Lecture 15: Online Learning using Expert Advice

John Sylvester Nicolás Rivera Luca Zanetti Thomas Sauerwald

Outline

Introduction

Online Learning with Experts

Landscape of Machine Learning Algorithms

Training Set provided initially

Supervised Learning

Classification, regression: logistic regr., SVM, decision tree, neural networks, naive Bayes, Perceptron, kNN, Boosting Predict unseen data

Feedback after Decisions

Online/Reinforcement Learning

Weighted-Majority, Multiplicative-Update. control learning: Markov Decision Processes, temporal difference

Maximise Reward

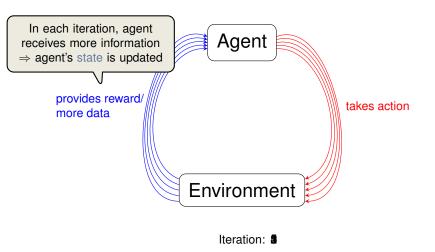
Unsupervised Learning

Clustering: spectral, hierarchical, k-means; Dimensionality Reduction, PCA, SVD

Extract Knowledge

No Training Set

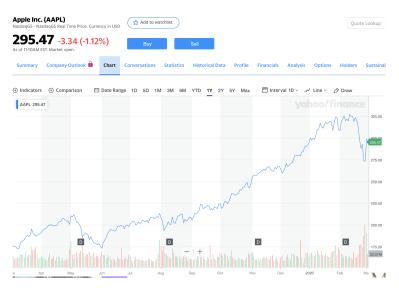
Online Algorithm/Reinforcement Learning Framework



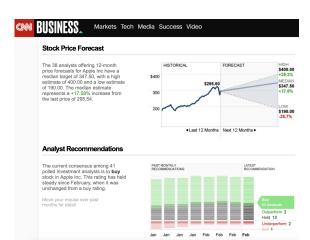
Outline

Introduction

Online Learning with Experts



Source: Yahoo Finance, 3 March 2020



Source: CNN Money, 3 March 2020

Online Learning using Expert Advice

Basic Setup

- Assume there is a single stock, and daily price movement is a sequence of binary events (up = 1 /down = 0)
- The stock movements can be arbitrary (i.e., adversarial)
- We are allowed to watch n experts (these might be arbitrarily bad and correlated)

Weighted Majority Algorithm

Initialization: Fix $\delta \le 1/2$. For every $i \in [n]$, let $w_i^{(1)} := 1$ Update: For t = 1, 2, ..., T:

- Make prediction which is the weighted majority of the experts' predictions
- For every expert i who predicts wrongly, decrease his weight by a factor of (1 – δ):

$$\mathbf{w}_{i}^{(t+1)} = (1 - \delta)\mathbf{w}_{i}^{(t)}$$

Example of an **ensemble method**, combining advice from several other "algorithms".

Weighted Majority Algorithm: Example

Let
$$\delta = 1/2, n = 3$$

t	Expert Weights	Expert Predictions	Our Pred.	Result	Our Errors
1	1, 1, 1	1, 1, 0	1 √	1	0
2	1, 1, 1/2	0, 1, 0	0 X	1	1
3	1/2, 1, 1/4	1, 0, 1	0 ✓	0	1
4	1/4, 1, 1/8	0, 1, 1	1 X	0	2
5	1/4, 1/2, 1/16	1, 1, 0	1 ✓	1	2
6	1/4, 1/2, 1/32	0, 1, 1	1 ✓	1	2
7	1/8, 1/2, 1/32	0, 1, 0	1 X	0	3
8	1/8, 1/4, 1/32	1, 0, 1	0 X	1	4
9	1/8, 1/8, 1/32	0, 0, 0	0 ✓	0	4
10	1/8, 1/8, 1/32	1, 0, 1	1 X	0	5
11	1/16, 1/8, 1/64	_	_	_	_

⇒ We made 5 mistakes, while the best expert made only 3 mistakes. This looks quite bad, but the example is too small to draw conclusions!

Analysis of the Weighted Majority Algorithm

Notation: Let $m_i^{(t)}$ be the number of mistakes of expert i after t steps.

Analysis

The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$M^{(T)} \leq 2 \cdot (1+\delta) \cdot \min_{i \in [n]} m_i^{(T)} + \frac{2 \ln n}{\delta}.$$

Proof:

This bound holds for any input, any T and any δ !

- By induction, $\overline{w_i^{(t+1)}} = (1 \delta)^{m_i^{(t)}}$ (see example!)
- Define a potential function $\Phi^{(t)} = \sum_{i=1}^{n} w_i^{(t)}$, so that $\Phi^{(1)} = n$.
- Every time we are wrong, also the weighted majority of experts is wrong
 at least half the total weight decreases by 1 δ:

$$\Phi^{(t+1)} \leq \Phi^{(t)} \cdot \left(\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot (1-\delta)\right) = \Phi^{(t)} \cdot \left(1 - \delta/2\right).$$

- Hence by induction, $\Phi^{(T+1)} \leq n \cdot (1 \delta/2)^{M^{(T)}}$, but also $\Phi^{(T+1)} \geq w_i^{(T+1)}$.
- Taking logs:

$$m_i^{(T)} \ln(1-\delta) \leq M^{(T)} \ln(1-\delta/2) + \ln(n).$$

• Using now that $-\delta \ge \ln(1-\delta) \ge -\delta - \delta^2$ completes the proof. \square

Exercise Question (Problem Sheet 6, Q5.2)

Is the following inequality always true???

$$M^{(T)} \geq \min_{i \in [n]} m_i^{(T)}$$

That means, does our algorithm always make at least as many mistakes as the best expert?

Simulation of the Deterministic Weighted Majority Algorithm (1/2)

```
~/Desktop - nano weight.cpp
Thomass-MacBook-Pro-2:Desktop thomassauerwald$ ./a.out
 ** Run of the (Deterministic) Weighted Majority Algorithm **
 Number of Experts: A
 Probability of Mistake by Expert 0: 0.9
 Probability of Mistake by Expert 1: 0.8
 Probability of Mistake by Expert 2: 0.7
 Probability of Mistake by Expert 3: 0.5
 Probability of Mistake by Expert 4: 0.38
 Probability of Mistake by Expert 5: 0.35
Learning Rate: 0 Steps: 1000 Weight of Best Expert: 0.166667 Mistakes by Best Expert: 360 Our Mistakes: 550
Learning Rate: 0.01 Steps: 1000 Weight of Best Expert: 0.462807 Mistakes by Best Expert: 360 Our Mistakes: 444
Learning Rate: 0.02 Steps: 1000 Weight of Best Expert: 0.548359 Mistakes by Best Expert: 360 Our Mistakes: 400
Learning Rate: 0.03 Steps: 1000 Weight of Best Expert: 0.593425 Mistakes by Best Expert: 360 Our Mistakes: 386
Learning Rate: 0.04 Steps: 1000 Weight of Best Expert: 0.628579 Mistakes by Best Expert: 360 Our Mistakes: 385
Learning Rate: 0.05 Steps: 1000 Weight of Best Expert: 0.660532 Mistakes by Best Expert: 360 Our Mistakes: 380
Learning Rate: 0.06 Steps: 1000 Weight of Best Expert: 0.69085 Mistakes by Best Expert: 360 Our Mistakes: 384
Learning Rate: 0.07 Steps: 1000 Weight of Best Expert: 0.719776 Mistakes by Best Expert: 360 Our Mistakes: 387
Learning Rate: 0.08 Steps: 1000 Weight of Best Expert: 0.74724 Mistakes by Best Expert: 360 Our Mistakes: 379
Learning Rate: 0.09 Steps: 1000 Weight of Best Expert: 0.773124 Mistakes by Best Expert: 360 Our Mistakes: 375
Learning Rate: 0.1 Steps: 1000 Weight of Best Expert: 0.797329 Mistakes by Best Expert: 360 Our Mistakes: 373
Learning Rate: 0.11 Steps: 1000 Weight of Best Expert: 0.819792 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.12 Steps: 1000 Weight of Best Expert: 0.840484 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.13 Steps: 1000 Weight of Best Expert: 0.859411 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.14 Steps: 1000 Weight of Best Expert: 0.876608 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.15 Steps: 1000 Weight of Best Expert: 0.892136 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.16 Steps: 1000 Weight of Best Expert: 0.906072 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.17 Steps: 1000 Weight of Best Expert: 0.918511 Mistakes by Best Expert: 360 Our Mistakes: 371
Learning Rate: 0.18 Steps: 1000 Weight of Best Expert: 0.929554 Mistakes by Best Expert: 360 Our Mistakes: 370
Learning Rate: 0.19 Steps: 1000 Weight of Best Expert: 0.93931 Mistakes by Best Expert: 360 Our Mistakes: 370
Learning Rate: 0.2 Steps: 1000 Weight of Best Expert: 0.947889 Mistakes by Best Expert: 360 Our Mistakes: 370
Learning Rate: 0.21 Steps: 1000 Weight of Best Expert: 0.9554 Mistakes by Best Expert: 360 Our Mistakes: 370
Learning Rate: 0.22 Steps: 1888 Weight of Best Expert: 0.961948 Mistakes by Best Expert: 368 Our Mistakes: 369
Learning Rate: 0.23 Steps: 1000 Weight of Best Expert: 0.967634 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.24 Steps: 1000 Weight of Best Expert: 0.972553 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.25 Steps: 1000 Weight of Best Expert: 0.976794 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.26 Steps: 1000 Weight of Best Expert: 0.980437 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.27 Steps: 1000 Weight of Best Expert: 0.983556 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.28 Steps: 1000 Weight of Best Expert: 0.986219 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.29 Steps: 1000 Weight of Best Expert: 0.988483 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.3 Steps: 1000 Weight of Best Expert: 0.990404 Mistakes by Best Expert: 360 Our Mistakes: 369
Learning Rate: 0.31 Steps: 1888 Weight of Best Expert: 0.992828 Mistakes by Best Expert: 368 Our Mistakes: 368
Learning Rate: 0.32 Steps: 1000 Weight of Best Expert: 0.993397 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.33 Steps: 1000 Weight of Best Expert: 0.994547 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.34 Steps: 1000 Weight of Best Expert: 0.995511 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.35 Steps: 1000 Weight of Best Expert: 0.996316 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.36 Steps: 1000 Weight of Best Expert: 0.996987 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.37 Steps: 1000 Weight of Best Expert: 0.997543 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.38 Steps: 1000 Weight of Best Expert: 0.998004 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.39 Steps: 1888 Weight of Best Expert: 0.998383 Mistakes by Best Expert: 368 Our Mistakes: 368
Learning Rate: 0.4 Steps: 1000 Weight of Best Expert: 0.998696 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.41 Steps: 1000 Weight of Best Expert: 0.998951 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.42 Steps: 1000 Weight of Best Expert: 0.99916 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.43 Steps: 1000 Weight of Best Expert: 0.99933 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.44 Steps: 1000 Weight of Best Expert: 0.999468 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.45 Steps: 1000 Weight of Best Expert: 0.999579 Mistakes by Best Expert: 360 Our Mistakes: 368
Learning Rate: 0.46 Steps: 1000 Weight of Best Expert: 0.999668 Mistakes by Best Expert: 360 Our Mistakes: 367
Learning Rate: 0.47 Steps: 1000 Weight of Best Expert: 0.99974 Mistakes by Best Expert: 360 Our Mistakes: 367
Learning Rate: 8.48 Steps: 1888 Weight of Best Expert: 8.999797 Mistakes by Best Expert: 368 Our Mistakes: 367
Learning Rate: 0.49 Steps: 1000 Weight of Best Expert: 0.999842 Mistakes by Best Expert: 360 Our Mistakes: 368
Thomass-MacBook-Pro-2:Desktop thomassauerwald$ |
```

~/Deskton --- -bash

Simulation of the Deterministic Weighted Majority Algorithm (2/2)

```
~/Desktop - nano weight.cpp
Thomass-MacBook-Pro-2:Desktop thomassauerwald$ ./a.out
 ** Run of the (Deterministic) Weighted Majority Algorithm **
 Number of Experts: A
 Probability of Mistake by Expert 0: 0.9
 Probability of Mistake by Expert 1: 0.8
 Probability of Mistake by Expert 2: 0.7
 Probability of Mistake by Expert 3: 0.23
 Probability of Mistake by Expert 4: 0.22
 Probability of Mistake by Expert 5: 0.21
Learning Rate: 0 Steps: 1000 Final Weight of Last Expert: 0.166667 Mistakes by Best Expert: 211 Our Mistakes: 306
Learning Rate: 0.01 Steps: 1000 Final Weight of Last Expert: 0.323929 Mistakes by Best Expert: 211 Our Mistakes: 162
Learning Rate: 0.02 Steps: 1000 Final Weight of Last Expert: 0.316468 Mistakes by Best Expert: 211 Our Mistakes: 138
Learning Rate: 0.03 Steps: 1000 Final Weight of Last Expert: 0.307098 Mistakes by Best Expert: 211 Our Mistakes: 136
Learning Rate: 0.04 Steps: 1000 Final Weight of Last Expert: 0.297126 Mistakes by Best Expert: 211 Our Mistakes: 136
Learning Rate: 0.05 Steps: 1000 Final Weight of Last Expert: 0.286601 Mistakes by Best Expert: 211 Our Mistakes: 133
Learning Rate: 0.06 Steps: 1000 Final Weight of Last Expert: 0.275572 Mistakes by Best Expert: 211 Our Mistakes: 136
Learning Rate: 0.07 Steps: 1000 Final Weight of Last Expert: 0.264099 Mistakes by Best Expert: 211 Our Mistakes: 144
Learning Rate: 0.08 Steps: 1900 Final Weight of Last Expert: 0.25225 Mistakes by Best Expert: 211 Our Mistakes: 154
Learning Rate: 0.09 Steps: 1000 Final Weight of Last Expert: 0.2401 Mistakes by Best Expert: 211 Our Mistakes: 157
Learning Rate: 0.1 Steps: 1000 Final Weight of Last Expert: 0.227729 Mistakes by Best Expert: 211 Our Mistakes: 160
Learning Rate: 0.11 Steps: 1000 Final Weight of Last Expert: 0.215223 Mistakes by Best Expert: 211 Our Mistakes: 166
Learning Rate: 0.12 Steps: 1000 Final Weight of Last Expert: 0.202668 Mistakes by Best Expert: 211 Our Mistakes: 169
Learning Rate: 0.13 Steps: 1000 Final Weight of Last Expert: 0.190151 Mistakes by Best Expert: 211 Our Mistakes: 172
Learning Rate: 0.14 Steps: 1000 Final Weight of Last Expert: 0.177756 Mistakes by Best Expert: 211 Our Mistakes: 174
Learning Rate: 0.15 Steps: 1989 Final Weight of Last Expert: 0.165664 Mistakes by Best Expert: 211 Our Mistakes: 175
Learning Rate: 0.16 Steps: 1900 Final Weight of Last Expert: 0.15365 Mistakes by Best Expert: 211 Our Mistakes: 177
Learning Rate: 0.17 Steps: 1000 Final Weight of Last Expert: 0.142082 Mistakes by Best Expert: 211 Our Mistakes: 179
Learning Rate: 0.18 Steps: 1000 Final Weight of Last Expert: 0.130919 Mistakes by Best Expert: 211 Our Mistakes: 179
Learning Rate: 0.19 Steps: 1000 Final Weight of Last Expert: 0.120213 Mistakes by Best Expert: 211 Our Mistakes: 184
Learning Rate: 0.2 Steps: 1000 Final Weight of Last Expert: 0.110004 Mistakes by Best Expert: 211 Our Mistakes: 183
Learning Rate: 0.21 Steps: 1800 Final Weight of Last Expert: 0.180324 Mistakes by Best Expert: 211 Our Mistakes: 189
Learning Rate: 8.22 Steps: 1888 Final Weight of Last Expert: 8.8911938 Mistakes by Best Expert: 211 Our Mistakes: 191
Learning Rate: 0.23 Steps: 1000 Final Weight of Last Expert: 0.082628 Mistakes by Best Expert: 211 Our Mistakes: 193
Learning Rate: 0.24 Steps: 1000 Final Weight of Last Expert: 0.0746311 Mistakes by Best Expert: 211 Our Mistakes: 193
Learning Rate: 0.25 Steps: 1000 Final Weight of Last Expert: 0.0672007 Mistakes by Best Expert: 211 Our Mistakes: 198
Learning Rate: 0.26 Steps: 1000 Final Weight of Last Expert: 0.060328 Mistakes by Best Expert: 211 Our Mistakes: 198
Learning Rate: 0.27 Steps: 1000 Final Weight of Last Expert: 0.0539985 Mistakes by Best Expert: 211 Our Mistakes: 198
Learning Rate: 0.28 Steps: 1000 Final Weight of Last Expert: 0.0481936 Mistakes by Best Expert: 211 Our Mistakes: 200
Learning Rate: 0.29 Steps: 1000 Final Weight of Last Expert: 0.0428907 Mistakes by Best Expert: 211 Our Mistakes: 199
Learning Rate: 0.3 Steps: 1000 Final Weight of Last Expert: 0.0380649 Mistakes by Best Expert: 211 Our Mistakes: 204
Learning Rate: 0.31 Steps: 1888 Final Weight of Last Expert: 0.8336891 Mistakes by Best Expert: 211 Our Mistakes: 284
Learning Rate: 0.32 Steps: 1000 Final Weight of Last Expert: 0.0297353 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.33 Steps: 1000 Final Weight of Last Expert: 0.0261747 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.34 Steps: 1000 Final Weight of Last Expert: 0.0229788 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.35 Steps: 1000 Final Weight of Last Expert: 0.0201191 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.36 Steps: 1000 Final Weight of Last Expert: 0.0175683 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.37 Steps: 1000 Final Weight of Last Expert: 0.0152997 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.38 Steps: 1000 Final Weight of Last Expert: 0.0132881 Mistakes by Best Expert: 211 Our Mistakes: 207
Learning Rate: 0.39 Steps: 1888 Final Weight of Last Expert: 0.8115895 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.4 Steps: 1000 Final Weight of Last Expert: 0.00994144 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.41 Steps: 1000 Final Weight of Last Expert: 0.00856299 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.42 Steps: 1000 Final Weight of Last Expert: 0.00735465 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.43 Steps: 1000 Final Weight of Last Expert: 0.00629846 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.44 Steps: 1000 Final Weight of Last Expert: 0.00537791 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.45 Steps: 1000 Final Weight of Last Expert: 0.00457791 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.46 Steps: 1000 Final Weight of Last Expert: 0.00388472 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.47 Steps: 1999 Final Weight of Last Expert: 0.99328588 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.48 Steps: 1000 Final Weight of Last Expert: 0.00277012 Mistakes by Best Expert: 211 Our Mistakes: 216
Learning Rate: 0.49 Steps: 1000 Final Weight of Last Expert: 0.00232732 Mistakes by Best Expert: 211 Our Mistakes: 216
Thomass-MacBook-Pro-2:Desktop thomassauerwald$ |
```

~/Deskton --- -bash

Improving the Weighted Majority Algorithm?

Analysis

The number of mistakes of our algorithm $M^{(T)}$ satisfies

$$M^{(T)} \leq 2 \cdot (1+\delta) \cdot \min_{i \in [n]} m_i^{(T)} + \frac{2 \ln n}{\delta}.$$

Question: Is there a way to avoid the factor of 2?

Question 5.2 For any deterministic algorithm, the factor of 2 cannot be avoided!

Idea: Employ a randomised strategy which selects an expert with probability proportional to its success!

Randomised Weighted Majority

Randomised Weighted Majority Algorithm

Initialization: Fix $\delta \le 1/2$. For every $i \in [n]$, let $w_i^{(1)} := 1$ Update: For t = 1, 2, ..., T:

- Pick expert i with probability proportional to w_i and follow that prediction
- For every expert i who predicts wrongly, decrease his weight by a factor of (1δ) :

$$w_i^{(t+1)} = (1 - \delta)w_i^{(t)}$$

Note that the number of mistakes we are making is now a random variable!

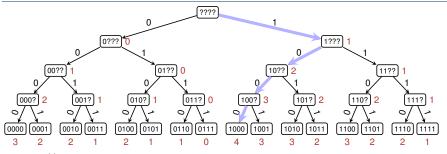
Example: Deterministic vs. Randomised Weighted Majority (1/2)

Consider the following run of the Deterministic Weighted Majority Algorithm:

t	Weights	Predictions	Actual Result	Our Prediction	Our Errors
1	1,1	1,0	0	1	1
2	1/2,1	1,0	1	0	2
3	1/2,1/2	0,1	1	0	3
4	1/4,1/2	1,0	1	0	4
5	1/4,1/4	_	_	_	_

Consider now the Randomised Weighted Majority Algorithm and let us compute the expected number of mistakes $(\mathbf{E} \lceil M^{(4)} \rceil)$

Example: Deterministic vs. Randomised Weighted Majority (2/2)



- Let $x^{(t)}$ be a 0/1 random variable, indicating if our t-th prediction is wrong.
- Then:

$$\mathbf{E}\Big[x^{(1)}\Big] = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}.$$

• Similarly, $\mathbf{E} \left[x^{(2)} \right] = \frac{2}{3}, \, \mathbf{E} \left[x^{(3)} \right] = \frac{1}{2} \text{ and } \mathbf{E} \left[x^{(4)} \right] = \frac{2}{3}.$

Hence,

$$\mathbf{E}\left[M^{(4)}\right] = \mathbf{E}\left[x^{(1)} + x^{(2)} + x^{(3)} + x^{(4)}\right]$$

$$= \mathbf{E}\left[x^{(1)}\right] + \mathbf{E}\left[x^{(2)}\right] + \mathbf{E}\left[x^{(3)}\right] + \mathbf{E}\left[x^{(4)}\right] = \frac{7}{3}$$
Much better than the deterministic algorithm!

Analysis of Randomised Weighted Majority

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$\mathbf{E}\Big[M^{(T)}\Big] \leq \underbrace{1 \cdot (1+\delta) \cdot \min_{i \in [n]} m_i^{(T)} + \frac{\ln n}{\delta}}_{i}.$$

Proof:

This was a factor of 2 before!

- Define a potential function $\Phi^{(t)} = \sum_{i=1}^{n} w_i^{(t)}$, so that $\Phi^{(1)} = n$.
- The probability of picking expert i in round t is $p_i^{(t)} := w_i^{(t)} / \sum_{i=1}^n w_i^{(t)} = w_i^{(t)} / \Phi^{(t)}$.
- Let $\lambda_i^{(t)}$ be 1 iff expert *i* is wrong at time *t* (and 0 otherwise)
- Then the expected number of mistakes by our algorithm is $\mathbf{E}[M^{(T)}] = \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}$.
- The new potential (which is deterministic!) can be upper bounded by:

$$\Phi^{(t+1)} = \sum_{i=1}^{n} w_i^{(t+1)} = \sum_{i=1}^{n} (1 - \delta \lambda_i^{(t)}) \cdot w_i^{(t+1)} = \Phi^{(t)} \cdot \left(1 - \delta \lambda^{(t)} \rho^{(t)}\right) \leq \Phi^{(t)} \cdot \exp\left(-\delta \lambda^{(t)} \cdot \rho^{(t)}\right)$$

Thus the final potential satisfies

$$\begin{split} & \Phi^{(T+1)} \leq \Phi^{(1)} \cdot \exp\left(-\delta \sum_{t=1}^{T} \lambda^{(t)} \cdot p^{(t)}\right) = n \cdot \exp\left(-\delta \cdot \mathbf{E}\left[M^{(T)}\right]\right), \\ & \Phi^{(T+1)} \geq w_i^{(T+1)} = \prod_{t=1}^{T} \left(1 - \delta \lambda_i^{(t)}\right) = \left(1 - \delta\right)^{m_i^{(T)}} \underbrace{\ln(1 - \delta) \geq -\delta - \delta^2}_{\mathbf{E}[M^{(T)}]} \\ & \Rightarrow \quad \ln n - \delta \cdot \mathbf{E}[M^{(T)}] \geq \ln(1 - \delta) \cdot m_i^{(T)} \quad \Rightarrow \quad \mathbf{E}[M^{(T)}] \leq \underbrace{\left(\delta + \delta^2\right)}_{\delta} \cdot m_i^{(T)} + \frac{\ln n}{\delta} \end{split}$$

Optimising the Learning Rate

Analysis

The expected number of mistakes of our algorithm $M^{(T)}$ satisfies

$$\mathbf{E}\Big[M^{(T)}\Big] \leq \frac{1}{1} \cdot (1+\delta) \cdot \min_{i \in [n]} m_i^{(T)} + \frac{\ln n}{\delta}.$$

Interpretation:

- Suppose that T is known in advance
- Picking learning rate $\delta = \sqrt{\ln(n)/T}$ (assuming T is large enough so that $\delta \leq 1/2!$)

$$\mathbf{E}\Big[M^{(T)}\Big] \leq \min_{i \in [n]} m_i^{(T)} + \sqrt{\ln(n)/T} \cdot T + \sqrt{\ln(n) \cdot T}$$
$$\leq \min_{i \in [n]} m_i^{(T)} + \sqrt{2T \ln(n)}$$

Additive error negligible in most cases compared to $\min_{i \in [n]} m_i^{(T)}!$

Can we do better than that?

A "Pathological" Instance

Corollary

For $\delta = \sqrt{\ln(n)/T}$, the expected number of our mistakes $M^{(T)}$ satisfies

$$\mathbf{E}\Big[M^{(T)}\Big] \leq \min_{i \in [n]} m_i^{(T)} + \sqrt{2T \ln(n)}.$$

- Suppose every expert i = 1, 2, ..., n flips an unbiased coin, and the result is also an unbiased coin flip (independent of the experts' predictions)
- ⇒ Regardless of our algorithm, the number of our mistakes satisfies

$$\mathbf{E}\Big[M^{(T)}\Big] = T \cdot \frac{1}{2}$$

- How good is the best expert?
 - Every expert $i \in [n]$ will make $T/2 \pm \Theta(\sqrt{T})$ many mistakes
 - Best expert will make $T/2 \Theta(\sqrt{T \ln(n)})$ many mistakes (proof omitted, uses central limit theorem)
 - This demonstrates tightness of the error termBest expert will be good just by chance!

Extension: Dealing with poor experts

- Suppose there might be some experts who make the wrong prediction more often than the correct one (however, we don't know the identity of these experts).
- Can we modify the algorithm to do well also in this case?

A More General Setting

New Setup

- At each step, we pick one expert i randomly out of n experts
- That expert i and our algorithm incur a cost $m_i^{(t)}$, but we also observe the costs of all experts (a vector $(m_i^{(t)})_{i=1}^n$)
- costs $m_j^{(t)}$ can be arbitrary in the range [-1, 1]

Coming back to our example of stock prediction:

- could define cost $m_i^{(t)} = 0$ if expert j is neutral (HOLD)
- cost $m_j^{(t)} > 0$ if expert j makes the wrong prediction (closer to 1 the stronger prediction and stronger the price change)
- cost $m_i^{(t)} < 0$ if expert j makes the correct prediction

Idea of the "Multiplicative Weights-Algorithm"

- In the first iteration, simply pick a decision uniformly at random
- Every decision will be penalised or rewarded through a multiplicative weight-update

The Multiplicative Weights Algorithm

The Multiplicative Weights Algorithm

Initialization: Fix $\delta \le 1/2$. For every $i \in [n]$, let $w_i^{(1)} := 1$ Update: For t = 1, 2, ..., T:

- Choose expert *i* with prop. proportional to $w_i^{(t)}$.
- Observe the costs of all n experts in round t, $m^{(t)}$
- For every expert *i*, update its weight by:

$$\mathbf{w}_{i}^{(t+1)} = (1 - \delta m_{i}^{(t)}) \mathbf{w}_{i}^{(t)}$$

Analysis

For any expert i, the expected cost of this algorithm is at most

$$\sum_{t=1}^{T} m_i^{(t)} + \delta \cdot \sum_{t=1}^{T} \left| m_i^{(t)} \right| + \frac{\log n}{\delta}.$$

Derivation is very similar to the ones shown before.

Conclusions

Summary -

- Weighted Majority Algorithm
 - natural, simple (and deterministic) algorithm
 - good performance, but could be a factor of 2 worse than the best expert
- Randomised Weighted Majority Algorithm
 - Randomised extension
 - almost optimal performance thanks to randomisation which guards against tailored worst-case instances (cmp. Quick-Sort!)
 - impact of the learning rate: small learning rate gives very good performance guarantees. However, actual performance may depend on the specific data set at hand (cf. simulations!)
- Multiplicative Weight-Update Algorithm
 - further generalisation of the (randomised) weighted majority algorithm

Outlook -

- These algorithms are examples of the Ensemble-Method:
 Framework combining weak predictions into a strong learner
- Similar examples will be Perceptron and AdaBoost

References

S. Arora, E. Hazan and S. Kale The Multiplicative Weights Update Method: A Meta-Algorithm and Applications

Theory of Computing, Volume 8 (2012).

N. Littlestone and M.K. Warmuth

The Weighted Majority Algorithm
Information and Computation, Volume 108, Issue 2, 1994.

S. Shalev-Shwartz and S. Ben-David <u>Understanding Machine Learning: From Theory to Algorithms</u> <u>Cambridge University Press, 2014.</u>

https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf