— Solution notes —

What is the definition of conductance for an undirected, unweighted graph

G=(V,E)? [3 marks]
Compute the conductance of the cycle with n vertices. [6 marks]
What does part (b) imply for the mixing time of the cycle? [5> marks]

Let P be a transition matrix of a Markov chain with state space 2. Further, let
1 and v be two probability distributions on €). Prove that

P = vPllpy < [l = vllpy -

[6 marks]

Answer:

(a)

For any v € V, let d(v) = [{u: {u,v} € E}|. We define the volume of a set S C V as
vol(S) = >, cg d(u). Then, the conductance of G can be defined as

_ . E(S,V\ S)
oG = min )
vol(S)<vol(G)/2

where E(S,V\S) = [{{u,v} € E:ue S,v &S}
First of all, any non-empty set S C V has E(S,V \ S) > 2 (equality holds if and only if the
set is connected). Moreover, vol(S) = 2|S|. Therefore,

B(S,V\S) 2 1

vol(S)  2|S| |S|

Therefore, ¢(G) = % when n is even, or ¢(G) = % when n is odd.

By Cheeger’s inequality, the spectral gap of the transition matrix of a lazy random walk on a
graph G satisfies (1 —X)/2 < ¢(G) = O(v/1 — A). Moreover, for a graph of n vertices, we have
that ;. = O(log(n)/(1 —\)). Therefore, the mixing time on the complete graph is O(logn),
while the mixing time on the cycle is between Q(n) and O(n?log(n)).

By the definition of total variation distance,

|uP = vP| gy = [|( = V)Pl py = % S (uly) — v(y) Py, x)

zeQ |lye
1
<3 |3 luty) —v)| Y Plya)
yeN zeQ
=llu=viry,

where in the last equality we have used the fact that ) . P(y,z) = 1.
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2 Let Xy,..., X, beindependent random variables taking values in [0, 1] with E[ X;] =
pi. Let X =" X;andp=> . p;.

(a) Prove that
E[e’\Xi} < pie* + (1 —py).

[6 marks]

(b) Prove that the following holds for any 6 > 0,

0 E[X]
P[X>(1+0E[X]] < (m) .

[8 marks]
[Hint: remember that 1 + x < e” for each x > 0.]

Let {X;}°, be a sequence of independent random variables with P[X; = 1] = p and
P[X,=-1]=¢g=1—pforeach i > 0.

(¢) Let S, = Y'_, X, and suppose that p € (0,1). Show that M; = (¢/p)™ is a
martingale with respect to X7, Xo, .. .. [5 marks]

(d) Let A be a real number satisfying 0 < A < 1. Show that for any such \ there is
some C > 0 such that Z, = C*A% is a martingale with respect to X, Xo, . . ..
[6 marks|

Answer:

(a) As was mentioned in the course (Lecture 6 slide 10), f(z) = e** is a convex function. Hence,
the line segment from (0, (0)) and (1, (1)) is above the graph of e** in [0, 1].

Observe that f(0) =1, f(1) = e* and the line through (0,1) and (1,e) is given by

y(x) = (e = )z + 1.

As the random variable X; takes values in [0, 1] we obtain the following by convexity
M < (e 1)z + 1.

Taking the expectation both sides yields

E[E’\Xi] < (A =DE[X;]+1= () —pi+1=1+pi(e* —1).

(b) We now follow the next few steps of the recipe for Chernoff-type bounds (these are given in
lecture 5, slides 19-20): Let A > 0, then

P[X > (1+8)E[X]] < P[> e<1+5>E[X1] < E[eM ] e (HOABX],
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Also since X = >_"" | X;, X; are independent and E[ X ] = p we have the following by part

E[AM] = [[E[M] <[t +pi(e* — )] < [ e ) =exp (Zm(eA - 1))
i=1 i=1 i=1 i=1
= exp (p(e)‘ — 1))
Finally,

P[X > (1+6)E[X]] <exp (—(1+ ) p+ple* —1)). (1)

Here we can guess the right value of A or we can minimise the quantity inside the exponential.
We will do the second route. Define

FO) ==1+8)Ap+p(e* —1).

We solve f/()\) = 0. Note that

F'O) = —(1+0)p +pe,

and so f/(A\) = 0 is solved for A = log(1 + §). Also f”()\) = p > 0 indicating such a value is a
local minimum. Substitute A = log(1 4 ¢) into (1) to get the answer.

We check the three properties of being a Martingale. Clearly M; is a function of S; which is

in turn a function of X1,...,X;. Also —n < S,, < n therefore
n
| M| < max{p, q} ,
q p

meaning that E[|M;|] < co. Finally, for t > 1

q Si+1 q Si—1 q St q p q St
E[Mt+1X1,,Xt]:<) p—|—<) q:() <p+q):(> :Mt
p p p p q p

To be a martingale we need to satisfy the three properties. First Z; is clearly a function
of Xy,...,X;. To check whether E[|Z;]] < oo we need to be careful. For any fixed A and

C := C()\) we have
I\

recall that 0 < A < 1 and —t < S; < ¢, which implies E[|Z;|] < occ.

Finally, in a similar fashion to M;;, we have the following for ¢t > 1

E[Zi1| Xy, ..., X ] = O (/\St+1 p+ATT! q) = CiA\S . C ()\p+ %)
-7, K
~ 7 C()\p—k)\).

Pick C = (Ap+ %)_1, then C (Ap+ £) =1 and thus Z, is a martingale.
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3 For any integer 2 < k < n, consider the problem of assigning numbers in {1,..., k}
to the vertices of an n-vertex graph G = (V| E). For every vertex v € V, let

z, € {1,...,k} be the number assigned to v. The objective is to maximise
Co= > 1y o,
{uv}eFr

Note that this is a generalisation of the MAX-CUT problem.

(a) Design a randomised algorithm which returns a solution satisfying

E[C,] > (1 _ %) ).
8 marks]

(b) Modify the algorithm so that, for any given € € (0,1) and 6 € (0,1), the
returned solution satisfies C;, > (1 — L) |E| with probability at least 1 — 4.

State explicitly the running time of your algorithm. [7 marks]
Answer:
(a) Simply assign every z,, independently and uniformly at random from {1,...,k}. Then,

E[C,] = E[ > 1%7&%]

{u,v}eE

= > E[lz,]

{uv}eE

= Z Plz, # x,]

(b) We define Y := |E| — C;. Then by part (a),

1
E[Y]=-|F|
Y] =3 1E]
By Markov’s inequality, it follows that
|E| 1
P > (1 < .
{Y—( T ST
Thus,
|E| 1
PlC,<|E|-(1 — | < .
{C SIBl=0+9 50 <
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By running the algorithm [log, . d| times and returning the solution with largest value of C,
(which we call CN')7 we conclude that with probability at least 1 — ( L )ﬂog“"(l/(Sﬂ >1-94,

N T+e
the returned solution C satisfies

~ |E| 1+e
C>|E|l—-(1 —=1|1- -|E|.
> B~ (14 =) 18]
For the running time we must iterate the original “random guessing” algorithm [log; ]
times checking the size of the cut each time. In each iteration we must assign each vertex a
label at random to each vertex, thus O(]V|) complexity, and calculate C,, for the labelling given
in that iteration, which has O(|E|) complexity. Thus the total runtime is O ((logy,. 8) - |E]) .




