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The useful Chernoff Bounds

Remember from last class.

Suppose X1, . . . ,Xn are independent Bernoulli random variables with pa-
rameter pi . Let X = X1 + . . .+ Xn and µ = E[ X ] =

∑
pi . Then,

For all t > 0,
P[ X ≥ E[ X ] + t ] ≤ e−2t2/n

P[ X ≤ E[ X ]− t ] ≤ e−2t2/n

For 0 < δ < 1,

P[ X ≥ (1 + δ)E[ X ] ] ≤ exp

(
−δ

2E[ X ]

3

)

P[ X ≤ (1− δ)E[ X ] ] ≤ exp

(
−δ

2E[ X ]

2

)

Nicer Chernoff Bounds
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Applications: QuickSort

Quick sort is a sorting algorithm that works as following.

Input: Array of different number A.
Output: array A sorted in increasing order

Pick an element from the array, the so-called pivot .

If |A| = 0 or |A| = 1; return A.
Else

Generate two subarrays A1 and A2:
A1 contains the elements that are smaller than the pivot ;
A2 contains the elements that are greater than the pivot ;
Recursively sort A1 and A2.

Algorithm: QuickSort

E.g. Let A = (2, 8, 9, 1, 7, 5, 6, 3, 4), choose 6 as pivot, then we get
A1 = (2, 1, 5, 3, 4) and A2 = (8, 9, 7).
It is well-known that the worst-case complexity (number of comparisons) of
quick sort is O(n2). This happens when pivots are pretty bad, generating one
large array and one small array.
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Applications: QuickSort

(2,8,9,1,7,5,6,3,4)

2,1,5,3,4

1 5,3,4

3 5

8,9,7

8,9

8

Note that the number of comparison performed in quick sort is equiv-
alent to the sum of the height of all nodes in the tree. In this case

0 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 = 17.
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Applications: QuickSort

How to pick a good pivot ? we don’t, just pick one at random.

This should be your stan-
dard answer in this course

Let’s analyse quicksort with random pivots.

1. Consider n different number, wlog, {1, . . . , n}
2. let Hi be the last level where i appears in the tree. Then the number of

comparison is H =
∑n

i=1 Hi

3. we will prove that exists C > 0 such that

P[ ∀i,Hi ≤ C log n ] ≥ 1− 1/n

4. actually, we will prove something equivalent but easier: we will prove that
all leaves of the tree are at distance at most C log n from the root with
probability at least 1− 1/n.

5. then H =
∑n

i=1 Hi ≤ Cn log n, with probability at least 1− 1/n.
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Applications: QuickSort

Let P be a path from the root to a leaf. A node in P is called good if the
corresponding pivot partition the array into two subarrays each of size at
least 1/3 of the previous one, the node is bad otherwise.

Denote by st the size of the array at level t in P.

(2,8,9,1,7,5,6,3,4)

2,1,5,3,4

1 5,3,4

3 5

8,9,7

8,9

8

E.g. Path: (2, 8, 9, 1, 7, 5, 6, 3, 4)→ (2, 1, 5, 3, 4)→ (5, 3, 4)→ (5)
The vertices are: good, bad, good
s0 = 9, s1 = 5, s2 = 3, s3 = 1.
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Applications: QuickSort

Let P be a path from the root to a leaf. A node in P is called good if the
corresponding pivot partition the array into two subarrays each of size at
least 1/3 of the previous one, the node is bad otherwise.

Denote by st the size of the array at level t in P.

After a good vertex we have that st ≤ (2/3)st−1.

Therefore, there are at most T = log n
log(3/2)

≤ 2 log n good nodes in a path P,

Set C = 21 and suppose that |P| > C log n.

this implies that the number of bad vertices in the first 21 log n nodes is
more than 19 log n.
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Consider the first b21 log nc vertices of P. Denote by Xi = 1 if the node at
height i of P is bad, and Xi = 0 if it is good. Let X =

∑b21 log nc
i=1 Xi .

Note that the Xi ’s are independent and P[ Xi = 1 ] = 2/3, and
E[ X ] = (2/3)21 log n = 14 log n. Then, by the (nicer) Chernoff Bounds

P[ X > E[ X ] + t ] ≤ e−2t2/n

P[ X > 19 log n ] = P[ X > E[ X ] + 5 log n ] ≤ e−2(5 log n)2/(21 log n)

= e−(50/21) log n ≤ 1/n2.

Hence, we conclude the path has more than 21 log n nodes with
probability at most n−2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n−1

Lecture 4: Concentration Inequalities 9



Consider the first b21 log nc vertices of P. Denote by Xi = 1 if the node at
height i of P is bad, and Xi = 0 if it is good. Let X =

∑b21 log nc
i=1 Xi .

Note that the Xi ’s are independent and P[ Xi = 1 ] = 2/3, and
E[ X ] = (2/3)21 log n = 14 log n. Then, by the (nicer) Chernoff Bounds

P[ X > E[ X ] + t ] ≤ e−2t2/n

P[ X > 19 log n ] = P[ X > E[ X ] + 5 log n ] ≤ e−2(5 log n)2/(21 log n)

= e−(50/21) log n ≤ 1/n2.

Hence, we conclude the path has more than 21 log n nodes with
probability at most n−2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n−1

Lecture 4: Concentration Inequalities 9



Consider the first b21 log nc vertices of P. Denote by Xi = 1 if the node at
height i of P is bad, and Xi = 0 if it is good. Let X =

∑b21 log nc
i=1 Xi .

Note that the Xi ’s are independent and P[ Xi = 1 ] = 2/3, and
E[ X ] = (2/3)21 log n = 14 log n. Then, by the (nicer) Chernoff Bounds

P[ X > E[ X ] + t ] ≤ e−2t2/n

P[ X > 19 log n ] = P[ X > E[ X ] + 5 log n ] ≤ e−2(5 log n)2/(21 log n)

= e−(50/21) log n ≤ 1/n2.

Hence, we conclude the path has more than 21 log n nodes with
probability at most n−2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n−1

Lecture 4: Concentration Inequalities 9



Consider the first b21 log nc vertices of P. Denote by Xi = 1 if the node at
height i of P is bad, and Xi = 0 if it is good. Let X =

∑b21 log nc
i=1 Xi .

Note that the Xi ’s are independent and P[ Xi = 1 ] = 2/3, and
E[ X ] = (2/3)21 log n = 14 log n. Then, by the (nicer) Chernoff Bounds

P[ X > E[ X ] + t ] ≤ e−2t2/n

P[ X > 19 log n ] = P[ X > E[ X ] + 5 log n ] ≤ e−2(5 log n)2/(21 log n)

= e−(50/21) log n ≤ 1/n2.

Hence, we conclude the path has more than 21 log n nodes with
probability at most n−2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n−1

Lecture 4: Concentration Inequalities 9



Consider the first b21 log nc vertices of P. Denote by Xi = 1 if the node at
height i of P is bad, and Xi = 0 if it is good. Let X =

∑b21 log nc
i=1 Xi .

Note that the Xi ’s are independent and P[ Xi = 1 ] = 2/3, and
E[ X ] = (2/3)21 log n = 14 log n. Then, by the (nicer) Chernoff Bounds

P[ X > E[ X ] + t ] ≤ e−2t2/n

P[ X > 19 log n ] = P[ X > E[ X ] + 5 log n ] ≤ e−2(5 log n)2/(21 log n)

= e−(50/21) log n ≤ 1/n2.

Hence, we conclude the path has more than 21 log n nodes with
probability at most n−2. There are at most n leaves, then by union bound ,
the probability that at least one path has more than 21 log n nodes is n−1

Lecture 4: Concentration Inequalities 9



Applications: QuickSort

Remarks

It is know that no sorting algorithm based on comparison takes less than
Ω(n log n)

The constant C can be improved a little bit, but in any case we will obtain
that our randomised version of QuickSort that whp compares O(n log n)
pairs

It is possible to deterministically choose the best pivot that divide the array
into two subarrays of the same size.

The later requires to compute the median of the array in linear time, which
is not easy to do

Randomised solution for QuickSort is much easier to implement.
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Chernoff Bound: Extension to other Random Variables

Most of the time we will use Chernoff Bounds for sum of independent
Bernoulli random variables

but not always

it does not hurt to know how to derive similar bounds for other random
variables

Remember the key steps:

1. Let λ > 0, then

P[ X ≥ (1 + δ)µ ] ≤ e−λ(1+δ)µE
[

eλX
]

2. Compute an upper bound for E
[

eλX ]
3. Optimise the value of λ > 0.

Chernoff Bound recipe
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Exercise:

Let X be a Poisson random variable of mean µ. Prove that

E
[

eλX
]

= eµ(eλ−1)

and deduce that for t ≥ µ

P[ X ≥ t ] ≤ e−µ
(

eλ
t

)t

and P[ X ≥ (1 + δ)µ ] ≤ e−δ
2µ,

and the corresponding lower tails.

Let X be a Normal random variable of mean µ and variance σ2. Prove that

E
[

eλX
]

= eµλ+σ2λ2/2,

and deduce that for t > µ

P[ X ≥ t ] ≤ e−(t−µ)2/2.

Lecture 4: Concentration Inequalities 13
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Hoeffding’s Extension

Beside sums of independent Bernoulli Random variables, sums of
independent and bounded random variables is very important in
applications.

Unfortunately the distribution of the Xi will be unknown or very hard to
compute, thus it will be very hard to compute the moment-generating
function of Xi .

Hoeffding’s Lemma helps us here

Let X be a random variable with mean 0 such that a ≤ X ≤ b, then for
all λ ∈ R.

E
[

eλX
]
≤ exp

(
(b − a)2λ2

8

)
Hoeffding’s Extension Lemma

You can always con-
sider X ′ = X − E[ X ]

We will not study the proof of this Lemma

Lecture 4: Concentration Inequalities 14
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Chernoff-Hoeffding Bounds

Let X1, . . . ,Xn be independent random variable with mean µi such that
ai ≤ Xi ≤ bi . Let X = X1 + . . . + Xn, and let µ = E[ X ] =

∑n
i=1 µi . Then

for any t > 0

P[ X ≥ µ+ t ] ≤ exp

[
−2t2∑n

i=1(bi − ai )2

]
and

P[ X ≤ µ− t ] ≤ exp

[
−2t2∑n

i=1(bi − ai )2

]

Chernoff-Hoeffding’s Bounds

Proof:

Let X ′i = Xi − µi and X ′ = X ′1 + . . . ,X ′n, then P[ X ≥ µ+ t ] = P[ X ′ ≥ t ]

P[ X ′ ≥ t ] ≤ e−λt ∏n
i=1 E

[
eλX ′

i

]
≤ exp

[
−λt + λ2

8

∑n
i=1(bi − ai )

2
]

Choose λ = 4t∑n
i=1(bi−ai )

2 to get the result.

This is not magic! you just need to optimise on λ
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Chernoff-Bounds: Final Remarks

There are several version of Chernoff-style Bounds that work for sum of
independent random variables.

The proof of all of them usually follows the same recipe
Some bounds include more information about the random variables, e.g.
the variance

the limit is the amount of information we have about the random variables
and our ability to manipulate/bound quantities.
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Beyond sum of independent variables

Can we prove concentration of other type of random variables? Yes.. but

There is no general tool to prove concentration beyond the basic recipe
but in general it is very hard to compute moment generating functions

It is worth trying to transform the problem into the setting of sum of
independent random variable

There is one more very important bound
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Method of Bounded Differences

Suppose, we have random variables X1, . . . ,Xn. We want to study the
random variable

f (X1, . . . ,Xn)

Some examples:

1. X = X1 + . . .+ Xn

2. In balls into bins, Xi indicate where ball i is allocated, and f (X1, . . . ,Xm) is
the number of empty bins

3. Xi indicates if the i-th edge belongs to a graph G, and f (X1, . . . ,Xm)
represent the number of connected components of G

We can simply prove concentration of X around it means by the so-called
Method of Bounded Differences
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Method of Bounded Differences

A function f is called Liptchitz of parameter c = (c1, . . . , cn) if for all i

|f (x1, x2, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, x2, . . . , xi−1, yi , xi+1, . . . , xn)| ≤ ci

where xi and yi are in the domain of the i-th coordinate

Let X1, . . . ,Xn be independent random variables. Let f be Liptchitz of
parameter c = (c1, . . . , cn). Let X = f (X1, . . . ,Xn). Then

P[ X − E[ X ] ≥ t ] ≤ exp

(
− 2t2∑

c2
i

)
and

P[ X − E[ X ] ≤ −t ] ≤ exp

(
− 2t2∑

c2
i

)

McDiarmid’s inequality

We will not study the Proof of McDiarmid’s Inequality
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Randomised QuickSort

Extension of Chernoff Bounds

Examples

Lecture 4: Concentration Inequalities 20



Examples: Balls into Bins

Consider m balls assigned uniformly at random into n bins.

Enumerate the balls from 1 to m. Ball i is assigned to a random bin Xi .

Let Z be the number of empty bins (after assigning the balls)

Z = f (X1, . . . ,Xm) and f is Liptchitz with c = (1, . . . , 1) (because if we
move one ball to another bin, the number of empty bins changes at most
in 1)

By the McDiarmid’s inequality

P[ |F − E[ F ] | > t ] ≤ 2e−2t2/m
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Example: Bin Packing

Consider the Bin Packing problem

1. We are given n items of sizes in the unit interval [0, 1]

2. We want to pack those items into the fewest number of unit-capacity bins
as possible

3. Suppose that the item sizes Xi are independent random variables in the
interval [0, 1]

4. let B = B(X1, . . . ,Xn) the optimal number of bins that suffice to pack the
items

5. The Lipschitz conditions holds with c = (1, . . . , 1), Why?
6. Therefore

P[ B − E[ B ] ≥ t ] ,P[ B − E[ B ] ≤ −t ] ≤ e−2t2/n.
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A random distance problem

Consider an n by n square grid {0, 1, . . . , n}2, where each point is connected
to each of its (at most) four neighbours (N, S, E, W). Within each inner square
of the grid, we draw a diagonal from SW to NE with probability p.

We say that (0, 0) is on the bottom left corner and (n, n) in the top right
corner.

Can we prove concentration of the shortest path from (0, 0) to (n, n)?
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A random distance problem

Can we prove concentration of the shortest path from (0, 0) to (n, n)?

Yes! Let Z be the total length of the shortest path.Two options

1. Define Xij = 1 if there is a diagonal in square ij , otherwise Xij = 0. Then
Z = f (X11, . . . ,Xnn) satisfies the Lipschitz conditions with
c = (2−

√
2)(1, . . . , 1), Why? .

Then

P[ |Z − E[ Z ] | ≥ t ] ≤ 2 exp

[
−t2

(2−
√

2)2n2

]
2. Enumerate the columns of squares from 1 to n. Let Yi = (X1i , . . . ,Xni ).

Then Z = g(Y1, . . . ,Yn). g satisfies the Lipschitz conditions with
c = (2−

√
2)(1, . . . , 1). Why?

Then

P[ |Z − E[ Z ] | ≥ t ] ≤ 2 exp

[
−t2

(2−
√

2)2n

]
Note the second bound is way more useful than the first one.
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Z = f (X11, . . . ,Xnn) satisfies the Lipschitz conditions with
c = (2−

√
2)(1, . . . , 1), Why? .

Then

P[ |Z − E[ Z ] | ≥ t ] ≤ 2 exp

[
−t2

(2−
√

2)2n2

]
2. Enumerate the columns of squares from 1 to n. Let Yi = (X1i , . . . ,Xni ).

Then Z = g(Y1, . . . ,Yn). g satisfies the Lipschitz conditions with
c = (2−

√
2)(1, . . . , 1).

Why?
Then

P[ |Z − E[ Z ] | ≥ t ] ≤ 2 exp

[
−t2

(2−
√

2)2n

]
Note the second bound is way more useful than the first one.
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Example: Clique Number in Random Graphs

1. Consider a random graph G = Gn,p on n vertices where each possible
edge appears with probability p independent of each other.

2. Denote by K the clique number of G defined as the size of the largest
complete subgraph of G.

3. K is a function of the number of edges of the graph, i.e.
K = K (X1, . . . ,X(n

2)
) where Xi represent if the i-th possible edge is in the

graph or not.

4. Lipschitz conditions holds with c = (1, . . . , 1). Why?
5. Therefore, for t > 0

P[ K − E[ K ] ≥ t ] ,P[ K − E[ K ] ≤ t ] ≤ e−2t2/(n
2).
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Example: Clique Number in Random Graphs

1. Consider a random graph G = Gn,p on n vertices where each possible
edge appears with probability p independent of each other.

2. Denote by K the clique number of G defined as the size of the largest
complete subgraph of G.

3. Enumerate the vertices from 1 to n

4. Let Xi,j = 1 if there is a edge between vertices i and j , otherwise Xi,j = 0

5. Let Yi = (Xi,1,Xi,2, . . . ,Xi,i−1)

6. K is a function of the Yi .

7. Lipschitz conditions holds with c = (1, . . . , 1). Why?
8. Therefore, for t > 0

P[ K − E[ K ] > t ] ,P[ K − E[ K ] < t ] ≤ e−2t2/n.

Observe this bound is better than the previous one
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MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



MaxCut on Random Graphs

We analyse the Max-Cut problems on Random Graphs, i.e. instead of
assuming worst case input, we assume a random input.

1. Consider a random graph Gn,1/2 on vertices [n] = {1, . . . , n} where each
possible edge appears with probability 1/2

2. Let S ⊆ [n]. Denote by E(S : Sc) be the set of edges between S and its
complement (i.e. the size of the cut given by S).

3. E[ |E(S : Sc)| ] = |S|(n−|S|)
2 ≤ n2/8

4. Note that CS = |E(S : Sc)| depends on the possible |S|(n − |S|) edges
between S and Sc

5. CS = CS(X1, . . . ,Xm) where m = |S|(n − |S|), where Xi indicates if the
i-th edge appears in the cut or not

6. CS is Lipschitz with c = (1, . . . , 1)

7. Therefore, for δ > 0,

P[ CS − E[ CS ] ≥ δE[ CS ] ] ≤ exp

(
− 2δ2E[ CS ]2

|S|(n − |S|)

)

Lecture 4: Concentration Inequalities 28



8. Exercise: Deduce that for any S ⊆ [n],

P
[

CS ≥
n2

8
+ δ

n2

4

]
≤ e−Ω(δ2n2)

9. By the union bound, we have that

P
[
∃S : CS ≥

n2

8
+ δ

n2

4

]
≤ 2ne−Ω(δ2n2) = 2ne−Ω(c2n)

10. Recall that δ = c/
√

n, now we pick c to be large enough, such that
2ne−Ω(c2n) = 2−n

11. The main result is:

There is a constant c, such that w.h.p. the Max Cut in Gn,1/2 is at most
n2/8 + cn3/2

Theorem
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