Lecture 11: Graph clustering and random walks

Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

What is clustering?

Clustering is the task of dividing objects in groups (clusters) so that similar objects are grouped together and dissimilar objects are separated in different groups

What is clustering?

Clustering is the task of dividing objects in groups (clusters) so that similar objects are grouped together and dissimilar objects are separated in different groups

Different formalisations for different domains/applications:

What is clustering?

Clustering is the task of dividing objects in groups (clusters) so that similar objects are grouped together and dissimilar objects are separated in different groups

Different formalisations for different domains/applications:

- Geometric clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.

What is clustering?

Clustering is the task of dividing objects in groups (clusters) so that similar objects are grouped together and dissimilar objects are separated in different groups

Different formalisations for different domains/applications:

- Geometric clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.
- Graph clustering: partition vertices in a graph
- modularity, conductance, min-cut, etc.

What is clustering?

Clustering is the task of dividing objects in groups (clusters) so that similar objects are grouped together and dissimilar objects are separated in different groups

Different formalisations for different domains/applications:

- Geometric clustering: partition points in a Euclidean space
- k-means, k-medians, k-centres, etc.
- Graph clustering: partition vertices in a graph
- modularity, conductance, min-cut, etc.

Graph clustering

Partition the graph into pieces (clusters) so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Graph clustering

Partition the graph into pieces (clusters) so that vertices in the same piece have, on average, more connections among each other than with vertices in other clusters

Why study graph clustering?

- Many practical applications, e.g.:
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network

Why study graph clustering?

- Many practical applications, e.g.:
- Community detection
- Group webpages according to their topics
- Find proteins performing the same function within a cell
- Image segmentation
- Identify bottlenecks in a network
- Connections with different areas of mathematics and TCS, e.g.:
- Random walk theory
- Combinatorics
- Theory of metric spaces
- Approximation algorithms
- Complexity theory

Relation between clustering and mixing

- Which graph has a "cluster-structure"?

Relation between clustering and mixing

- Which graph has a "cluster-structure"?
- Which graph mixes faster?

Weighted graphs and random walks

$G=(V, E, w)$ with weight function w, s.t.

- $w: V \times V \rightarrow \mathbb{R}_{\geq 0}$
- $w(x, y)>0 \Longleftrightarrow\{x, y\} \in E$
- $w(x, y)=w(y, x)$

Weighted graphs and random walks

$G=(V, E, w)$ with weight function w, s.t.

- $w: V \times V \rightarrow \mathbb{R}_{\geq 0}$
- $w(x, y)>0 \Longleftrightarrow\{x, y\} \in E$
- $w(x, y)=w(y, x)$

The transition matrix of a lazy random walk on G is the n by n matrix P defined as

$$
P(x, y)=\frac{w(x, y)}{2 d(x)}, \quad P(x, x)=\frac{1}{2}
$$

where $d(x)=\sum_{z \in V} w(x, z)$.
It has stationary distribution π s.t. $\pi(x)=\frac{d(x)}{\sum_{z} d(z)}$.

Weighted graphs and random walks

$G=(V, E, w)$ with weight function w, s.t.

- $w: V \times V \rightarrow \mathbb{R}_{\geq 0}$
- $w(x, y)>0 \Longleftrightarrow\{x, y\} \in E$
- $w(x, y)=w(y, x)$

The transition matrix of a lazy random walk on G is the n by n matrix P defined as

$$
P(x, y)=\frac{w(x, y)}{2 d(x)}, \quad P(x, x)=\frac{1}{2}
$$

where $d(x)=\sum_{z \in V} w(x, z)$.
It has stationary distribution π s.t. $\pi(x)=\frac{d(x)}{\sum_{z} d(z)}$.

$$
P=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{3}{10} & 0 & \frac{1}{5} \\
\frac{3}{16} & \frac{1}{2} & \frac{5}{16} & 0 \\
0 & \frac{5}{12} & \frac{1}{2} & \frac{1}{12} \\
\frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{2}
\end{array}\right)
$$

How do we formalise the concept of cluster/bottleneck?

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.
The conductance of G is

$$
\phi(G):=\min _{\emptyset \neq S \subset V} \phi(S)
$$

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.
The conductance of G is

$$
\phi(G):=\min _{D \neq S \subset V} \phi(S)
$$

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.
The conductance of G is

$$
\phi(G):=\min _{\phi \neq S \subset v} \phi(S)
$$

$$
\text { - } \phi(S)=\frac{5}{9}
$$

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.
The conductance of G is

$$
\phi(G):=\min _{\emptyset \neq S \subset V} \phi(S)
$$

- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff G is disconnected

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.
The conductance of G is

$$
\phi(G):=\min _{\phi \neq S \subset v} \phi(S)
$$

- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff G is disconnected
- If G is a complete graph, then $|E(S, V \backslash S)|=|S| \cdot(n-|S|)$ and $\phi(G) \approx 1 / 2$.

Enter the conductance

Let $G=(V, E, w)$ and $\emptyset \neq S \subset V$.
The conductance (edge expansion) of S is

$$
\phi(S):=\frac{w(S, V \backslash S)}{\min \{\operatorname{vol}(S), \operatorname{vol}(V \backslash S)\}}
$$

where $w(S, V \backslash S)=\sum_{x \in S, y \notin S} w(x, y)$ and $\operatorname{vol}(S)=\sum_{x \in S} d(x)$.
The conductance of G is

$$
\phi(G):=\min _{\emptyset \neq S \subset V} \phi(S)
$$

- $\phi(S)=\frac{5}{9}$
- $\phi(G) \in[0,1]$ and $\phi(G)=0$ iff G is disconnected
- If G is a complete graph, then $|E(S, V \backslash S)|=|S| \cdot(n-|S|)$ and $\phi(G) \approx 1 / 2$.

Cheeger's inequality
Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} .
$$

Cheeger's inequality

Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} .
$$

Spectral partitioning:

Cheeger's inequality

Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} .
$$

Spectral partitioning:

1. Let f_{2} be the eigenvector corresponding to λ_{2}.

Cheeger's inequality

Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} .
$$

Spectral partitioning:

1. Let f_{2} be the eigenvector corresponding to λ_{2}.
2. Order the vertices so that $f_{2}\left(u_{1}\right) \leq f_{2}\left(u_{2}\right) \leq \cdots \leq f_{2}\left(u_{n}\right)$

Cheeger's inequality

Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} .
$$

Spectral partitioning:

1. Let f_{2} be the eigenvector corresponding to λ_{2}.
2. Order the vertices so that $f_{2}\left(u_{1}\right) \leq f_{2}\left(u_{2}\right) \leq \cdots \leq f_{2}\left(u_{n}\right)$
3. Try all $n-1$ sweep cuts $\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{u_{k+1}, \ldots, u_{n}\right\}\right)$ and return the one with smallest conductance

Cheeger's inequality

Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

Spectral partitioning:

1. Let f_{2} be the eigenvector corresponding to λ_{2}.
2. Order the vertices so that $f_{2}\left(u_{1}\right) \leq f_{2}\left(u_{2}\right) \leq \cdots \leq f_{2}\left(u_{n}\right)$
3. Try all $n-1$ sweep cuts $\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{u_{k+1}, \ldots, u_{n}\right\}\right)$ and return the one with smallest conductance

- It returns $S \subset V$ such that $\phi(S) \leq \sqrt{\left(1-\lambda_{2}\right)} \leq 2 \sqrt{\phi(G)}$

Cheeger's inequality

Cheeger's inequality
Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)}
$$

Spectral partitioning:

1. Let f_{2} be the eigenvector corresponding to λ_{2}.
2. Order the vertices so that $f_{2}\left(u_{1}\right) \leq f_{2}\left(u_{2}\right) \leq \cdots \leq f_{2}\left(u_{n}\right)$
3. Try all $n-1$ sweep cuts $\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{u_{k+1}, \ldots, u_{n}\right\}\right)$ and return the one with smallest conductance

- It returns $S \subset V$ such that $\phi(S) \leq \sqrt{\left(1-\lambda_{2}\right)} \leq 2 \sqrt{\phi(G)}$
- no constant factor approximation (in the worst case)

Cheeger's inequality

Cheeger's inequality

Let P be the transition matrix of a lazy random walk of a graph $G=(V, E, w)$ with eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$. Then,

$$
\frac{1-\lambda_{2}}{2} \leq \phi(G) \leq \sqrt{2\left(1-\lambda_{2}\right)} .
$$

Spectral partitioning:

1. Let f_{2} be the eigenvector corresponding to λ_{2}.
2. Order the vertices so that $f_{2}\left(u_{1}\right) \leq f_{2}\left(u_{2}\right) \leq \cdots \leq f_{2}\left(u_{n}\right)$
3. Try all $n-1$ sweep cuts $\left(\left\{u_{1}, u_{2}, \ldots, u_{k}\right\},\left\{u_{k+1}, \ldots, u_{n}\right\}\right)$ and return the one with smallest conductance

- It returns $S \subset V$ such that $\phi(S) \leq \sqrt{\left(1-\lambda_{2}\right)} \leq 2 \sqrt{\phi(G)}$
- no constant factor approximation (in the worst case)
- mixing on G is $t_{\text {mix }}=O\left(\log (n) / \phi(G)^{2}\right)$.

Illustration on a (very) small example

$$
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right)
$$

Illustration on a (very) small example
$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$

Illustration on a (very) small example

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
1-\lambda_{2} \approx 0.13 \\
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a (very) small example

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
1-\lambda_{2} \approx 0.13 \\
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a (very) small example

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
1-\lambda_{2} \approx 0.13 \\
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a (very) small example

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
1-\lambda_{2} \approx 0.13 \\
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a (very) small example

$$
\begin{aligned}
\mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & 0 \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
1-\lambda_{2} \approx 0.13 \\
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Illustration on a (very) small example
$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$
$f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}$
4
$\begin{array}{lll}0 & 0 & 0 \\ 1 & 3 & 2\end{array}$

Illustration on a (very) small example
$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$
$f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}$
4
$\begin{array}{llll}0 & 0 & 0 & 0 \\ 1 & 3 & 2 & 5\end{array}$

Illustration on a (very) small example

$1-\lambda_{2} \approx 0.13$

4

Illustration on a (very) small example

$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

$\begin{array}{ll}0 & 0 \\ 1 & 3\end{array}$
$\begin{array}{ll}0 & 0 \\ 2 & 5\end{array}$

Illustration on a (very) small example

$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

$\begin{array}{ll}0 & 0 \\ 1 & 3\end{array}$
$\begin{array}{ll}0 & 0 \\ 2 & 5\end{array}$

Illustration on a (very) small example

$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

Illustration on a (very) small example

$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

Sweep: 1
Conductance: 1

Illustration on a (very) small example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{9}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{5} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{6} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 \\
0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{9}{6} \\
0 & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
& 1-\lambda_{2} \approx 0.13 \\
& f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 2
Conductance: 0.666

Illustration on a (very) small example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\
\frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\
\frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
& 1-\lambda_{2} \approx 0.13 \\
& f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 3
Conductance: 0.333

Illustration on a (very) small example

$$
\begin{aligned}
& \mathbf{A}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 0
\end{array}\right) \quad \mathbf{P}=\left(\begin{array}{cccccccc}
\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{9}{6} & 0 \\
\frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{5} & 0 & 0 & 0 & 0 \\
0 & \frac{1}{6} & \frac{1}{2} & \frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 \\
0 & \frac{1}{6} \\
0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{9}{6} \\
0 & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\
0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}
\end{array}\right) \\
& 1-\lambda_{2} \approx 0.13 \\
& f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
\end{aligned}
$$

Sweep: 4
Conductance: 0.166

Illustration on a (very) small example

$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

Sweep: 5
Conductance: 0.333

Illustration on a (very) small example

$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

Sweep: 6
Conductance: 0.666

Illustration on a (very) small example

$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

Sweep: 7
Conductance: 1

Illustration on a (very) small example

$\mathbf{A}=\left(\begin{array}{llllllll}0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0\end{array}\right)=\left(\begin{array}{cccccccc}\frac{1}{2} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{2} & 0 & 0 & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & 0 \\ \frac{1}{6} & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 & 0 & \frac{1}{6} \\ \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{2} & 0 & 0 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{6} \\ 0 & \frac{1}{6} & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{6} & 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{6} & 0 & \frac{1}{6} & \frac{1}{6} & 0 & \frac{1}{2}\end{array}\right)$
$1-\lambda_{2} \approx 0.13$

$$
f_{2}=(-0.425,+0.263,-0.263,-0.425,+0.425,+0.425,-0.263,+0.263)^{T}
$$

Best sweep: 4
Conductance: 0.166

Intuition

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

We want to find $f: V \rightarrow \mathbb{R}$ such that $f \perp 1$ minimises

$$
1-\lambda_{2}=\min _{\substack{t \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}
$$

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

We want to find $f: V \rightarrow \mathbb{R}$ such that $f \perp 1$ minimises

$$
1-\lambda_{2}=\min _{\substack{t \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}
$$

- If f is constant on V_{1} and $V_{2}, 1-\lambda_{2}=0$ (no edges between V_{1} and V_{2})

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

We want to find $f: V \rightarrow \mathbb{R}$ such that $f \perp 1$ minimises

$$
1-\lambda_{2}=\min _{\substack{t \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}
$$

- If f is constant on V_{1} and $V_{2}, 1-\lambda_{2}=0$ (no edges between V_{1} and V_{2})
- We want $f \perp 1 \Longrightarrow \sum_{u} f(u)=0$

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

We want to find $f: V \rightarrow \mathbb{R}$ such that $f \perp 1$ minimises

$$
1-\lambda_{2}=\min _{\substack{t \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}
$$

- If f is constant on V_{1} and $V_{2}, 1-\lambda_{2}=0$ (no edges between V_{1} and V_{2})
- We want $f \perp 1 \Longrightarrow \sum_{u} f(u)=0$
- choose $f(u)= \begin{cases}1 & \text { if } u \in V_{1} \\ -1 & \text { if } u \notin V_{2} .\end{cases}$

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

We want to find $f: V \rightarrow \mathbb{R}$ such that $f \perp 1$ minimises

$$
1-\lambda_{2}=\min _{\substack{t \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}
$$

- If f is constant on V_{1} and $V_{2}, 1-\lambda_{2}=0$ (no edges between V_{1} and V_{2})
- We want $f \perp 1 \Longrightarrow \sum_{u} f(u)=0$
- choose $f(u)= \begin{cases}1 & \text { if } u \in V_{1} \\ -1 & \text { if } u \notin V_{2} .\end{cases}$
- $f \perp 1$ and $1-\lambda_{2}=0$

Let's start with a simplified example: $G=\left(V_{1} \cup V_{2}, E\right)$

- disconnected with connected components supported on V_{1} and V_{2}
- $\left|V_{1}\right|=\left|V_{2}\right|=n$
- regular (i.e., all vertices have the same degree)

We want to find $f: V \rightarrow \mathbb{R}$ such that $f \perp 1$ minimises

$$
1-\lambda_{2}=\min _{\substack{t \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}
$$

- If f is constant on V_{1} and $V_{2}, 1-\lambda_{2}=0$ (no edges between V_{1} and V_{2})
- We want $f \perp 1 \Longrightarrow \sum_{u} f(u)=0$
- choose $f(u)= \begin{cases}1 & \text { if } u \in V_{1} \\ -1 & \text { if } u \notin V_{2} .\end{cases}$
- $f \perp 1$ and $1-\lambda_{2}=0$

Hope: If $\phi(G)$ is small, a similar construction can give us a small spectral gap

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.
Proof: Recall that $1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}$

- Take $S \subset V$ minimising $\phi(G)$

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.
Proof: Recall that $1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}$

- Take $S \subset V$ minimising $\phi(G)$
- Construct $f \in \mathbb{R}^{n}$ s.t. $f(u)= \begin{cases}1 /|S| & \text { if } u \in S \\ -1 /|V \backslash S| & \text { if } u \notin S .\end{cases}$

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.
Proof: Recall that $1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}$

- Take $S \subset V$ minimising $\phi(G)$
- Construct $f \in \mathbb{R}^{n}$ s.t. $f(u)= \begin{cases}1 /|S| & \text { if } u \in S \\ -1 /|V \backslash S| & \text { if } u \notin S .\end{cases}$
- $\left\langle f_{2}, 1\right\rangle=\sum_{u} f(u)=\sum_{u \in S} \frac{1}{|S|}+\sum_{u \notin S} \frac{-1}{|V \backslash S|}=0$

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.
Proof: Recall that $1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}$

- Take $S \subset V$ minimising $\phi(G)$
- Construct $f \in \mathbb{R}^{n}$ s.t. $f(u)= \begin{cases}1 /|S| & \text { if } u \in S \\ -1 /|V \backslash S| & \text { if } u \notin S .\end{cases}$
- $\left\langle f_{2}, 1\right\rangle=\sum_{u} f(u)=\sum_{u \in S} \frac{1}{|S|}+\sum_{u \notin S} \frac{-1}{|V \backslash S|}=0$
- $\sum_{u \in V} f(u)^{2}=\sum_{u \in S} \frac{1}{|S|^{2}}+\sum_{u \notin S} \frac{1}{|V \backslash S|^{2}} \geq \frac{1}{|S|}$

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.
Proof: Recall that $1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}$

- Take $S \subset V$ minimising $\phi(G)$
- Construct $f \in \mathbb{R}^{n}$ s.t. $f(u)= \begin{cases}1 /|S| & \text { if } u \in S \\ -1 /|V \backslash S| & \text { if } u \notin S .\end{cases}$
- $\left\langle f_{2}, 1\right\rangle=\sum_{u} f(u)=\sum_{u \in S} \frac{1}{|S|}+\sum_{u \notin S} \frac{-1}{|V \backslash S|}=0$
- $\sum_{u \in V} f(u)^{2}=\sum_{u \in S} \frac{1}{|S|^{2}}+\sum_{u \notin S} \frac{1}{|V \backslash S|^{2}} \geq \frac{1}{|S|}$
- $\sum_{\{u, v\} \in E}(f(u)-f(v))^{2} \leq \sum_{\substack{\{u, v\} \in E \\ u \in S, v \notin S}} \frac{4}{|S|^{2}}=\frac{4|E(S, V \backslash S)|}{|S|^{2}}$

Proof of the "easy" direction $\left(1-\lambda_{2}\right) / 2 \leq \phi(G)$

We prove it for $G d$-regular.
Proof: Recall that $1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\sum_{\{u, v\} \in E}(f(u)-f(v))^{2}}{2 d \sum_{u \in V} f(u)^{2}}$

- Take $S \subset V$ minimising $\phi(G)$
- Construct $f \in \mathbb{R}^{n}$ s.t. $f(u)= \begin{cases}1 /|S| & \text { if } u \in S \\ -1 /|V \backslash S| & \text { if } u \notin S\end{cases}$
- $\left\langle f_{2}, 1\right\rangle=\sum_{u} f(u)=\sum_{u \in S} \frac{1}{|S|}+\sum_{u \notin S} \frac{-1}{|V \backslash S|}=0$
- $\sum_{u \in V} f(u)^{2}=\sum_{u \in S} \frac{1}{|S|^{2}}+\sum_{u \notin S} \frac{1}{|V \backslash S|^{2}} \geq \frac{1}{|S|}$
- $\sum_{\{u, v\} \in E}(f(u)-f(v))^{2} \leq \sum_{\substack{\{u, v\} \in E \\ u \in S, v \notin S}} \frac{4}{|S|^{2}}=\frac{4|E(S, V \backslash S)|}{|S|^{2}}$
- $1-\lambda_{2} \leq \frac{4|E(S, V \backslash S)|}{2 d|S|^{2}} \cdot \frac{1}{1 /|S|}=2 \phi(S)=2 \phi(G)$.

Spectral partitioning example

