Lecture 12: Multiway clustering of graphs

Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

圈图 UNIVERSITY OF CAMBRIDGE

Plan

In the last lecture we have introduced

- Graph clustering
- The notion of conductance
- Cheeger's inequality: $1-\lambda_{2} \lesssim \phi(G) \lesssim \sqrt{1-\lambda_{2}}$.

In this lecture we will see

- How to formalise the notion of multiple clusters in a graph
- How to partition a graph in $k \geq 2$ clusters
- Applications (if time permits)

Multiway partitioning

Let $G=(V, E, w)$. Recall the notion of conductance of a set $S \subset V$:

$$
\begin{aligned}
\phi(S) & =\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}} \\
& =\max \left\{\frac{w(S, V \backslash S)}{\operatorname{vol}(S)}, \frac{w(S, V \backslash S)}{\operatorname{vol}(V \backslash S)}\right\}
\end{aligned}
$$

k-way partition: $\left\{S_{1}, \ldots, S_{k}\right\}$ s.t. $\emptyset \neq S_{i} \subset V, \quad S_{i} \cap S_{j}=\emptyset, \bigcup_{i=1}^{k} S_{i}=V$

$$
\phi_{k}\left(S_{1}, \ldots, S_{k}\right)=\max _{i=1, \ldots, k} \frac{w\left(S_{i}, V \backslash S_{i}\right)}{\operatorname{vol}\left(S_{i}\right)}
$$

We can define the k-way conductance of G as

$$
\phi_{k}(G)=\min _{\substack{\left\{S_{1}, \ldots, S_{k}\right\} \\ k \text {-way partition }}} \phi_{k}\left(S_{1}, \ldots, S_{k}\right)
$$

Yet another variational characterisation

Let P be the transition matrix of a lazy walk on $G=(V, E)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. For simplicity, assume G is d-regular.
Let $f_{1}, \ldots, f_{k}: V \rightarrow \mathbb{R}, \quad \operatorname{Span}\left(\left\{f_{1}, \ldots, f_{k}\right\}\right) \triangleq\left\{\sum_{i=1}^{k} \alpha_{i} f_{i}: \alpha_{1}, \ldots, \alpha_{k} \in \mathbb{R}\right\}$
Let $f: V \rightarrow \mathbb{R}, \quad \mathcal{R}_{G}(f) \triangleq \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{\left.2 d \sum_{u \in V}(u)\right)^{2}}$
Courant-Fischer formula

$$
1-\lambda_{k}=\min _{\substack{f_{1}, \ldots, f_{k} \neq 0 \\ f_{i} \perp f_{j}}} \max \left\{\mathcal{R}_{G}(f): f \in \operatorname{Span}\left(\left\{f_{1}, \ldots, f_{k}\right\}\right)\right\}
$$

and the minimum is achieved by the eigenvectors for $\lambda_{1}, \ldots, \lambda_{k}$

Corollary
Let $f_{1}, \ldots, f_{k}: V \rightarrow \mathbb{R}$ be disjointly supported. Then,

$$
\frac{1-\lambda_{k}}{2} \leq \max _{i=1, \ldots, k} \mathcal{R}_{G}\left(f_{i}\right)
$$

Eigenvalues and k-way conductance
Let $\left\{S_{1}, \ldots, S_{k}\right\}$ be a k-way partitioning of $G=(V, E, w)$ achieving $\phi_{k}(G)$
Define the indicator function $\mathbb{1}_{s_{i}}: V \rightarrow\{0,1\}$ s.t. $\mathbb{1}_{s_{i}}(u)=1 \Longleftrightarrow u \in S_{i}$
Notice that $\mathbb{1}_{s_{i}}$'s are disjointly supported

$$
\mathcal{R}_{G}\left(\mathbb{1}_{S_{i}}\right)=\frac{\sum_{\{u, v\} \in E}\left(\mathbb{1}_{S_{i}}(u)-\mathbb{1}_{S_{i}}(v)\right)^{2}}{2 d \sum_{u \in V^{1}} \mathbb{S}_{S_{i}}(u)^{2}}=\frac{\left|E\left(S_{i}, V \backslash S_{i}\right)\right|}{2 \operatorname{vol}\left(S_{i}\right)}
$$

By the previous corollary,

$$
\frac{1-\lambda_{k}}{2} \leq \max _{i=1, \ldots, k} \frac{\left|E\left(S_{i}, V \backslash S_{i}\right)\right|}{2 \operatorname{vol}\left(S_{i}\right)}=\frac{1}{2} \phi_{k}\left(S_{1}, \ldots, S_{k}\right)=\frac{1}{2} \phi_{k}(G)
$$

Higher-order Cheeger inequality

$$
1-\lambda_{k} \leq \phi_{k}(G) \leq O\left(k^{2}\right) \sqrt{1-\lambda_{k}}
$$

(Easy consequence: $\lambda_{k}=1$ iff at least k connected components in G)

Example

Random graph $G=(V, E)$ where $V=S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$

$$
\mathbf{P}[\{u, v\} \in E]= \begin{cases}0.3 & u, v \in S_{i} \\ 0.03 & u \in S_{i}, v \in S_{j}\end{cases}
$$

	f_{1}	f_{2}	f_{3}	f_{4}
S_{1}	+1	$\approx+1$	≈-1	≈-1
S_{2}	+1	$\approx+1$	$\approx+1$	$\approx+1$
S_{3}	+1	≈-1	$\approx+1$	≈-1
S_{4}	+1	≈-1	≈-1	$\approx+1$

- each eigenvector doesn't give us enough info by itself
- using all eigenvectors together, however, we can recover the clusters
- IDEA: map each vertex u to $F(u)=\left(f_{1}(u), f_{2}(u), f_{3}(u), f_{4}(u)\right)^{T}$

How do we cluster points in \mathbb{R}^{k} ?

Enter k-means clustering

InPUT:

- a set of n points $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$
- the number of clusters $k \geq 2$

GOAL:

- assign the points to k clusters so as to minimise the intra-cluster variance:

$$
\min _{S_{1}, \ldots, S_{k} \text { partition of } x} \sum_{i=1}^{k} \sum_{y \in S_{i}}\left\|y-c\left(S_{i}\right)\right\|^{2}
$$

where

$$
c\left(S_{i}\right)=\frac{1}{\left|S_{i}\right|} \sum_{y \in S_{i}} y \quad \text { is the center of } S_{i}
$$

- k-means clustering is NP-hard!
- there are good approximation algorithms
- simple heuristics (usually!) work well in practice

Spectral clustering

Goal: Partition $G=(V, E, w)$ in $k \geq 2$ well-separated clusters
f_{1}, \ldots, f_{k} top eigenvectors of the random walk matrix of G

(1) Compute the spectral embedding $F: V \rightarrow \mathbb{R}^{k}$

$$
F(u)=\left(f_{1}(u), \ldots, f_{k}(u)\right)^{T}
$$

$$
\text { (2) Solve } k \text {-means on }\{F(u)\}_{u \in v}
$$

(3) Partition G according to the output of k-means

Example: Stochastic Block Models

Graph $G=(V, E)$ with clusters
$S_{1}, S_{2}, S_{3} \subset V ; \quad 0 \leq q<p \leq 1$

$$
\begin{aligned}
& \mathbf{P}[u \sim v]= \begin{cases}p & u, v \in S_{i} \\
q & u \in S_{i}, v \in S_{j}, i \neq j\end{cases} \\
& |V|=300,\left|S_{i}\right|=100 \\
& p=0.08, q=0.01
\end{aligned}
$$

Spectral embedding

Output of Spectral Clustering

Example: US migration data

- Consider a dataset regarding internal migration in the US.
- For each pair of counties $(i, j), M(i, j)$ represents the number of people who migrated from i to j in the timeframe 2000-2010.
- This can be seen as a weighted directed graph, where each node is a county and M is its weighted adjacency matrix.
- We first make this graph undirected: compute $M+M^{T}$
- We compute the corresponding random walk matrix and apply Spectral Clustering ($k=10$)

Example: England+Wales migration data

- For each pair of local authorities $(i, j), M(i, j)$ represents the number of people who migrated from i to j in the timeframe 2012-2017.
- We first make the graph undirected: $M+M^{\top}$, and then compute its random walk matrix
- We apply Spectral Clustering ($k=8$)

Spectral clustering beyond graphs

k-means clustering (examples)

Lecture 12: Graph clustering

Why k-means fail

k-means is able to recover only convex clusters:

- it divides the space in k regions with the following property: if we connect two points belonging to the same region, we never intersect any other region

Similarity graph

Given $X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}$, construct $G=(V, E, w)$:

- $x_{i} \in X \mapsto v_{i} \in V$
- $E=\binom{V}{2}$
- $w\left(v_{i}, v_{j}\right)=\exp \left(-\frac{\left\|x_{i}-x_{j}\right\|^{2}}{2 \sigma^{2}}\right)$ (Gaussian similarity function)

Remarks:

- $w\left(v_{i}, v_{j}\right)$ is large if x_{i} is close to x_{j}
- value of $\sigma \geq 0$ depends on the application (choose it by trial and error)
- large σ if, on average, pairwise nearest neighbours are far apart

Problem: Since G is complete, from $\Theta(d n)$ to $\Theta\left(n^{2}\right)$ space.
Possible solution: r-nearest neighbour graph ($v_{i} \sim v_{j}$ iff x_{j} is one of the r-nearest neighbours of x_{i} or vice versa)

From geometric to graph clustering!

Example

Similarity graph: Gaussian with $\sigma=0.1$. Only edges with weight ≥ 0.01 shown.

Spectral partitioning:

1. Compute the eigenvector f_{2} corresponding to λ_{2}
2. Order the vertices so that $f_{2}\left(u_{1}\right) \leq f_{2}\left(u_{2}\right) \leq \cdots \leq f_{2}\left(u_{n}\right)$
3. Choose "sweep" cut $\left(\left\{u_{1}, \ldots, u_{i}\right\},\left\{u_{i+1}, \ldots, u_{n}\right\}\right)$ with smallest conductance

References

T
Ulrike von Luxburg A tutorial on spectral clustering Statistics and computing (2007)

R
Santo Fortunato
Community detection in graphs Physics reports (2010)

- Daniel A. Spielman

Spectral Partitiong in a Stochastic Block Model
Lecture notes for Spectral Graph Theory (2015)
http://www.cs.yale.edu/homes/spielman/561/lect21-15.pdf

Appendix A: image segmentation

GOAL: identify different objects in an image

Construct similarity graph as follows:

- A pixel p is characterised by its position in the image and by its RGB value
- map pixel p in position (x, y) to a vector $v_{p}=(x, y, r, g, b)$
- construct similarity graph as explained earlier

Original image

Output SC (Gaussian, $\sigma=10$)

Appendix B: Lloyd's algorithm for k-means

INPUT: $X \subset \mathbb{R}^{d}, k \geq 2$
GOAL: $\min _{S_{1}, \ldots, S_{k} \text { partition of } x} \sum_{i=1}^{k} \sum_{y \in S_{i}}\left\|y-c\left(S_{i}\right)\right\|^{2} \quad$ where $\quad c\left(S_{i}\right)=\frac{1}{\left|S_{i}\right|} \sum_{y \in S_{i}} y$

Algorithm:

1. choose k random candidate centres $c_{1}, \ldots, c_{k} \in \mathbb{R}^{d}$
2. form clusters S_{1}, \ldots, S_{k} by assigning each $y \in X$ to its nearest centre c_{j} :
$S_{j}=\left\{y \in X: j=\operatorname{argmin}_{1 \leq i \leq k}\left\|y-c_{i}\right\|^{2}\right\}$
3. compute the new centres of the clusters: $c_{j}=\frac{1}{\left|s_{j}\right|} \sum_{y \in s_{j}} y$
4. Repeat steps 2-3 until clusters don't change anymore.

- work usually well in practice, but
- exponential time to converge in the worst case
- no approximation guarantee
- by cleverly choosing the initial centres, we can obtain a $O(\log k)$-approximation algorithm (k-means++)

