Lecture 10: Mixing time and eigenvalues

Nicolás Rivera John Sylvester <u>Luca Zanetti</u> Thomas Sauerwald

Lent 2020

In the last lecture:

- a review of linear algebra
- reversible Markov chains

Today:

- relate mixing time to eigenvalues of reversible chains
- show how to obtain bounds on eigenvalues for some family of graphs

Convergence to stationarity

Mixing time (revisited)

Recall the definition of mixing time: $\tau(\epsilon) = \min \{t: \max_{x} \| P_{x}^{t} - \pi \|_{TV} \leq \epsilon \}$, where

$$\begin{split} \left\| P_x^t - \pi \right\|_{TV} &= \frac{1}{2} \sum_{y} \left| P^t(x, y) - \pi(y) \right| \\ &= \frac{1}{2} \left\| \frac{P^t(x, y)}{\pi(y)} - 1 \right\|_{1, \pi}. \end{split}$$

This is also called the ℓ_1 -mixing time.

When dealing with spectral properties of P, it is actually easier to consider a stronger notion of mixing: the ℓ_2 -mixing time:

$$\tau_{2}(\epsilon) = \min\left\{t: \max_{x} \left\|\frac{P^{t}(x,\cdot)}{\pi} - 1\right\|_{2,\pi} \le \epsilon\right\}$$

where $\left\|\frac{P^{t}_{x}}{\pi} - 1\right\|_{2,\pi} = \sqrt{\sum_{y} \left(\frac{P^{t}(x,y)}{\pi(y)} - 1\right)^{2} \pi(y)} = \sqrt{\operatorname{Var}_{\pi}\left(\frac{P^{t}(x,\cdot)}{\pi}\right)}$

It holds that: $\tau_2(2\epsilon) \geq \tau(\epsilon)$.

Addendum: comparison between mixing times

Lemma
Let
$$\tau_1(\epsilon) = \min \{t: \max_x \| P^t(x, \cdot) - \pi\|_{TV} \le \epsilon\}$$
 (ℓ_1 mixing time) and $\tau_2(\epsilon) = \min \{t: \max_x \| \frac{P^t(x, \cdot)}{\pi} - 1\|_{2,\pi} \le \epsilon\}$ (ℓ_2 mixing time). Then, $\tau_2(2\epsilon) \ge \tau(\epsilon)$.

Proof: We just need to show that, for any $\epsilon > 0$, $\left\| P^{t}(x, \cdot) - \pi \right\|_{TV} > \epsilon \implies \left\| \frac{P^{t}(x, \cdot)}{\pi} - 1 \right\|_{2,\pi} > 2\epsilon.$

Assume (LHS). Notice that,

$$\begin{aligned} \epsilon < \left\| P^{t}(x,\cdot) - \pi \right\|_{TV} &= \frac{1}{2} \sum_{y} \left| P^{t}(x,y) - \pi(y) \right| = \frac{1}{2} \sum_{y} \left| \frac{P^{t}(x,y)}{\pi(y)} - 1 \right| \pi(y) \\ &\leq \frac{1}{2} \sqrt{\sum_{y} \left(\frac{P^{t}(x,y)}{\pi(y)} - 1 \right)^{2} \pi(y)} = \frac{1}{2} \left\| \frac{P^{t}(x,\cdot)}{\pi} - 1 \right\|_{2,\pi} \end{aligned}$$

(The inequality follows from $\mathbf{E}[X^2] - (\mathbf{E}[X])^2 \ge 0$ for any discrete r.v. X.) Therefore,

$$\frac{P^t(x,\cdot)}{\pi}-1\Big\|_{2,\pi}>2\epsilon$$

Mixing time and eigenvalues

Let *P* be a transition matrix of a reversible Markov chain with stationary distribution π and eigenvalues $\lambda_1 \ge \cdots \ge \lambda_n$. Suppose $\lambda = \max_{i \neq 1} |\lambda_i| < 1$.

Mixing time and eigenvalues (2)

Theorem

Let *P* be the transition matrix of a reversible Markov chain with stationary distribution π and $\lambda = \max_{i \neq 1} |\lambda_i| < 1$. Then, for any $\epsilon \in (0, 1)$,

$$au_2(\epsilon) \leq \log\left(rac{1}{\epsilon\sqrt{\pi_*}}
ight)rac{1}{1-\lambda},$$

Proof: From the spectral decomposition:

$$\begin{split} & \frac{P^{t}(x,\cdot)}{\pi} = \sum_{i=1}^{n} \lambda_{i}^{t} f_{i}(x) f_{i} = 1 + \sum_{i=2}^{n} \lambda_{i}^{t} f_{i}(x) f_{i}. \\ & \left\| \frac{P_{x}^{t}}{\pi} - 1 \right\|_{2,\pi}^{2} = \left\| \sum_{i=2}^{n} \lambda_{i}^{t} f_{i}(x) f_{i} \right\|_{2,\pi}^{2} \le \lambda^{2t} \left\| \sum_{i=2}^{n} f_{i}(x) f_{i} \right\|_{2,\pi}^{2} \end{split}$$

Now notice that $\frac{1_x}{\pi} = \sum_{i=1}^n \langle \frac{1_x}{\pi}, f_i \rangle_{\pi} f_i = \sum_{i=1}^n f_i(x) f_i$. Hence,

$$\left\|\frac{P_{x}^{t}}{\pi} - \mathbf{1}\right\|_{2,\pi}^{2} \leq \lambda^{2t} \left\|\frac{1_{x}}{\pi}\right\|_{2,\pi}^{2} = \lambda^{2t} \cdot \frac{1}{\pi(x)}$$

Finally, take *t* such that $\frac{\lambda^{2t}}{\pi(x)} \leq \epsilon^2$.

How to obtain bounds on the spectral gap

Lazy random walks

From now on we will focus on lazy random walks:

- a particle moves on an undirected graph G = (V, E)
- at each time-step, it can either stay with probability 1/2 or move to an adjacent vertex picked uniformly at random.

Let *P* be the transition matrix for the lazy walk, and P' for the simple walk on the same graph *G*. Then,

$$P=rac{1}{2}(\mathbb{I}+P')$$

Therefore $\lambda_n \geq 0$ and $\lambda = \lambda_2$.

Moreover, $\pi(x) = \frac{d(x)}{2|E|}$ and $\pi_* = \Omega(n^{-2})$. Therefore,

$$au(\epsilon) = O\left(\frac{\log(n/\epsilon)}{1-\lambda_2}\right).$$

Courant-Fischer formula

Let *M* be an *n* by *n* self-adjoint matrix (with respect to $\langle \cdot, \cdot \rangle_{\pi}$) with eigenvalues $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_n$ and corresponding orthonormal eigenvectors f_1, \ldots, f_n . Then,

$$\mu_1 = \min_{f \in \mathbb{R}^n \setminus \{\underline{0}\}} \frac{\langle f, Mf \rangle_{\pi}}{\|f\|_{2,\pi}^2} \qquad \mu_2 = \min_{\substack{f \in \mathbb{R}^n \setminus \{\underline{0}\}\\ f \perp f_i}} \frac{\langle f, Mf \rangle_{\pi}}{\|f\|_{2,\pi}^2}$$

The eigenvectors corresponding to λ_1 and λ_2 minimise such expressions.

Let λ_2 be the second largest eigenvalue of the transition matrix of a lazy random walk on a *d*-regular graph G = (V, E). Then,

$$1 - \lambda_2 = \min_{\substack{f \in \mathbb{R}^n \setminus \{0\}\\ f \perp 1}} \frac{\langle f, (I - P)f \rangle}{\|f\|_2^2} = \min_{\substack{f \in \mathbb{R}^n \setminus \{0\}\\ \|f\|_2 = 1}} \langle f, (I - P)f \rangle.$$

Variational characterisation of λ_2

Lemma Let *P* be the transition matrix of a lazy random walk on a *d*-regular graph G = (V, E). Then, $1 - \lambda_2 = \min_{\substack{f \perp 1 \\ \|f\|_2 = 1}} 1/(2d) \cdot \sum_{\{x, y\} \in E} (f(x) - f(y))^2$ Moreover, f^* minimising the expression above is an eigenvector of *P* corresponding to λ_2 .

Proof: Let *A* be the adjacency matrix of *G*.

$$\begin{split} \langle f, (I-P)f \rangle &= f^T \left(\mathbb{I} - \left(\frac{1}{2} \mathbb{I} + \frac{1}{2d} A \right) \right) f = \frac{1}{2} \left(f^T f - \frac{1}{d} f^T A f \right) \\ &= \frac{1}{2} \left(\sum_{u \in V} f(u)^2 - \frac{2}{d} \sum_{\{u,v\} \in E} f(u) f(v) \right) \\ &= \frac{1}{2d} \sum_{\{u,v\} \in E} (f(u)^2 + f(v)^2 - 2f(u)f(v)) = \sum_{\{u,v\} \in E} \frac{(f(u) - f(v))^2}{2d}. \end{split}$$

The Lemma follows from the Courant-Fischer formula.

Bonus material (not seen in class)

Mixing time on regular graphs (1/2)

– Lemma

Let G = (V, E) be a *d*-regular graph of *n* vertices, with diameter δ . Then, a lazy random walk in *G* has mixing time $\tau(\epsilon) = O(d\delta n \log(n/\epsilon))$.

Proof: By the previous lemma,

$$1 - \lambda_2 = \min_{\substack{f \perp 1 \\ \|f\|_2 = 1}} 1/(2d) \cdot \sum_{\{x,y\} \in E} (f(x) - f(y))^2$$

Assume $\sum_{x} f(x)^2 = 1$. Then, there exists $x \in V$ such that $|f(x)| \ge 1/\sqrt{n}$.

 $f \perp 1$ implies $\sum_{u} f_{u} = 0$. Hence, there exists $y \in V$ such that $sign(f(y)) \neq sign(f(x))$. Therefore, $(f(x) - f(y))^{2} \geq 1/n$.

Since *G* is connected, there exists a path $x = u_0, u_1, \ldots, u_\ell = y$ such that $\{u_i, u_{i+1}\} \in E$ and $\ell \leq \delta$. Then,

$$(f(x)-f(y))^{2} = (f_{u_{0}}-f_{u_{1}}+f_{u_{1}}-f_{u_{2}}+\cdots+f_{u_{\ell-1}}+f_{u_{\ell}})^{2} \leq \ell \delta \sum_{i=0}^{\ell-1} (f_{u_{i}}-f_{u_{i-1}})^{2}$$
(1)

and

$$1 - \lambda_2 \ge 1/(2d) \cdot \sum_{i=0}^{\ell-1} (f_{u_i} - f_{u_{i-1}})^2 \ge 1/(2d\delta) \cdot (f(x) - f(y))^2 \ge 1/(2d\delta n)$$

- Claim -

Let G = (V, E) be a regular graph of *n* vertices with degree *d*, and diameter δ . Then, $d \cdot \delta = O(n)$

- Theorem

Let G = (V, E) be a regular graph of *n* vertices. Then, a lazy random walk in *G* has mixing time $\tau(\epsilon) = O(n^2 \log(n/\epsilon))$.

Is this result tight?

- Almost. The best possible bound for general regular graphs is $\tau(1/10) = O(n^2)$.
- The cycle, in fact, has $\Theta(n^2)$ mixing time.
- For general graphs, mixing can take up to $O(n^3)$ steps.

