Lecture 10: Mixing time and eigenvalues

Nicolás Rivera John Sylvester Luca Zanetti Thomas

Sauerwald

Plan

In the last lecture:

- a review of linear algebra
- reversible Markov chains

Today:

- relate mixing time to eigenvalues of reversible chains
- show how to obtain bounds on eigenvalues for some family of graphs

Convergence to stationarity

Mixing time (revisited)

Recall the definition of mixing time: $\tau(\epsilon)=\min \left\{t: \max _{X}\left\|P_{x}^{t}-\pi\right\|_{T V} \leq \epsilon\right\}$, where

$$
\begin{aligned}
\left\|P_{x}^{t}-\pi\right\|_{T V} & =\frac{1}{2} \sum_{y}\left|P^{t}(x, y)-\pi(y)\right|=\frac{1}{2} \sum_{y}\left|\frac{P^{t}(x, y)}{\pi(y)}-1\right| \pi(y) \\
& =\frac{1}{2}\left\|\frac{P^{t}(x, \cdot)}{\pi}-1\right\|_{1, \pi}
\end{aligned}
$$

This is also called the ℓ_{1}-mixing time.

When dealing with spectral properties of P, it is actually easier to consider a stronger notion of mixing: the ℓ_{2}-mixing time:

$$
\tau_{2}(\epsilon)=\min \left\{t: \max _{x}\left\|\frac{P^{t}(x, \cdot)}{\pi}-1\right\|_{2, \pi} \leq \epsilon\right\}
$$

where $\left\|\frac{P_{x}^{t}}{\pi}-1\right\|_{2, \pi}=\sqrt{\sum_{y}\left(\frac{P^{t}(x, y)}{\pi(y)}-1\right)^{2} \pi(y)}=\sqrt{\operatorname{Var}_{\pi}\left(\frac{P^{t}(x, \cdot)}{\pi}\right)}$.
It holds that: $\tau_{2}(2 \epsilon) \geq \tau(\epsilon)$.

Addendum: comparison between mixing times

Lemma

$$
\begin{aligned}
& \text { Let } \tau_{1}(\epsilon)=\min \left\{t: \max _{x}\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \leq \epsilon\right\}\left(\ell_{1} \text { mixing time }\right) \text { and } \\
& \tau_{2}(\epsilon)=\min \left\{t: \max _{x}\left\|\frac{P^{t}(x, \cdot)}{\pi}-1\right\|_{2, \pi} \leq \epsilon\right\}\left(\ell_{2} \text { mixing time }\right) \text {. Then, } \\
& \tau_{2}(2 \epsilon) \geq \tau(\epsilon)
\end{aligned}
$$

Proof: We just need to show that, for any $\epsilon>0$,

$$
\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}>\epsilon \Longrightarrow\left\|\frac{P^{t}(x, \cdot)}{\pi}-1\right\|_{2, \pi}>2 \epsilon
$$

Assume (LHS). Notice that,

$$
\begin{aligned}
\epsilon<\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} & =\frac{1}{2} \sum_{y}\left|P^{t}(x, y)-\pi(y)\right|=\frac{1}{2} \sum_{y}\left|\frac{P^{t}(x, y)}{\pi(y)}-1\right| \pi(y) \\
& \leq \frac{1}{2} \sqrt{\sum_{y}\left(\frac{P^{t}(x, y)}{\pi(y)}-1\right)^{2} \pi(y)}=\frac{1}{2}\left\|\frac{P^{t}(x, \cdot)}{\pi}-1\right\|_{2, \pi}
\end{aligned}
$$

(The inequality follows from $\mathbf{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \geq 0$ for any discrete r.v. X.) Therefore,

$$
\left\|\frac{P^{t}(x, \cdot)}{\pi}-1\right\|_{2, \pi}>2 \epsilon
$$

Mixing time and eigenvalues

Let P be a transition matrix of a reversible Markov chain with stationary distribution π and eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$.
Suppose $\lambda=\max _{i \neq 1}\left|\lambda_{i}\right|<1$.
Recall the spectral decomposition

$$
\begin{gathered}
\frac{P^{t}(x, \cdot)}{\pi}=\sum_{i=1}^{n} \lambda_{i}^{t} f_{i}(x) f_{i}=\mathbf{1}+\sum_{i=2}^{n} \lambda_{i}^{t} f_{i}(x) f_{i} \\
f_{i}=\mathbf{1} \text { and } \lambda_{1}=1
\end{gathered}
$$

For any $\epsilon \in(0,1)$,

$$
\left(\frac{1}{1-\lambda}-1\right) \log \left(\frac{1}{\epsilon}\right) \leq \tau_{2}(\epsilon) \leq \log \left(\frac{1}{\epsilon \sqrt{\pi_{*}}}\right) \frac{1}{1-\lambda},
$$

where $\pi_{*} \triangleq \min _{x} \pi(x)$.

Mixing time and eigenvalues (2)

Theorem

Let P be the transition matrix of a reversible Markov chain with stationary distribution π and $\lambda=\max _{i \neq 1}\left|\lambda_{i}\right|<1$. Then, for any $\epsilon \in(0,1)$,

$$
\tau_{2}(\epsilon) \leq \log \left(\frac{1}{\epsilon \sqrt{\pi_{*}}}\right) \frac{1}{1-\lambda}
$$

Proof: From the spectral decomposition:

$$
\begin{aligned}
& \frac{P^{t}(x, \cdot)}{\pi}=\sum_{i=1}^{n} \lambda_{i}^{t} f_{i}(x) f_{i}=1+\sum_{i=2}^{n} \lambda_{i}^{t} f_{i}(x) f_{i} . \\
& \left\|\frac{P_{x}^{t}}{\pi}-1\right\|_{2, \pi}^{2}=\left\|\sum_{i=2}^{n} \lambda_{i}^{t} f_{i}(x) f_{i}\right\|_{2, \pi}^{2} \leq \lambda^{2 t}\left\|\sum_{i=2}^{n} f_{i}(x) f_{i}\right\|_{2, \pi}^{2}
\end{aligned}
$$

Now notice that $\quad \frac{1 x}{\pi}=\sum_{i=1}^{n}\left\langle\frac{1_{x}}{\pi}, f_{i}\right\rangle_{\pi} f_{i}=\sum_{i=1}^{n} f_{i}(x) f_{i}$. Hence,

$$
\left\|\frac{P_{X}^{t}}{\pi}-1\right\|_{2, \pi}^{2} \leq \lambda^{2 t}\left\|\frac{1_{x}}{\pi}\right\|_{2, \pi}^{2}=\lambda^{2 t} \cdot \frac{1}{\pi(x)}
$$

Finally, take t such that $\frac{\lambda^{2 t}}{\pi(x)} \leq \epsilon^{2}$.

How to obtain bounds on the spectral gap

Lazy random walks

From now on we will focus on lazy random walks:

- a particle moves on an undirected graph $G=(V, E)$
- at each time-step, it can either stay with probability $1 / 2$ or move to an adjacent vertex picked uniformly at random.

Let P be the transition matrix for the lazy walk, and P^{\prime} for the simple walk on the same graph G. Then,

$$
P=\frac{1}{2}\left(\mathbb{I}+P^{\prime}\right)
$$

Therefore $\lambda_{n} \geq 0$ and $\lambda=\lambda_{2}$.
Moreover, $\pi(x)=\frac{d(x)}{2|E|}$ and $\pi_{*}=\Omega\left(n^{-2}\right)$. Therefore,

$$
\tau(\epsilon)=O\left(\frac{\log (n / \epsilon)}{1-\lambda_{2}}\right)
$$

Courant-Fischer min-max formula

Courant-Fischer formula

Let M be an n by n self-adjoint matrix (with respect to $\langle\cdot, \cdot\rangle_{\pi}$) with eigenvalues $\mu_{1} \leq \mu_{2} \leq \cdots \leq \mu_{n}$ and corresponding orthonormal eigenvectors f_{1}, \ldots, f_{n}. Then,

$$
\mu_{1}=\min _{f \in \mathbb{R}^{n} \backslash\{\underline{0}\}} \frac{\langle f, M f\rangle_{\pi}}{\|f\|_{2, \pi}^{2}} \quad \mu_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp f_{1}}} \frac{\langle f, M f\rangle_{\pi}}{\|f\|_{2, \pi}^{2}}
$$

The eigenvectors corresponding to λ_{1} and λ_{2} minimise such expressions.

Let λ_{2} be the second largest eigenvalue of the transition matrix of a lazy random walk on a d-regular graph $G=(V, E)$. Then,

$$
1-\lambda_{2}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1}} \frac{\langle f,(I-P) f\rangle}{\|f\|_{2}^{2}}=\min _{\substack{f \in \mathbb{R}^{n} \backslash\{0\} \\ f \perp 1 \\\|f\|_{2}=1}}\langle f,(I-P) f\rangle .
$$

Variational characterisation of λ_{2}

Lemma

Let P be the transition matrix of a lazy random walk on a d-regular graph $G=(V, E)$. Then,

$$
1-\lambda_{2}=\min _{\substack{\|f 1\\\| f \|_{2}=1}} 1 /(2 d) \cdot \sum_{\{x, y\} \in E}(f(x)-f(y))^{2}
$$

Moreover, f^{\star} minimising the expression above is an eigenvector of P corresponding to λ_{2}.

Proof: Let A be the adjacency matrix of G.

$$
\begin{aligned}
\langle f,(I-P) f\rangle & =f^{T}\left(\mathbb{I}-\left(\frac{1}{2} \mathbb{I}+\frac{1}{2 d} A\right)\right) f=\frac{1}{2}\left(f^{T} f-\frac{1}{d} f^{T} A f\right) \\
& =\frac{1}{2}\left(\sum_{u \in V} f(u)^{2}-\frac{2}{d} \sum_{\{u, v\} \in E} f(u) f(v)\right) \\
& =\frac{1}{2 d} \sum_{\{u, v\} \in E}\left(f(u)^{2}+f(v)^{2}-2 f(u) f(v)\right)=\sum_{\{u, v\} \in E} \frac{(f(u)-f(v))^{2}}{2 d}
\end{aligned}
$$

The Lemma follows from the Courant-Fischer formula.

Bonus material (not seen in class)

Mixing time on regular graphs (1/2)

Lemma

Let $G=(V, E)$ be a d-regular graph of n vertices, with diameter δ. Then, a lazy random walk in G has mixing time $\tau(\epsilon)=O(d \delta n \log (n / \epsilon))$.

Proof: By the previous lemma,

$$
1-\lambda_{2}=\min _{\| f \perp_{2}=1} 1 /(2 d) \cdot \sum_{\{x, y\} \in E}(f(x)-f(y))^{2}
$$

Assume $\sum_{x} f(x)^{2}=1$. Then, there exists $x \in V$ such that $|f(x)| \geq 1 / \sqrt{n}$.
$f \perp 1$ implies $\sum_{u} f_{u}=0$. Hence, there exists $y \in V$ such that $\operatorname{sign}(f(y)) \neq \operatorname{sign}(f(x))$. Therefore, $(f(x)-f(y))^{2} \geq 1 / n$.
Since G is connected, there exists a path $x=u_{0}, u_{1}, \ldots, u_{\ell}=y$ such that $\left\{u_{i}, u_{i+1}\right\} \in E$ and $\ell \leq \delta$. Then,

$$
\begin{equation*}
(f(x)-f(y))^{2}=\left(f_{u_{0}}-f_{u_{1}}+f_{u_{1}}-f_{u_{2}}+\cdots+f_{u_{\ell-1}}+f_{u_{\ell}}\right)^{2} \leq \ell \delta \sum_{i=0}^{\ell-1}\left(f_{u_{i}}-f_{u_{i-1}}\right)^{2} \tag{1}
\end{equation*}
$$

and
$1-\lambda_{2} \geq 1 /(2 d) \cdot \sum_{i=0}^{\ell-1}\left(f_{u_{i}}-f_{u_{i-1}}\right)^{2} \geq 1 /(2 d \delta) \cdot(f(x)-f(y))^{2} \geq 1 /(2 d \delta n)$

Mixing time on regular graphs (2/2)

Claim
Let $G=(V, E)$ be a regular graph of n vertices with degree d, and diameter δ. Then, $d \cdot \delta=O(n)$

Theorem

Let $G=(V, E)$ be a regular graph of n vertices. Then, a lazy random walk in G has mixing time $\tau(\epsilon)=O\left(n^{2} \log (n / \epsilon)\right)$.

Is this result tight?

- Almost. The best possible bound for general regular graphs is $\tau(1 / 10)=O\left(n^{2}\right)$.
- The cycle, in fact, has $\Theta\left(n^{2}\right)$ mixing time.
- For general graphs, mixing can take up to $O\left(n^{3}\right)$ steps.

