1 (a) What is the definition of conductance for an undirected, unweighted graph $G=(V, E)$?
(b) Compute the conductance of the cycle with n vertices.
(c) What does part (b) imply for the mixing time of the cycle?
(d) Let P be a transition matrix of a Markov chain with state space Ω. Further, let μ and ν be two probability distributions on Ω. Prove that

$$
\|\mu P-\nu P\|_{T V} \leq\|\mu-\nu\|_{T V}
$$

Answer:

(a) For any $v \in V$, let $d(v)=|\{u:\{u, v\} \in E\}|$. We define the volume of a set $S \subseteq V$ as $\operatorname{vol}(S)=\sum_{u \in S} d(u)$. Then, the conductance of G can be defined as

$$
\phi(G)=\min _{\substack{\emptyset \neq S \subset V \\ \operatorname{vol}(S) \leq \operatorname{vol}(G) / 2}} \frac{E(S, V \backslash S)}{\operatorname{vol}(S)}
$$

where $E(S, V \backslash S)=|\{\{u, v\} \in E: u \in S, v \notin S\}|$.
(b) First of all, any non-empty set $S \subset V$ has $E(S, V \backslash S) \geq 2$ (equality holds if and only if the set is connected). Moreover, $\operatorname{vol}(S)=2|S|$. Therefore,

$$
\frac{E(S, V \backslash S)}{\operatorname{vol}(S)}=\frac{2}{2|S|}=\frac{1}{|S|} .
$$

Therefore, $\phi(G)=\frac{2}{n}$ when n is even, or $\phi(G)=\frac{2}{n-1}$ when n is odd.
(c) By Cheeger's inequality, the spectral gap of the transition matrix of a lazy random walk on a graph G satisfies $(1-\lambda) / 2 \leq \phi(G)=O(\sqrt{1-\lambda})$. Moreover, for a graph of n vertices, we have that $t_{\text {mix }}=O(\log (n) /(1-\lambda))$. Therefore, the mixing time on the complete graph is $O(\log n)$, while the mixing time on the cycle is between $\Omega(n)$ and $O\left(n^{2} \log (n)\right)$.
(d) By the definition of total variation distance,

$$
\begin{aligned}
\|\mu P-\nu P\|_{T V} & =\|(\mu-\nu) P\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}\left|\sum_{y \in \Omega}(\mu(y)-\nu(y)) P(y, x)\right| \\
& \leq \frac{1}{2}\left|\sum_{y \in \Omega}\right| \mu(y)-\nu(y)\left|\sum_{x \in \Omega} P(y, x)\right| \\
& =\|\mu-\nu\|_{T V},
\end{aligned}
$$

where in the last equality we have used the fact that $\sum_{x \in \Omega} P(y, x)=1$.

2 Let X_{1}, \ldots, X_{n} be independent random variables taking values in $[0,1]$ with $\mathbf{E}\left[X_{i}\right]=$ p_{i}. Let $X=\sum_{i=1}^{n} X_{i}$ and $p=\sum_{i=1}^{n} p_{i}$.
(a) Prove that

$$
\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq p_{i} e^{\lambda}+\left(1-p_{i}\right) .
$$

(b) Prove that the following holds for any $\delta>0$,

$$
\mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mathbf{E}[X]}
$$

[8 marks]
[Hint: remember that $1+x \leq e^{x}$ for each $x \geq 0$.]
Let $\left\{X_{i}\right\}_{i=0}^{\infty}$ be a sequence of independent random variables with $\mathbf{P}\left[X_{i}=1\right]=p$ and $\mathbf{P}\left[X_{i}=-1\right]=q=1-p$ for each $i \geq 0$.
(c) Let $S_{t}=\sum_{i=0}^{t} X_{i}$ and suppose that $p \in(0,1)$. Show that $M_{t}=(q / p)^{S_{t}}$ is a martingale with respect to X_{1}, X_{2}, \ldots.
(d) Let λ be a real number satisfying $0<\lambda<1$. Show that for any such λ there is some $C>0$ such that $Z_{t}=C^{t} \lambda^{S_{t}}$ is a martingale with respect to X_{1}, X_{2}, \ldots.
[6 marks]

Answer:
(a) As was mentioned in the course (Lecture 6 slide 10), $f(x)=e^{\lambda x}$ is a convex function. Hence, the line segment from $(0, f(0))$ and $(1, f(1))$ is above the graph of $e^{\lambda x}$ in $[0,1]$.
Observe that $f(0)=1, f(1)=e^{\lambda}$ and the line through $(0,1)$ and $\left(1, e^{\lambda}\right)$ is given by

$$
y(x)=\left(e^{\lambda}-1\right) x+1
$$

As the random variable X_{i} takes values in $[0,1]$ we obtain the following by convexity

$$
e^{\lambda x} \leq\left(e^{\lambda}-1\right) x+1
$$

Taking the expectation both sides yields

$$
\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq\left(e^{\lambda}-1\right) \mathbf{E}\left[X_{i}\right]+1=\left(e^{\lambda}-1\right) p_{i}+1=1+p_{i}\left(e^{\lambda}-1\right)
$$

(b) We now follow the next few steps of the recipe for Chernoff-type bounds (these are given in lecture 5 , slides 19-20): Let $\lambda \geq 0$, then

$$
\mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq \mathbf{P}\left[e^{\lambda X} \geq e^{(1+\delta) \mathbf{E}[X]}\right] \leq \mathbf{E}\left[e^{\lambda X}\right] e^{-(1+\delta) \lambda \mathbf{E}[X]}
$$

Also since $X=\sum_{i=1}^{n} X_{i}, X_{i}$ are independent and $\mathbf{E}[X]=p$ we have the following by part (a)

$$
\begin{aligned}
\mathbf{E}\left[e^{\lambda X}\right] & =\prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \prod_{i=1}\left[1+p_{i}\left(e^{\lambda}-1\right)\right] \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{\lambda}-1\right)}=\exp \left(\sum_{i=1}^{n} p_{i}\left(e^{\lambda}-1\right)\right) \\
& =\exp \left(p\left(e^{\lambda}-1\right)\right)
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\mathbf{P}[X \geq(1+\delta) \mathbf{E}[X]] \leq \exp \left(-(1+\delta) \lambda p+p\left(e^{\lambda}-1\right)\right) \tag{1}
\end{equation*}
$$

Here we can guess the right value of λ or we can minimise the quantity inside the exponential. We will do the second route. Define

$$
f(\lambda)=-(1+\delta) \lambda p+p\left(e^{\lambda}-1\right)
$$

We solve $f^{\prime}(\lambda)=0$. Note that

$$
f^{\prime}(\lambda)=-(1+\delta) p+p e^{\lambda}
$$

and so $f^{\prime}(\lambda)=0$ is solved for $\lambda=\log (1+\delta)$. Also $f^{\prime \prime}(\lambda)=p>0$ indicating such a value is a local minimum. Substitute $\lambda=\log (1+\delta)$ into (1) to get the answer.
(c) We check the three properties of being a Martingale. Clearly M_{t} is a function of S_{t} which is in turn a function of X_{1}, \ldots, X_{t}. Also $-n \leq S_{n} \leq n$ therefore

$$
\left|M_{t}\right| \leq \max \left\{\frac{p}{q}, \frac{q}{p}\right\}^{n}
$$

meaning that $\mathbf{E}\left[\left|M_{t}\right|\right] \leq \infty$. Finally, for $t \geq 1$
$\mathbf{E}\left[M_{t+1} \mid X_{1}, \ldots, X_{t}\right]=\left(\frac{q}{p}\right)^{S_{t}+1} \cdot p+\left(\frac{q}{p}\right)^{S_{t}-1} \cdot q=\left(\frac{q}{p}\right)^{S_{t}}\left(\frac{q}{p} \cdot p+\frac{p}{q} \cdot q\right)=\left(\frac{q}{p}\right)^{S_{t}}=M_{t}$.
(d) To be a martingale we need to satisfy the three properties. First Z_{t} is clearly a function of X_{1}, \ldots, X_{t}. To check whether $\mathbf{E}\left[\left|Z_{t}\right|\right]<\infty$ we need to be careful. For any fixed λ and $C:=C(\lambda)$ we have

$$
\left|Z_{t}\right| \leq\left(C \cdot \frac{1}{\lambda}\right)^{t}<\infty
$$

recall that $0<\lambda<1$ and $-t \leq S_{t} \leq t$, which implies $\mathbf{E}\left[\left|Z_{t}\right|\right]<\infty$.
Finally, in a similar fashion to M_{t+1}, we have the following for $t \geq 1$

$$
\begin{aligned}
\mathbf{E}\left[Z_{t+1} \mid X_{1}, \ldots, X_{t}\right] & =C^{t+1}\left(\lambda^{S_{t}+1} \cdot p+\lambda^{S_{t}-1} \cdot q\right)=C^{t} \lambda^{S_{t}} \cdot C\left(\lambda p+\frac{q}{\lambda}\right) \\
& =Z_{t} \cdot C\left(\lambda p+\frac{q}{\lambda}\right)
\end{aligned}
$$

Pick $C=\left(\lambda p+\frac{q}{\lambda}\right)^{-1}$, then $C\left(\lambda p+\frac{q}{\lambda}\right)=1$ and thus Z_{t} is a martingale.

3 For any integer $2 \leq k \leq n$, consider the problem of assigning numbers in $\{1, \ldots, k\}$ to the vertices of an n-vertex graph $G=(V, E)$. For every vertex $v \in V$, let $x_{v} \in\{1, \ldots, k\}$ be the number assigned to v. The objective is to maximise

$$
C_{x}=\sum_{\{u, v\} \in E} \mathbf{1}_{x_{u} \neq x_{v}} .
$$

Note that this is a generalisation of the MAX-CUT problem.
(a) Design a randomised algorithm which returns a solution satisfying

$$
\mathbf{E}\left[C_{x}\right] \geq\left(1-\frac{1}{k}\right)|E|
$$

(b) Modify the algorithm so that, for any given $\epsilon \in(0,1)$ and $\delta \in(0,1)$, the returned solution satisfies $C_{x} \geq\left(1-\frac{1+\epsilon}{k}\right)|E|$ with probability at least $1-\delta$. State explicitly the running time of your algorithm.
[7 marks]

Answer:

(a) Simply assign every x_{u} independently and uniformly at random from $\{1, \ldots, k\}$. Then,

$$
\begin{aligned}
\mathbf{E}\left[C_{x}\right] & =\mathbf{E}\left[\sum_{\{u, v\} \in E} \mathbf{1}_{x_{u} \neq x_{v}}\right] \\
& =\sum_{\{u, v\} \in E} \mathbf{E}\left[\mathbf{1}_{x_{u} \neq x_{v}}\right] \\
& =\sum_{\{u, v\} \in E} \mathbf{P}\left[x_{u} \neq x_{v}\right] \\
& =\sum_{\{u, v\} \in E}\left(1-\frac{1}{k}\right) \\
& =\left(1-\frac{1}{k}\right) \cdot|E| .
\end{aligned}
$$

(b) We define $Y:=|E|-C_{x}$. Then by part (a),

$$
\mathbf{E}[Y]=\frac{1}{k}|E| .
$$

By Markov's inequality, it follows that

$$
\mathbf{P}\left[Y \geq(1+\epsilon) \frac{|E|}{k}\right] \leq \frac{1}{1+\epsilon} .
$$

Thus,

$$
\mathbf{P}\left[C_{x} \leq|E|-(1+\epsilon) \frac{|E|}{k}\right] \leq \frac{1}{1+\epsilon} .
$$

By running the algorithm $\left\lceil\log _{1+\epsilon} \delta\right\rceil$ times and returning the solution with largest value of C_{x} (which we call \tilde{C}), we conclude that with probability at least $1-\left(\frac{1}{1+\epsilon}\right)^{\left\lceil\log _{1+\epsilon}(1 / \delta)\right\rceil} \geq 1-\delta$, the returned solution \tilde{C} satisfies

$$
\tilde{C} \geq|E|-(1+\epsilon) \frac{|E|}{k}=\left(1-\frac{1+\epsilon}{k}\right) \cdot|E| .
$$

For the running time we must iterate the original "random guessing" algorithm $\left\lceil\log _{1+\epsilon} \delta\right\rceil$ times checking the size of the cut each time. In each iteration we must assign each vertex a label at random to each vertex, thus $O(|V|)$ complexity, and calculate C_{x} for the labelling given in that iteration, which has $O(|E|)$ complexity. Thus the total runtime is $O\left(\left(\log _{1+\epsilon} \delta\right) \cdot|E|\right)$.

