COMPUTER SCIENCE TRIPOS Part II

Friday $15^{\text {th }}$ March $2019 \quad$ 9:00 to 10:30

Module PC - Probability and Computation
Candidates should attempt all three questions.
Submit the answers on the paper provided.

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

STATIONERY REQUIREMENTS
Script paper
SPECIAL REQUIREMENTS
Approved calculator permitted

SECTION A

1 (a) What is the definition of conductance for an undirected, unweighted graph $G=(V, E)$?
(b) Compute the conductance of the cycle with n vertices.
(c) What does part (b) imply for the mixing time of the cycle?
(d) Let P be a transition matrix of a Markov chain with state space Ω. Further, let μ and ν be two probability distributions on Ω. Prove that

$$
\|\mu P-\nu P\|_{T V} \leq\|\mu-\nu\|_{T V}
$$

2 Let X_{1}, \ldots, X_{n} be independent random variables taking values in $[0,1]$ with $\mathbf{E}\left[X_{i}\right]=$ p_{i}. Let $X=\sum_{i=1}^{n} X_{i}$ and $p=\sum_{i=1}^{n} p_{i}$.
(a) Prove that

$$
\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq p_{i} e^{\lambda}+\left(1-p_{i}\right)
$$

(b) Prove that the following holds for any $\delta>0$,

$$
\mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbf{E}[X]}
$$

[Hint: remember that $1+x \leq e^{x}$ for each $x \geq 0$.]
Let $\left\{X_{i}\right\}_{i=0}^{\infty}$ be a sequence of independent random variables with $\mathbf{P}\left[X_{i}=1\right]=p$ and $\mathbf{P}\left[X_{i}=-1\right]=q=1-p$ for each $i \geq 0$.
(c) Let $S_{t}=\sum_{i=0}^{t} X_{i}$ and suppose that $p \in(0,1)$. Show that $M_{t}=(q / p)^{S_{t}}$ is a martingale with respect to X_{1}, X_{2}, \ldots.
[5 marks]
(d) Let λ be a real number satisfying $0<\lambda<1$. Show that for any such λ there is some $C>0$ such that $Z_{t}=C^{t} \lambda^{S_{t}}$ is a martingale with respect to X_{1}, X_{2}, \ldots.
[6 marks]

3 For any integer $2 \leq k \leq n$, consider the problem of assigning numbers in $\{1, \ldots, k\}$ to the vertices of an n-vertex graph $G=(V, E)$. For every vertex $v \in V$, let $x_{v} \in\{1, \ldots, k\}$ be the number assigned to v. The objective is to maximise

$$
C_{x}=\sum_{\{u, v\} \in E} \mathbf{1}_{x_{u} \neq x_{v}}
$$

Note that this is a generalisation of the MAX-CUT problem.
(a) Design a randomised algorithm which returns a solution satisfying

$$
\mathbf{E}\left[C_{x}\right] \geq\left(1-\frac{1}{k}\right)|E|
$$

(b) Modify the algorithm so that, for any given $\epsilon \in(0,1)$ and $\delta \in(0,1)$, the returned solution satisfies $C_{x} \geq\left(1-\frac{1+\epsilon}{k}\right)|E|$ with probability at least $1-\delta$. State explicitly the running time of your algorithm.

END OF PAPER

