ] > 0 define the Conditional Probability

P[B|A ] = P[B ∩ A ] /P[A ] .

If P[A ] = 0, the usual convention is that P[B|A ] = 0.

Given a discrete random variable Y , we define its Conditional Expectation
with respect to the event A by

E[Y |A ] =
∑
ω∈Ω

Y (ω)P[ {ω}|A ] =
∑

b

bP[Y = b|A ]

When the event A = {X = a} where X is another discrete random
variable, we define the function f (a) by

f (a) = E[Y |X = a ] ,

We define the conditional expectation E[Y |X ], as the random variable
that takes the value E[Y |X = a ] then X = a, i.e. f (X ).
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Important Remarks

The conditional expectation E[Y |A ] of Y w.r.t an event A is a
deterministic number .

The conditional expectation E[Y |X ] of Y w.r.t a random variable X is a
random variable .

In the definition of E[Y |X ] above X can be a random vector (X1, . . . ,XN).

Let Y be 1 if the dice rolls 1 and 0 otherwise

Let X1 be 1 if the dice shows odd number, 0 otherwise

Let X2 be 1 is the dice shows a number ≤ 2 , 0 otherwise

E[Y |X1 ] = X1/3 E[Y |X2 ] = X2/2 E[Y |(X1,X2) ] = X1 · X2

Example: Single Dice
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Important Remarks (continued)

The conditional expectation E[Y |X ] is always a function of X .

Behind conditional expectation there is the notion of information.

The standard notion of expectation E[Y ] can be thought of as

’the best estimate of a random variable Y given no information about it,’

while the conditional expectation E[Y |I ] given I can be thought of as

’the best estimate of a random variable Y given information I,’

where I above may be an event or a random variable etc.
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Conditional Expectation: Two Dice

Suppose we independently roll two standard 6-sided dice. Let X1 and X2 the
observed number in the first and second dice respectively. Then,

E[X1 + X2|X1 ] = 3.5 + X1.

Why? Because if X1 = a then

E[X1 + X2|X1 = a ] =
12∑

b=1

bP[X1 + X2 = b|X1 = a ]

=
12∑

b=1

bP[X1 + X2 = b,X1 = a ] /P[X1 = a ]

=
12∑

b=1

bP[X2 = b − a,X1 = a ] /P[X1 = a ]

(X1 independent of X2) =
12∑

b=1

bP[X2 = b − a ]

=
6∑

c=1

(c + a)P[X2 = c ]

= 3.5 + a
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Conditional Expectation: Properties

(1) E[E[Y |X ] ] = E[Y ].

(2) E[ 1|X ] = 1
(3) Linearity:

For any constant c ∈ R, E[ cY |X ] = cE[ Y |X ]
E[ Y + Z |X ] = E[ Y |X ] + E[ Z |X ]

(4) If X is independent of Y , then E[Y |X ] = E[Y ] .

(5) if Y is a function of X , i.e. Y = f (X ), then E[YZ |X ] = YE[Z |X ].
Particularly, E[X |X ] = X

(6) Tower Property:
E[ E[ X |(Z ,Y ) ] |Y ] = E[ X |Y ].

(7) Jensen Inequality:
if f is a convex real function, then f (E[ X |Y ]) ≤ E[ f (X)|Y ].

These properties greatly simplify calculations. Example: for our two dice

E[X1 + X2|X1 ]
p3
= E[X1|X1 ] + E[X2|X1 ]

p5,p4
= X1 + E[X2 ] = X1 + 3.5
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Exercise: Prove the properties from slide 7

Example: we can prove Property (1), that is E[E[Y |X ] ] = E[Y ], as follows:

E[E[Y |X ] ] =
∑
ω∈Ω

E[Y |X ](ω) · P[ {ω} ]

=
∑

x

E[Y |X = x ]P[X = x ]

=
∑

x

∑
y

yP[Y = y |X = x ]P[X = x ]

=
∑

x

∑
y

yP[Y = y ,X = x ]

=
∑

y

yP[Y = y ]

= E[Y ]

Bonus Exercise: Prove Property (1) using Properties (4) and (2).
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Quick-Sort with Random Pivot

Input: Array of different number A.
Output: array A sorted in increasing order

Pick an element uniformly from the array, the so-called pivot .

If |A| = 0 or |A| = 1; return A.
Else

Generate two subarrays A1 and A2:
A1 contains the elements that are smaller than the pivot ;
A2 contains the elements that are greater than the pivot ;
Recursively sort A1 and A2.

Algorithm: QuickSort

Let Cn be the number of comparisons made by Qucik-Sort on n elements.

Recall that Nicolas showed something along the lines of

P[Cn ≥ 21n log n ] = 1/n.

What is E[Cn ] - the expected number of comparisons?
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The expected number of comparisons in Quick-Sort

Let Mn = E[Cn ] be the expected number of comparisons needed by
quick-sort to sort n distinct values. Conditioning on the rank of the pivot gives

Mn =
n∑

j=1

E
[

Cn
∣∣ pivot selected is j th smallest value

]
· 1

n

If the initial pivot selected is the j th smallest value, then the set of values
smaller than it has size j − 1, and the set of values greater has size n − j .

Hence, as n − 1 comparisons with the pivot must be made, we have

Mn =
n∑

j=1

(n − 1 + Mj−1 + Mn−j)
1
n
= n − 1 +

2
n

n−1∑
j=1

Mj .

Since M0 = 0.

Thus
(n + 1)Mn+1 − nMn = 2n + 2Mn.

Or equivalently
(n + 1)Mn+1 = 2n + (n + 2)Mn.
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The expected number of comparisons in Quick-Sort

Rearranging (n + 1)Mn+1 = 2n + (n + 2)Mn we have

Mn+1

n + 2
=

2n
(n + 1)(n + 2)

+
Mn

n + 1

=
2n

(n + 1)(n + 2)
+

2(n − 1)
n(n + 1)

+
Mn−1

n

= 2
n−1∑
k=0

n − k
(n + 1− k)(n + 2− k)

= 2
n∑

i=0

i
(i + 1)(i + 2)

= 2

[
n∑

i=1

2
i + 2

−
n∑

i=1

1
i + 1

]
∼ 2 log n.

Since M1 = 0.

Thus Quick-Sort makes E[Cn ] ∼ 2n log n comparisons in expectation.
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Example: Expectation of a Geometric Random Variable

Suppose X1,X2, . . . , is an infinite sequence of independent Bernoulli Ber(p)
random variables with parameter p. That is

P[Xi = 1 ] = p, P[Xi = 0 ] = 1− p.

We shall think of the X ′i s as coin flips.

Let G = min{k ≥ 1 : Xk = 1}, the number of coin flips until we get a head.

G has geometric distribution Geo(p) with parameter p. Indeed,

P[G = k ] = p(1− p)k−1.

The expectation of G is given by the formula

E[G ] =
∞∑

k=1

kp(1− p)k−1

Let say that we forgot how to compute sums of this type...
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We can compute E[G ] by other means.

E[G ]
p1
= E[E[G|X1 ] ]

Conditional on X1,
G = X1 + (1− X1)(1 + G′),

where G′ is the number of coins we need to wait to see a head after the
first coin.

E[X1 + (1− X1)(1 + G′)|X1 ]
p3,p5
= X1 + (1− X1)E[ 1 + G′|X1 ]

G′ has geometric distribution of parameter p and it is independent of X1.
Hence

E
[

1 + G′|X1
] p4
= E

[
1 + G′

]
= 1 + E[G ]

Solve
E[G ] = p + (1− p)(1 + E[G ])

To give
E[G ] = 1/p.

Lecture 5: Conditional Expectation 15



Example: Balls into Bins

Suppose we have n bins but a random number of balls, say M. Suppose M
has finite expectation.What is the expected number of balls in the first bin?

Set Up:

Balls are assigned to bins uniformly and independently at random

Let Xi = 1 if the ball i falls in bin 1, 0 otherwise

The total number of balls in bin 1 is
∑M

i=1 Xi

M is a random variable, and M is independent of all Xi ’s

Let Xi be i.i.d. and M be independent of {Xi}i≥0. If E[Xi ] < ∞ and
E[M ] <∞ then what is E

[∑M
i=1 Xi

]
?

Question Rephrased
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Expectation of the Compound Random Variable
∑M

i=1 Xi

We shall use E
[∑M

i=1 Xi

]
P1
= E

[
E
[∑M

i=1 Xi |M
] ]

. Observe that for any k ∈ N

f (k) := E

[
M∑

i=1

Xi

∣∣∣M = k

]
= E

[
k∑

i=1

Xi

∣∣∣M = k

]

P3
=

k∑
i=1

E
[

Xi
∣∣M = k

] P4
=

k∑
i=1

E[Xi ] = k · E[Xi ] ,

since Xi are all equidistributed. Thus E
[∑M

i=1 Xi |M
]
= f (M) = M · E[Xi ] .

To conclude we have

E

[
M∑

i=1

Xi

]
= E[ME[Xi ] ]

P3
= E[M ]E[Xi ] .
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