
— Solution notes —

1 (a) What is the definition of conductance for an undirected, unweighted graph
G = (V,E)? [3 marks]

(b) Compute the conductance of the cycle with n vertices. [6 marks]

(c) What does part (b) imply for the mixing time of the cycle? [5 marks]

(d) Let P be a transition matrix of a Markov chain with state space Ω. Further, let
µ and ν be two probability distributions on Ω. Prove that

‖µP − νP‖TV ≤ ‖µ− ν‖TV .

[6 marks]

Answer:

(a) For any v ∈ V , let d(v) = |{u : {u, v} ∈ E}|. We define the volume of a set S ⊆ V as
vol(S) =

∑
u∈S d(u). Then, the conductance of G can be defined as

φ(G) = min
∅6=S⊂V

vol(S)≤vol(G)/2

E(S, V \ S)

vol(S)

where E(S, V \ S) = |{{u, v} ∈ E : u ∈ S, v 6∈ S}|.

(b) First of all, any non-empty set S ⊂ V has E(S, V \ S) ≥ 2 (equality holds if and only if the
set is connected). Moreover, vol(S) = 2|S|. Therefore,

E(S, V \ S)

vol(S)
=

2

2|S|
=

1

|S|
.

Therefore, φ(G) = 2
n when n is even, or φ(G) = 2

n−1 when n is odd.

(c) By Cheeger’s inequality, the spectral gap of the transition matrix of a lazy random walk on a
graph G satisfies (1−λ)/2 ≤ φ(G) = O(

√
1− λ). Moreover, for a graph of n vertices, we have

that tmix = O(log(n)/(1−λ)). Therefore, the mixing time on the complete graph is O(log n),
while the mixing time on the cycle is between Ω(n) and O(n2 log(n)).

(d) By the definition of total variation distance,

‖µP − νP‖TV = ‖(µ− ν)P‖TV =
1

2

∑
x∈Ω

∣∣∣∣∣∣
∑
y∈Ω

(µ(y)− ν(y))P (y, x)

∣∣∣∣∣∣
≤ 1

2

∣∣∣∣∣∣
∑
y∈Ω

|µ(y)− ν(y)|
∑
x∈Ω

P (y, x)

∣∣∣∣∣∣
= ‖µ− ν‖TV ,

where in the last equality we have used the fact that
∑
x∈Ω P (y, x) = 1.
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2 Let X1, . . . , Xn be independent random variables taking values in [0, 1] with E[Xi ] =
pi. Let X =

∑n
i=1Xi and p =

∑n
i=1 pi.

(a) Prove that
E
[
eλXi

]
≤ pie

λ + (1− pi).

[6 marks]

(b) Prove that the following holds for any δ > 0,

P[X ≥ (1 + δ)E[X ] ] ≤
(

eδ

(1 + δ)1+δ

)E[X]

.

[8 marks]

[Hint: remember that 1 + x ≤ ex for each x ≥ 0.]

Let {Xi}∞i=0 be a sequence of independent random variables with P[Xi = 1 ] = p and
P[Xi = −1 ] = q = 1− p for each i ≥ 0.

(c) Let St =
∑t

i=0Xi and suppose that p ∈ (0, 1). Show that Mt = (q/p)St is a
martingale with respect to X1, X2, . . .. [5 marks]

(d) Let λ be a real number satisfying 0 < λ < 1. Show that for any such λ there is
some C > 0 such that Zt = CtλSt is a martingale with respect to X1, X2, . . ..

[6 marks]

Answer:

(a) As was mentioned in the course (Lecture 6 slide 10), f(x) = eλx is a convex function. Hence,
the line segment from (0, f(0)) and (1, f(1)) is above the graph of eλx in [0, 1].

Observe that f(0) = 1, f(1) = eλ and the line through (0, 1) and (1, eλ) is given by

y(x) = (eλ − 1)x+ 1.

As the random variable Xi takes values in [0, 1] we obtain the following by convexity

eλx ≤ (eλ − 1)x+ 1.

Taking the expectation both sides yields

E
[
eλXi

]
≤ (eλ − 1)E[Xi ] + 1 = (eλ − 1)pi + 1 = 1 + pi(e

λ − 1).

(b) We now follow the next few steps of the recipe for Chernoff-type bounds (these are given in
lecture 5, slides 19-20): Let λ ≥ 0, then

P[X ≥ (1 + δ)E[X ] ] ≤ P
[
eλX ≥ e(1+δ)E[X ]

]
≤ E

[
eλX

]
e−(1+δ)λE[X ].
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Also since X =
∑n
i=1Xi, Xi are independent and E[X ] = p we have the following by part

(a)

E
[
eλX

]
=

n∏
i=1

E
[
eλXi

]
≤
∏
i=1

[1 + pi(e
λ − 1)] ≤

n∏
i=1

epi(e
λ−1) = exp

(
n∑
i=1

pi(e
λ − 1)

)
= exp

(
p(eλ − 1)

)
.

Finally,

P[X ≥ (1 + δ)E[X ] ] ≤ exp
(
−(1 + δ)λp+ p(eλ − 1)

)
. (1)

Here we can guess the right value of λ or we can minimise the quantity inside the exponential.
We will do the second route. Define

f(λ) = −(1 + δ)λp+ p(eλ − 1).

We solve f ′(λ) = 0. Note that

f ′(λ) = −(1 + δ)p+ peλ,

and so f ′(λ) = 0 is solved for λ = log(1 + δ). Also f ′′(λ) = p > 0 indicating such a value is a
local minimum. Substitute λ = log(1 + δ) into (1) to get the answer.

(c) We check the three properties of being a Martingale. Clearly Mt is a function of St which is
in turn a function of X1, . . . , Xt. Also −n ≤ Sn ≤ n therefore

|Mt| ≤ max

{
p

q
,
q

p

}n
,

meaning that E[ |Mt| ] ≤ ∞. Finally, for t ≥ 1

E[Mt+1|X1, . . . , Xt ] =

(
q

p

)St+1

· p+

(
q

p

)St−1

· q =

(
q

p

)St (q
p
· p+

p

q
· q
)

=

(
q

p

)St
= Mt.

(d) To be a martingale we need to satisfy the three properties. First Zt is clearly a function
of X1, . . . , Xt. To check whether E[ |Zt| ] < ∞ we need to be careful. For any fixed λ and
C := C(λ) we have

|Zt| ≤
(
C · 1

λ

)t
<∞,

recall that 0 < λ < 1 and −t ≤ St ≤ t, which implies E[ |Zt| ] <∞.

Finally, in a similar fashion to Mt+1, we have the following for t ≥ 1

E[Zt+1|X1, . . . , Xt ] = Ct+1
(
λSt+1 · p+ λSt−1 · q

)
= CtλSt · C

(
λp+

q

λ

)
= Zt · C

(
λp+

q

λ

)
.

Pick C =
(
λp+ q

λ

)−1
, then C

(
λp+ q

λ

)
= 1 and thus Zt is a martingale.
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3 For any integer 2 ≤ k ≤ n, consider the problem of assigning numbers in {1, . . . , k}
to the vertices of an n-vertex graph G = (V,E). For every vertex v ∈ V , let
xv ∈ {1, . . . , k} be the number assigned to v. The objective is to maximise

Cx =
∑

{u,v}∈E

1xu 6=xv .

Note that this is a generalisation of the MAX-CUT problem.

(a) Design a randomised algorithm which returns a solution satisfying

E[Cx ] ≥
(

1− 1

k

)
|E|.

[8 marks]

(b) Modify the algorithm so that, for any given ε ∈ (0, 1) and δ ∈ (0, 1), the
returned solution satisfies Cx ≥

(
1− 1+ε

k

)
|E| with probability at least 1 − δ.

State explicitly the running time of your algorithm. [7 marks]

Answer:

(a) Simply assign every xu independently and uniformly at random from {1, . . . , k}. Then,

E[Cx ] = E

 ∑
{u,v}∈E

1xu 6=xv


=

∑
{u,v}∈E

E[1xu 6=xv ]

=
∑

{u,v}∈E

P[xu 6= xv ]

=
∑

{u,v}∈E

(
1− 1

k

)

=

(
1− 1

k

)
· |E|.

(b) We define Y := |E| − Cx. Then by part (a),

E[Y ] =
1

k
|E|.

By Markov’s inequality, it follows that

P

[
Y ≥ (1 + ε)

|E|
k

]
≤ 1

1 + ε
.

Thus,

P

[
Cx ≤ |E| − (1 + ε)

|E|
k

]
≤ 1

1 + ε
.
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By running the algorithm dlog1+ε δe times and returning the solution with largest value of Cx

(which we call C̃), we conclude that with probability at least 1 −
(

1
1+ε

)dlog1+ε(1/δ)e ≥ 1 − δ,
the returned solution C̃ satisfies

C̃ ≥ |E| − (1 + ε)
|E|
k

=

(
1− 1 + ε

k

)
· |E|.

For the running time we must iterate the original “random guessing” algorithm dlog1+ε δe
times checking the size of the cut each time. In each iteration we must assign each vertex a
label at random to each vertex, thus O(|V |) complexity, and calculate Cx for the labelling given
in that iteration, which has O(|E|) complexity. Thus the total runtime is O

(
(log1+ε δ) · |E|

)
.
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