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Plan

In the last lecture:

a review of linear algebra

reversible Markov chains

Today:

relate mixing time to eigenvalues of reversible chains

show how to obtain bounds on eigenvalues for some family of graphs
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Convergence to stationarity
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Mixing time (revisited)

Recall the definition of mixing time: τ(ε) = min
{

t : maxx
∥∥P t

x − π
∥∥

TV ≤ ε
}

,
where∥∥∥P t

x − π
∥∥∥

TV
=

1
2

∑
y

∣∣∣P t (x , y)− π(y)
∣∣∣ =

1
2

∑
y

∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣π(y)

=
1
2

∥∥∥∥P t (x , ·)
π

− 1
∥∥∥∥

1,π
.

This is also called the `1-mixing time.

When dealing with spectral properties of P, it is actually easier to consider a
stronger notion of mixing: the `2-mixing time:

τ2(ε) = min

{
t : max

x

∥∥∥∥P t (x , ·)
π

− 1
∥∥∥∥

2,π
≤ ε

}

where
∥∥∥P t

x
π
− 1
∥∥∥

2,π
=

√∑
y

(
Pt (x,y)
π(y) − 1

)2
π(y) =

√
Varπ

(
P t (x,·)
π

)
.

It holds that: τ2(2ε) ≥ τ(ε).
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Addendum: comparison between mixing times

Let τ1(ε) = min
{

t : maxx
∥∥P t (x , ·)− π

∥∥
TV ≤ ε

}
(`1 mixing time) and

τ2(ε) = min

{
t : maxx

∥∥∥ Pt (x,·)
π
− 1
∥∥∥

2,π
≤ ε
}

(`2 mixing time). Then,

τ2(2ε) ≥ τ(ε).

Lemma

Proof: We just need to show that, for any ε > 0,∥∥P t (x , ·)− π
∥∥

TV > ε =⇒
∥∥∥P t (x,·)

π
− 1
∥∥∥

2,π
> 2ε.

Assume (LHS). Notice that,

ε <
∥∥∥P t (x , ·)− π

∥∥∥
TV

=
1
2

∑
y

∣∣∣P t (x , y)− π(y)
∣∣∣ =

1
2

∑
y

∣∣∣∣P t (x , y)

π(y)
− 1
∣∣∣∣π(y)

≤ 1
2

√√√√∑
y

(
P t (x , y)

π(y)
− 1
)2

π(y) =
1
2

∥∥∥∥P t (x , ·)
π

− 1
∥∥∥∥

2,π

(The inequality follows from E
[

X 2 ]− (E[ X ])2 ≥ 0 for any discrete r.v. X .)
Therefore, ∥∥∥∥P t (x , ·)

π
− 1
∥∥∥∥

2,π
> 2ε.

�
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Mixing time and eigenvalues

Let P be a transition matrix of a reversible Markov chain with stationary
distribution π and eigenvalues λ1 ≥ · · · ≥ λn.
Suppose λ = maxi 6=1 |λi | < 1.

Recall the spectral decomposition

P t (x , ·)
π

=
n∑

i=1

λt
i fi (x)fi = 1 +

n∑
i=2

λt
i fi (x)fi .

λt
i → 0 as t →∞

fi = 1 and λ1 = 1

For any ε ∈ (0, 1),(
1

1− λ − 1
)

log

(
1
ε

)
≤ τ2(ε) ≤ log

(
1

ε
√
π∗

)
1

1− λ ,

where π∗ , minx π(x).

Theorem
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Mixing time and eigenvalues (2)

Let P be the transition matrix of a reversible Markov chain with stationary
distribution π and λ = maxi 6=1 |λi | < 1. Then, for any ε ∈ (0, 1),

τ2(ε) ≤ log

(
1

ε
√
π∗

)
1

1− λ ,

Theorem

Proof: From the spectral decomposition:

P t (x,·)
π

=
∑n

i=1 λ
t
i fi (x)fi = 1 +

∑n
i=2 λ

t
i fi (x)fi .∥∥∥Pt

x
π
− 1
∥∥∥2

2,π
=
∥∥∑n

i=2 λ
t
i fi (x)fi

∥∥2
2,π ≤ λ

2t
∥∥∑n

i=2 fi (x)fi
∥∥2

2,π

Now notice that 1x
π

=
∑n

i=1〈
1x
π
, fi〉πfi =

∑n
i=1 fi (x)fi . Hence,∥∥∥Pt

x
π
− 1
∥∥∥2

2,π
≤ λ2t

∥∥ 1x
π

∥∥2
2,π = λ2t · 1

π(x)

Finally, take t such that λ2t

π(x) ≤ ε
2.

�
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How to obtain bounds on the spectral gap
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Lazy random walks

From now on we will focus on lazy random walks:

a particle moves on an undirected graph G = (V ,E)

at each time-step, it can either stay with probability 1/2 or move to an
adjacent vertex picked uniformly at random.

Let P be the transition matrix for the lazy walk, and P′ for the simple walk on
the same graph G. Then,

P =
1
2

(I + P′)

Therefore λn ≥ 0 and λ = λ2.

Moreover, π(x) = d(x)
2|E| and π∗ = Ω(n−2). Therefore,

τ(ε) = O
(

log(n/ε)
1− λ2

)
.
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Courant-Fischer min-max formula

Let M be an n by n self-adjoint matrix (with respect to 〈·, ·〉π) with eigen-
values µ1 ≤ µ2 ≤ · · · ≤ µn and corresponding orthonormal eigenvectors
f1, . . . , fn. Then,

µ1 = min
f∈Rn\{0}

〈f ,Mf 〉π
‖f‖2

2,π

µ2 = min
f∈Rn\{0}

f⊥f1

〈f ,Mf 〉π
‖f‖2

2,π

The eigenvectors corresponding to λ1 and λ2 minimise such expressions.

Courant-Fischer formula

Let λ2 be the second largest eigenvalue of the transition matrix of a lazy
random walk on a d-regular graph G = (V ,E). Then,

1− λ2 = min
f∈Rn\{0}

f⊥1

〈f , (I − P)f 〉
‖f‖2

2

= min
f∈Rn\{0}

f⊥1
‖f‖2=1

〈f , (I − P)f 〉.
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Variational characterisation of λ2

Let P be the transition matrix of a lazy random walk on a d-regular graph
G = (V ,E). Then,

1− λ2 = min
f⊥1
‖f‖2=1

1/(2d) ·
∑
{x,y}∈E

(f (x)− f (y))2

Moreover, f ? minimising the expression above is an eigenvector of P
corresponding to λ2.

Lemma

Proof: Let A be the adjacency matrix of G.

〈f , (I − P)f 〉 = f T
(
I−

(
1
2
I +

1
2d

A
))

f =
1
2

(
f T f − 1

d
f T Af

)

=
1
2

∑
u∈V

f (u)2 − 2
d

∑
{u,v}∈E

f (u)f (v)


=

1
2d

∑
{u,v}∈E

(f (u)2 + f (v)2 − 2f (u)f (v)) =
∑
{u,v}∈E

(f (u)− f (v))2

2d
.

The Lemma follows from the Courant-Fischer formula. �
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Bonus material (not seen in class)
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Mixing time on regular graphs (1/2)

Let G = (V ,E) be a d-regular graph of n vertices, with diameter δ. Then,
a lazy random walk in G has mixing time τ(ε) = O(dδn log(n/ε)).

Lemma

Proof: By the previous lemma,

1− λ2 = min f⊥1
‖f‖2=1

1/(2d) ·
∑
{x,y}∈E (f (x)− f (y))2

Assume
∑

x f (x)2 = 1. Then, there exists x ∈ V such that |f (x)| ≥ 1/
√

n.

f ⊥ 1 implies
∑

u fu = 0. Hence, there exists y ∈ V such that
sign(f (y)) 6= sign(f (x)). Therefore, (f (x)− f (y))2 ≥ 1/n.

Since G is connected, there exists a path x = u0, u1, . . . , u` = y such that
{ui , ui+1} ∈ E and ` ≤ δ. Then,

(f (x)− f (y))2 = (fu0− fu1 + fu1− fu2 + · · ·+ fu`−1 + fu`)2 ≤ `δ
`−1∑
i=0

(fui − fui−1 )2 (1)

and

1− λ2 ≥ 1/(2d) ·
∑`−1

i=0 (fui − fui−1 )2
(1)
≥ 1/(2dδ) · (f (x)− f (y))2 ≥ 1/(2dδn)

�
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Mixing time on regular graphs (2/2)

Let G = (V ,E) be a regular graph of n vertices with degree d , and
diameter δ. Then, d · δ = O(n)

Claim

Let G = (V ,E) be a regular graph of n vertices. Then, a lazy random
walk in G has mixing time τ(ε) = O(n2 log(n/ε)).

Theorem

Is this result tight?

Almost. The best possible bound for general regular graphs is
τ(1/10) = O(n2).

The cycle, in fact, has Θ(n2) mixing time.

For general graphs, mixing can take up to O(n3) steps.
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