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Plan

In the last lecture we have introduced

Graph clustering

The notion of conductance

Cheeger’s inequality: 1− λ2 . φ(G) .
√

1− λ2.

In this lecture we will see

How to formalise the notion of multiple clusters in a graph

How to partition a graph in k ≥ 2 clusters

Applications (if time permits)
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Multiway partitioning

Let G = (V ,E ,w). Recall the notion of conductance of a set S ⊂ V :

φ(S) =
w(S,V \ S)

min{vol(S), vol(V \ S)}

= max

{
w(S,V \ S)

vol(S)
,

w(S,V \ S)

vol(V \ S)

}

k -way partition: {S1, . . . ,Sk} s.t. ∅ 6= Si ⊂ V , Si ∩ Sj = ∅,
⋃k

i=1 Si = V

φk (S1, . . . ,Sk ) = max
i=1,...,k

w(Si ,V \ Si )

vol(Si )

We can define the k -way conductance of G as

φk (G) = min
{S1,...,Sk}

k -way partition

φk (S1, . . . ,Sk )
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Yet another variational characterisation

Let P be the transition matrix of a lazy walk on G = (V ,E) with eigenvalues
λ1 ≥ · · · ≥ λn. For simplicity, assume G is d-regular.

Let f1, . . . , fk : V → R, Span({f1, . . . , fk}) ,
{∑k

i=1 αi fi : α1, . . . , αk ∈ R
}

Let f : V → R, RG(f ) ,
∑

{u,v}∈E (f (u)−f (v))2

2d
∑

u∈V f (u)2

1− λk = min
f1,...,fk 6=0

fi⊥fj

max {RG(f ) : f ∈ Span({f1, . . . , fk})}

and the minimum is achieved by the eigenvectors for λ1, . . . , λk

Courant-Fischer formula

Let f1, . . . , fk : V → R be disjointly supported. Then,

1− λk

2
≤ max

i=1,...,k
RG(fi )

Corollary
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Eigenvalues and k -way conductance

Let {S1, . . . ,Sk} be a k -way partitioning of G = (V ,E ,w) achieving φk (G)

Define the indicator function 1Si : V → {0, 1} s.t. 1Si (u) = 1 ⇐⇒ u ∈ Si

Notice that 1Si ’s are disjointly supported

RG(1Si ) =

∑
{u,v}∈E (1Si (u)− 1Si (v))2

2d
∑

u∈V 1Si (u)2 =
|E(Si ,V \ Si )|

2 vol(Si )

By the previous corollary,
1− λk

2
≤ max

i=1,...,k

|E(Si ,V \ Si )|
2 vol(Si )

=
1
2
φk (S1, . . . ,Sk ) =

1
2
φk (G)

1− λk ≤ φk (G) ≤ O(k2)
√

1− λk

Higher-order Cheeger inequality

(Easy consequence: λk = 1 iff at least k connected components in G)
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Example

Random graph G = (V ,E) where V = S1 ∪ S2 ∪ S3 ∪ S4

P[ {u, v} ∈ E ] =

{
0.3 u, v ∈ Si

0.03 u ∈ Si , v ∈ Sj

f1 f2 f3 f4
S1 +1 ≈ +1 ≈ −1 ≈ −1
S2 +1 ≈ +1 ≈ +1 ≈ +1
S3 +1 ≈ −1 ≈ +1 ≈ −1
S4 +1 ≈ −1 ≈ −1 ≈ +1

each eigenvector doesn’t give us enough info by itself
using all eigenvectors together, however, we can recover the clusters
IDEA: map each vertex u to F (u) = (f1(u), f2(u), f3(u), f4(u))T
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How do we cluster points in Rk?
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Enter k -means clustering

INPUT:

a set of n points X = {x1, . . . , xn} ∈ Rd

the number of clusters k ≥ 2

GOAL:

assign the points to k clusters so as to minimise the intra-cluster
variance:

min
S1,...,Sk partition of X

k∑
i=1

∑
y∈Si

‖y − c(Si )‖2

where
c(Si ) =

1
|Si |

∑
y∈Si

y is the center of Si

k -means clustering is NP-hard!

there are good approximation algorithms

simple heuristics (usually!) work well in practice
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Spectral clustering

Goal: Partition G = (V ,E ,w) in k ≥ 2 well-separated clusters
f1, . . . , fk top eigenvectors of the random walk matrix of G

(1) Compute the spectral embedding F : V → Rk

F (u) = (f1(u), . . . , fk (u))T

(2) Solve k -means on {F (u)}u∈V

(3) Partition G according to the output of k -means
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Example: Stochastic Block Models

Graph G = (V ,E) with clusters
S1,S2,S3 ⊂ V ; 0 ≤ q < p ≤ 1

P[ u ∼ v ] =

{
p u, v ∈ Si

q u ∈ Si , v ∈ Sj , i 6= j

|V | = 300, |Si | = 100
p = 0.08, q = 0.01.

Spectral embedding Output of Spectral Clustering
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Example: US migration data

Consider a dataset regarding internal migration in the US.
For each pair of counties (i, j), M(i, j) represents the number of people
who migrated from i to j in the timeframe 2000-2010.
This can be seen as a weighted directed graph, where each node is a
county and M is its weighted adjacency matrix.
We first make this graph undirected: compute M + MT

We compute the corresponding random walk matrix and apply Spectral
Clustering (k = 10)
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Example: England+Wales migration data

For each pair of local authorities (i, j), M(i, j) represents the number of
people who migrated from i to j in the timeframe 2012-2017.
We first make the graph undirected: M + MT , and then compute its
random walk matrix
We apply Spectral Clustering (k = 8)
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Spectral clustering beyond graphs
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k -means clustering (examples)
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Why k -means fail

k -means is able to recover only convex clusters:

it divides the space in k regions with the following property: if we connect
two points belonging to the same region, we never intersect any other
region

Lecture 12: Graph clustering 15



Similarity graph

Given X = {x1, . . . , xn} ∈ Rd , construct G = (V ,E ,w):

xi ∈ X 7→ vi ∈ V

E =
(V

2

)
w(vi , vj ) = exp

(
− ‖xi−xj‖2

2σ2

)
(Gaussian similarity function)

Remarks:

w(vi , vj ) is large if xi is close to xj

value of σ ≥ 0 depends on the application (choose it by trial and error)

large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since G is complete, from Θ(dn) to Θ(n2) space.

Possible solution: r -nearest neighbour graph (vi ∼ vj iff xj is one of the
r -nearest neighbours of xi or vice versa)

From geometric to graph clustering!
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Example

Similarity graph: Gaussian with
σ = 0.1. Only edges with weight
≥ 0.01 shown.

1. Compute the eigenvector f2 corresponding to λ2

2. Order the vertices so that f2(u1) ≤ f2(u2) ≤ · · · ≤ f2(un)

3. Choose “sweep” cut ({u1, . . . , ui}, {ui+1, . . . , un}) with smallest conductance

Spectral partitioning:
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Appendix A: image segmentation

GOAL: identify different objects in an image

Construct similarity graph as follows:
A pixel p is characterised by its position in the image and by its RGB value
map pixel p in position (x , y) to a vector vp = (x , y , r , g, b)

construct similarity graph as explained earlier

Original image Output SC (Gaussian, σ = 10)
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Appendix B: Lloyd’s algorithm for k -means

INPUT: X ⊂ Rd , k ≥ 2
GOAL:

min
S1,...,Sk partition of X

k∑
i=1

∑
y∈Si

‖y − c(Si )‖2 where c(Si ) =
1
|Si |

∑
y∈Si

y

Algorithm:

1. choose k random candidate centres c1, . . . , ck ∈ Rd

2. form clusters S1, . . . ,Sk by assigning each y ∈ X to its nearest centre cj :
Sj = {y ∈ X : j = argmin1≤i≤k ‖y − ci‖2}

3. compute the new centres of the clusters: cj = 1
|Sj |
∑

y∈Sj
y

4. Repeat steps 2-3 until clusters don’t change anymore.

work usually well in practice, but
exponential time to converge in the worst case
no approximation guarantee
by cleverly choosing the initial centres, we can obtain a
O(log k)-approximation algorithm (k -means++)
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