
Lecture 11: Graph clustering and
random walks
Nicolás Rivera John Sylvester Luca Zanetti Thomas Sauerwald

Lent 2020

Lecture 11: Graph clustering and random walks 1



What is clustering?

Clustering is the task of dividing objects in groups (clusters) so
that similar objects are grouped together and dissimilar objects are
separated in different groups

Different formalisations for different domains/applications:

Geometric clustering: partition points in a Euclidean space
k -means, k -medians, k -centres, etc.

Graph clustering: partition vertices in a graph
modularity, conductance, min-cut, etc.
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Graph clustering

Partition the graph into pieces (clusters) so that vertices in the same piece
have, on average, more connections among each other than with vertices
in other clusters

Lecture 11: Graph clustering and random walks 3



Graph clustering

Partition the graph into pieces (clusters) so that vertices in the same piece
have, on average, more connections among each other than with vertices
in other clusters

Lecture 11: Graph clustering and random walks 3



Why study graph clustering?

Many practical applications, e.g.:
Community detection
Group webpages according to their topics
Find proteins performing the same function within a cell
Image segmentation
Identify bottlenecks in a network

Connections with different areas of mathematics and TCS, e.g.:
Random walk theory
Combinatorics
Theory of metric spaces
Approximation algorithms
Complexity theory
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Relation between clustering and mixing

Which graph has a “cluster-structure”?

Which graph mixes faster?
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Weighted graphs and random walks

G = (V ,E ,w) with weight function w , s.t.
w : V × V → R≥0

w(x , y) > 0 ⇐⇒ {x , y} ∈ E
w(x , y) = w(y , x)

The transition matrix of a lazy random walk on G is the n by n matrix P
defined as

P(x , y) =
w(x , y)
2d(x)

, P(x , x) =
1
2

where d(x) =
∑

z∈V w(x , z).
It has stationary distribution π s.t. π(x) = d(x)∑

z d(z) .
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How do we formalise the concept of cluster/bottleneck?
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Enter the conductance

Let G = (V ,E ,w) and ∅ 6= S ⊂ V .
The conductance (edge expansion) of S is

φ(S) :=
w(S,V \ S)

min{vol(S), vol(V \ S)}

where w(S,V \ S) =
∑

x∈S,y 6∈S w(x , y) and vol(S) =
∑

x∈S d(x).

The conductance of G is

φ(G) := min
∅6=S⊂V

φ(S)

NP-hard to compute!

1

2

3

4

5

6

7
8 φ(S) = 5

9

φ(G) ∈ [0, 1] and φ(G) = 0 iff G is
disconnected

If G is a complete graph, then
|E(S,V \ S)| = |S| · (n − |S|) and
φ(G) ≈ 1/2.
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Cheeger’s inequality

Let P be the transition matrix of a lazy random walk of a graph
G = (V ,E ,w) with eigenvalues λ1 ≥ · · · ≥ λn. Then,

1− λ2

2
≤ φ(G) ≤

√
2(1− λ2).

Cheeger’s inequality

Spectral partitioning:

1. Let f2 be the eigenvector corresponding to λ2.

2. Order the vertices so that f2(u1) ≤ f2(u2) ≤ · · · ≤ f2(un)

3. Try all n − 1 sweep cuts ({u1, u2, . . . , uk}, {uk+1, . . . , un}) and
return the one with smallest conductance

It returns S ⊂ V such that φ(S) ≤
√

(1− λ2) ≤ 2
√
φ(G)

no constant factor approximation (in the worst case)

mixing on G is tmix = O(log(n)/φ(G)2).
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Illustration on a (very) small example

A =



0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0
1 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1
0 1 0 0 1 0 0 1
1 1 0 1 0 0 0 0
0 0 1 0 1 1 0 0


P =



1
2 0 1

6
1
6 0 0 1

6 0
0 1

2 0 0 1
6

1
6

1
6 0

1
6 0 1

2
1
6 0 0 0 1

6
1
6 0 1

6
1
2 0 0 1

6 0
0 1

6 0 0 1
2

1
6 0 1

6
0 1

6 0 0 1
6

1
2 0 1

6
1
6

1
6 0 1

6 0 0 1
2 0

0 0 1
6 0 1

6
1
6 0 1

2



1

2
3

4

5

6
7

8

1− λ2 ≈ 0.13

f2 = (−0.425,+0.263,−0.263,−0.425,+0.425,+0.425,−0.263,+0.263)T

4 7

2 51 3

8 6

f2−0.425−0.263 0 +0.263+0.425
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Intuition

Let’s start with a simplified example: G = (V1 ∪ V2,E)

disconnected with connected components supported on V1 and V2

|V1| = |V2| = n

regular (i.e., all vertices have the same degree)

We want to find f : V → R such that f ⊥ 1 minimises

1− λ2 = min
f∈Rn\{0}

f⊥1

∑
{u,v}∈E(f (u)− f (v))2

2d
∑

u∈V f (u)2

If f is constant on V1 and V2, 1− λ2 = 0 (no edges between V1 and V2)

We want f ⊥ 1 =⇒
∑

u f (u) = 0

choose f (u) =
{

1 if u ∈ V1
−1 if u 6∈ V2.

f ⊥ 1 and 1− λ2 = 0

Hope: If φ(G) is small, a similar construction can give us a small spectral gap
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|V1| = |V2| = n

regular (i.e., all vertices have the same degree)

We want to find f : V → R such that f ⊥ 1 minimises

1− λ2 = min
f∈Rn\{0}

f⊥1

∑
{u,v}∈E(f (u)− f (v))2

2d
∑

u∈V f (u)2

If f is constant on V1 and V2, 1− λ2 = 0 (no edges between V1 and V2)

We want f ⊥ 1 =⇒
∑

u f (u) = 0

choose f (u) =
{

1 if u ∈ V1
−1 if u 6∈ V2.

f ⊥ 1 and 1− λ2 = 0

Hope: If φ(G) is small, a similar construction can give us a small spectral gap
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Proof of the “easy” direction (1 − λ2)/2 ≤ φ(G)

We prove it for G d-regular.

Proof: Recall that 1− λ2 = min
f∈Rn\{0}

f⊥1

∑
{u,v}∈E(f (u)− f (v))2

2d
∑

u∈V f (u)2

Take S ⊂ V minimising φ(G)

Construct f ∈ Rn s.t. f (u) =
{

1/|S| if u ∈ S
−1/|V \ S| if u 6∈ S.

〈f2, 1〉 =
∑

u

f (u) =
∑
u∈S

1
|S| +

∑
u 6∈S

−1
|V \ S| = 0

∑
u∈V

f (u)2 =
∑
u∈S

1
|S|2 +

∑
u 6∈S

1
|V \ S|2≥

1
|S|∑

{u,v}∈E

(f (u)− f (v))2 ≤
∑
{u,v}∈E
u∈S,v 6∈S

4
|S|2 =

4|E(S,V \ S)|
|S|2

1− λ2 ≤
4|E(S,V \ S)|

2d |S|2 · 1
1/|S| = 2φ(S) = 2φ(G).

�
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Spectral partitioning example
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