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Plan

In the last lecture:
= areview of linear algebra
= reversible Markov chains

Today:
= relate mixing time to eigenvalues of reversible chains
= show how to obtain bounds on eigenvalues for some family of graphs
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Convergence to stationarity
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Mixing time (revisited)

Recall the definition of mixing time: 7(¢) = min {t: maxx || Py
where
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This is also called the /1-mixing time.
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When dealing with spectral properties of P, it is actually easier to consider a

stronger notion of mixing: the />-mixing time:
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T2(€) = min {t: max
X

where ’

It holds that: 7'2( 6) > 7(e).
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Addendum: comparison between mixing times

Lemma

Let 71(e) = min{t: maxy ||P'(x,) —=||,, <€} (¢+ mixing time) and

T2(€) :min{t: maxx ‘M —1‘2

e} (¢2 mixing time). Then,

72(2€¢) > 7(€).

Proof: We just need to show that, for any ¢ > 0,
t
[P0 =l > e = |2 =, > e

Assume (LHS). Notice that, o
€< HPt(X7.)_7THTV ZZ‘PI(X )=y

= (560 - 1)2w(y) ! H@ -

(The inequality follows from E[Xz] — (E[X])? > 0 for any discrete r.v. X.)
Therefore,
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Mixing time and eigenvalues

Let P be a transition matrix of a reversible Markov chain with stationary
distribution 7 and eigenvalues A\ > --- > Ap.
Suppose A = max;x1 |Aj| < 1.
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Recall the spectral decomposition

P‘(x

Theorem

Forany e € (0,1),

(11?)\ - 1) log (12) < m2(€) < log (%) 11j7

where 7. 2 miny 7(x).
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Mixing time and eigenvalues (2)

Theorem

Let P be the transition matrix of a reversible Markov chain with stationary
distribution m and A = max;x |Aj| < 1. Then, for any € € (0, 1),
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Proof: From the spectral decomposition:

PLOC) = 570 M) =1+ S0, MA(0)F:
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Now notice that  1x =7 (1x £y f = 37 fi(x)f. Hence,

Finally, take t such that ﬁ(—i) < é.
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How to obtain bounds on the spectral gap
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Lazy random walks

From now on we will focus on lazy random walks:
= a particle moves on an undirected graph G = (V, E)

= at each time-step, it can either stay with probability 1/2 or move to an
adjacent vertex picked uniformly at random.

Let P be the transition matrix for the lazy walk, and P’ for the simple walk on
the same graph G. Then,

—_

_ ! /
P=(+P)

Therefore A\, > 0 and X = Xo.

Moreover, =(x) = gi& and 7. = Q(n~?). Therefore,

ﬂa:o(%%%?)
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Courant-Fischer min-max formula

~—— Courant-Fischer formula N\
Let M be an n by n self-adjoint matrix (with respect to (-, -)) with eigen-
values 1 < pp < -+ < pp and corresponding orthonormal eigenvectors
fi,...,f. Then,

o (f,MF) . - (f, Mf)x
Hy = _min ———o— po = min - ——rm——
rern\{o} ||f|2 rerNor |15,
il 1 ’

The eigenvectors corresponding to A1 and A minimise such expressions.

\. J

Let X2 be the second largest eigenvalue of the transition matrix of a lazy
random walk on a d-regular graph G = (V, E). Then,
1—X2= min Lfm = min (f,(I—- P)f).
fER™M {0} I1f1l5 fER™M\ {0}
fl1 fl1
lIfll2=1
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Variational characterisation of )\,

Lemma

Let P be the transition matrix of a lazy random walk on a d-regular graph
G=(V,E). Then,

1=de = min 1/(2d)- 3 ()~ ()
lI7,=1 {x.y}eE

Moreover, f* minimising the expression above is an eigenvector of P
corresponding to Az.

Proof: Let A be the adjacency matrix of G.
(o (L _ V(e A4
(f,(1-P)f)y=f <]I (2H+2dA>>f_2<f f df Af)

(Zf(u)z—j 3 f(u)f(v))

ueV {u,v}eE
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The Lemma follows from the Courant-Fischer formula. O
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Bonus material (not seen in class)
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Mixing time on regular graphs (1/2)

Lemma

Let G = (V, E) be a d-regular graph of n vertices, with diameter §. Then,
a lazy random walk in G has mixing time 7(e) = O(ddnlog(n/e)).

Proof: By the previous lemma,
T=Xe=min ;11 1/(2d) -3, yee (F(X) - f(y))?

[IFll=1

Assume Y, f(x)? = 1. Then, there exists x € V such that |f(x)| > 1//n.

f L 1implies 3, fu = 0. Hence, there exists y € V such that

sign(f(y)) # sign(f(x)). Therefore, (f(x) — f(y))* > 1/n.

Since G is connected, there exists a path x = wy, us, ..., Uy = y such that

{Uui,uip1} € Eand £ < 4. Then, o

(f(x)—f(y))z = (fuo _fU1 +fU1 _fU2+' ’ '+fuzf1 +er )2 <4 Z(fui - fui—1)2 (1)

i=0

and

1o > 1/(2d) - 05 (fy — )2 2 1/(205) - (f(x) — (y))? > 1/(2d6n)
O
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Mixing time on regular graphs (2/2)

Claim

Let G = (V, E) be a regular graph of n vertices with degree d, and
diameter §. Then, d - § = O(n)

Theorem

Let G = (V, E) be a regular graph of n vertices. Then, a lazy random
walk in G has mixing time 7(¢) = O(r? log(n/e)).

Is this result tight?
= Almost. The best possible bound for general regular graphs is

7(1/10) = O(rP).
= The cycle, in fact, has ©(n?) mixing time.
= For general graphs, mixing can take up to O(n®) steps.
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