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SECTION A

1 (a) What is the definition of conductance for an undirected, unweighted graph
G = (V,E)? [3 marks]

(b) Compute the conductance of the cycle with n vertices. [6 marks]

(c) What does part (b) imply for the mixing time of the cycle? [5 marks]

(d) Let P be a transition matrix of a Markov chain with state space Ω. Further, let
µ and ν be two probability distributions on Ω. Prove that

‖µP − νP‖TV ≤ ‖µ− ν‖TV .

[6 marks]

2 Let X1, . . . , Xn be independent random variables taking values in [0, 1] with E[Xi ] =
pi. Let X =

∑n
i=1Xi and p =

∑n
i=1 pi.

(a) Prove that
E
[
eλXi

]
≤ pie

λ + (1− pi).

[6 marks]

(b) Prove that the following holds for any δ > 0,

P[X ≥ (1 + δ)E[X ] ] ≤
(

eδ

(1 + δ)1+δ

)E[X]

.

[8 marks]

[Hint: remember that 1 + x ≤ ex for each x ≥ 0.]

Let {Xi}∞i=0 be a sequence of independent random variables with P[Xi = 1 ] = p and
P[Xi = −1 ] = q = 1− p for each i ≥ 0.

(c) Let St =
∑t

i=0Xi and suppose that p ∈ (0, 1). Show that Mt = (q/p)St is a
martingale with respect to X1, X2, . . .. [5 marks]

(d) Let λ be a real number satisfying 0 < λ < 1. Show that for any such λ there is
some C > 0 such that Zt = CtλSt is a martingale with respect to X1, X2, . . ..

[6 marks]
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3 For any integer 2 ≤ k ≤ n, consider the problem of assigning numbers in {1, . . . , k}
to the vertices of an n-vertex graph G = (V,E). For every vertex v ∈ V , let
xv ∈ {1, . . . , k} be the number assigned to v. The objective is to maximise

Cx =
∑

{u,v}∈E

1xu 6=xv .

Note that this is a generalisation of the MAX-CUT problem.

(a) Design a randomised algorithm which returns a solution satisfying

E[Cx ] ≥
(

1− 1

k

)
|E|.

[8 marks]

(b) Modify the algorithm so that, for any given ε ∈ (0, 1) and δ ∈ (0, 1), the
returned solution satisfies Cx ≥

(
1− 1+ε

k

)
|E| with probability at least 1 − δ.

State explicitly the running time of your algorithm. [7 marks]

END OF PAPER
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