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Landscape of Machine Learning Algorithms

No Training Set

Training Set
provided initially

Feedback
after Decisions

Extract
Knowledge

Predict
unseen data

Maximise
Reward

Supervised Learning
Classification, regression: logistic regr.,

SVM, decision tree, neural networks, naive
Bayes, Perceptron, kNN, Boosting

Unsupervised Learning
Clustering: spectral, hierarchical, k-means;

Dimensionality Reduction, PCA, SVD

Online/Reinforcement Learning
Weighted-Majority, Multiplicative-Update.

control learning: Markov Decision
Processes, temporal difference
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Online Algorithm/Reinforcement Learning Framework

Agent

Environment

takes actionprovides reward/
more data

Iteration: 12345

In each iteration, agent
receives more information
⇒ agent’s state is updated
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Source: Yahoo Finance, 3 March 2020
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Source: CNN Money, 3 March 2020
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Online Learning using Expert Advice

Basic Setup

Assume there is a single stock, and daily price movement is a sequence
of binary events (up = 1 /down = 0)

The stock movements can be arbitrary (i.e., adversarial)

We are allowed to watch n experts (these might be arbitrarily bad and
correlated)

Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Make prediction which is the weighted majority of the
experts’ predictions

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Example of an ensemble method, combining advice from several other “algorithms”.
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Weighted Majority Algorithm: Example

Let δ = 1/2, n = 3

t Expert Weights Expert Predictions Our Pred. Result Our Errors

1 1, 1, 1 1, 1, 0 1 X 1 0

2 1, 1, 1/2 0, 1, 0 0 7 1 1

3 1/2, 1, 1/4 1, 0, 1 0 X 0 1

4 1/4, 1, 1/8 0, 1, 1 1 7 0 2

5 1/4, 1/2, 1/16 1, 1, 0 1 X 1 2

6 1/4, 1/2, 1/32 0, 1, 1 1 X 1 2

7 1/8, 1/2, 1/32 0, 1, 0 1 7 0 3

8 1/8, 1/4, 1/32 1, 0, 1 0 7 1 4

9 1/8, 1/8, 1/32 0, 0, 0 0 X 0 4

10 1/8, 1/8, 1/32 1, 0, 1 1 7 0 5

11 1/16, 1/8, 1/64 – – – –

⇒ We made 5 mistakes, while the best expert made only 3 mistakes.
This looks quite bad, but the example is too small to draw conclusions!
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Analysis of the Weighted Majority Algorithm

Notation: Let m(t)
i be the number of mistakes of expert i after t steps.

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

This bound holds for any input, any T and any δ!Proof:
By induction, w (t+1)

i = (1− δ)m(t)
i (see example!)

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

Every time we are wrong, also the weighted majority of experts is wrong
⇒ at least half the total weight decreases by 1− δ:

Φ(t+1) ≤ Φ(t) ·
(1

2
· 1 +

1
2
· (1− δ)

)
= Φ(t) · (1− δ/2) .

Hence by induction, Φ(T +1) ≤ n · (1− δ/2)M(T )

, but also Φ(T +1) ≥ w (T +1)
i .

Taking logs:

m(T )
i ln(1− δ) ≤ M(T ) ln(1− δ/2) + ln(n).

Using now that −δ ≥ ln(1− δ) ≥ −δ − δ2 completes the proof.
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Exercise Question (Problem Sheet 6, Q5.2)

Is the following inequality always true???

M(T ) ≥ min
i∈[n]

m(T )
i

That means, does our algorithm always make
at least as many mistakes as the best expert?
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Simulation of the Deterministic Weighted Majority Algorithm (1/2)
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Simulation of the Deterministic Weighted Majority Algorithm (2/2)
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Improving the Weighted Majority Algorithm?

The number of mistakes of our algorithm M(T ) satisfies

M(T ) ≤ 2 · (1 + δ) ·min
i∈[n]

m(T )
i +

2 ln n
δ

.

Analysis

Question: Is there a way to avoid the factor of 2?

Question 5.2 For any deterministic algorithm, the factor of 2 cannot be avoided!

Idea: Employ a randomised strategy which selects an
expert with probability proportional to its success!
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Randomised Weighted Majority

Randomised Weighted Majority Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Pick expert i with probability proportional to wi and
follow that prediction

For every expert i who predicts wrongly, decrease his
weight by a factor of (1− δ):

w (t+1)
i = (1− δ)w (t)

i

Note that the number of mistakes we are making is now a random variable!
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Example: Deterministic vs. Randomised Weighted Majority (1/2)

Consider the following run of the Deterministic Weighted Majority Algorithm:

t Weights Predictions Actual Result Our Prediction Our Errors
1 1,1 1,0 0 1 1
2 1/2,1 1,0 1 0 2
3 1/2,1/2 0,1 1 0 3
4 1/4,1/2 1,0 1 0 4
5 1/4,1/4 – – – –

Consider now the Randomised Weighted Majority Algorithm and let us
compute the expected number of mistakes (E

[
M(4)

]
)
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Example: Deterministic vs. Randomised Weighted Majority (2/2)
????

0??? 0 1??? 1

00?? 1 01?? 0 10?? 2 11?? 1

000? 2 001? 1 010? 1 011? 0 100? 3 101? 2 110? 2 111? 1

0000

3
0001

2
0010

2
0011

1
0100

2
0101

1
0110

1
0111

0
1000

4
1001

3
1010

3
1011

2
1100

3
1101

2
1110

2
1111

1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Let x (t) be a 0/1 random variable, indicating if our t-th prediction is wrong.
Then:

E
[

x (1)
]

= 0 · 1
2

+ 1 · 1
2

=
1
2
.

Similarly, E
[

x (2)
]

= 2
3 , E

[
x (3)

]
= 1

2 and E
[

x (4)
]

= 2
3 .

Hence,

E
[

M(4)
]

= E
[

x (1) + x (2) + x (3) + x (4)
]

= E
[

x (1)
]

+ E
[

x (2)
]

+ E
[

x (3)
]

+ E
[

x (4)
]

=
7
3

Much better than the
deterministic algorithm!
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Analysis of Randomised Weighted Majority

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

This was a factor of 2 before!
Proof:

Define a potential function Φ(t) =
∑n

i=1 w (t)
i , so that Φ(1) = n.

The probability of picking expert i in round t is p(t)
i := w (t)

i /
∑n

j=1 w (t)
j = w (t)

i /Φ(t).

Let λ(t)
i be 1 iff expert i is wrong at time t (and 0 otherwise)

Then the expected number of mistakes by our algorithm is E[M(T )] =
∑T

t=1 λ
(t) · p(t).

The new potential (which is deterministic!) can be upper bounded by:

Φ(t+1) =
n∑

i=1

w (t+1)
i =

n∑
i=1

(1− δλ(t)
i ) · w (t+1)

i = Φ(t) ·
(

1− δλ(t)p(t)
)
≤ Φ(t) · exp

(
−δλ(t) · p(t)

)
Thus the final potential satisfies

Φ(T +1) ≤ Φ(1) · exp
(
−δ

T∑
t=1

λ
(t) · p(t)

)
= n · exp

(
−δ · E

[
M(T )

])
,

Φ(T +1) ≥ w (T +1)
i =

T∏
t=1

(
1− δλ(t)

i

)
= (1− δ)

m(T )
i

⇒ ln n − δ · E[M(T )] ≥ ln(1− δ) · m(T )
i ⇒ E[M(T )] ≤

(δ + δ2)

δ
· m(T )

i +
ln n
δ

ln(1 − δ) ≥ −δ − δ2
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Optimising the Learning Rate

The expected number of mistakes of our algorithm M(T ) satisfies

E
[

M(T )
]
≤ 1 · (1 + δ) ·min

i∈[n]
m(T )

i +
ln n
δ
.

Analysis

Interpretation:

Suppose that T is known in advance

Picking learning rate δ =
√

ln(n)/T
(assuming T is large enough so that δ ≤ 1/2!)

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

ln(n)/T · T +
√

ln(n) · T

≤ min
i∈[n]

m(T )
i +

√
2T ln(n)

Additive error negligible in most cases compared to mini∈[n] m(T )
i !

Can we do better than that?
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A “Pathological” Instance

For δ =
√

ln(n)/T , the expected number of our mistakes M(T ) satisfies

E
[

M(T )
]
≤ min

i∈[n]
m(T )

i +
√

2T ln(n).

Corollary

Suppose every expert i = 1, 2, . . . , n flips an unbiased coin, and the result
is also an unbiased coin flip (independent of the experts’ predictions)

⇒ Regardless of our algorithm, the number of our mistakes satisfies

E
[

M(T )
]

= T · 1
2

How good is the best expert?
Every expert i ∈ [n] will make T/2±Θ(

√
T ) many mistakes

Best expert will make T/2−Θ(
√

T ln(n)) many mistakes (proof omitted,
uses central limit theorem)

This demonstrates tightness of the error term

Best expert will be good just by chance!
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Extension: Dealing with poor experts

Suppose there might be some experts who make the wrong
prediction more often than the correct one (however, we
don’t know the identity of these experts).
Can we modify the algorithm to do well also in this case?
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A More General Setting

New Setup
At each step, we pick one expert i randomly out of n experts
That expert i and our algorithm incur a cost m(t)

i , but we also observe the
costs of all experts (a vector (m(t)

j )n
i=1)

costs m(t)
j can be arbitrary in the range [−1, 1]

Coming back to our example of stock prediction:

could define cost m(t)
j = 0 if expert j is neutral (HOLD)

cost m(t)
j > 0 if expert j makes the wrong prediction

(closer to 1 the stronger prediction and stronger the price change)

cost m(t)
j < 0 if expert j makes the correct prediction

In the first iteration, simply pick a decision uniformly at random

Every decision will be penalised or rewarded through a multiplicative
weight-update

Idea of the “Multiplicative Weights-Algorithm”
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The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm
Initialization: Fix δ ≤ 1/2. For every i ∈ [n], let w (1)

i := 1
Update: For t = 1, 2, . . . ,T :

Choose expert i with prop. proportional to w (t)
i .

Observe the costs of all n experts in round t , m(t)

For every expert i , update its weight by:

w (t+1)
i = (1− δm(t)

i )w (t)
i

For any expert i , the expected cost of this algorithm is at most

T∑
t=1

m(t)
i + δ ·

T∑
t=1

∣∣∣m(t)
i

∣∣∣+
log n
δ

.

Analysis

Derivation is very similar to the ones shown before.
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Conclusions

Weighted Majority Algorithm
natural, simple (and deterministic) algorithm
good performance, but could be a factor of 2 worse than the best expert

Randomised Weighted Majority Algorithm
Randomised extension
almost optimal performance thanks to randomisation which guards
against tailored worst-case instances (cmp. Quick-Sort!)
impact of the learning rate: small learning rate gives very good
performance guarantees. However, actual performance may depend on
the specific data set at hand (cf. simulations!)

Multiplicative Weight-Update Algorithm
further generalisation of the (randomised) weighted majority algorithm

Summary

These algorithms are examples of the Ensemble-Method:
Framework combining weak predictions into a strong learner

Similar examples will be Perceptron and AdaBoost

Outlook
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