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Latency matters

Latency effect on facial recognition  source: Glimpse project, MIT, 2014

Remote Processing

Local Processing

e “being fast really matters...half a second delay caused a 20% drop in traffic
and it killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

e “A millisecond decrease in a trade delay may boost a high-speed firm's
earnings by about 100 million per year” — SAP, 2012
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Latency within the data centre matters
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Interconnecting components

 Need interconnections between
— CPU, memory, storage, network, 1/0 controllers

e Shared Bus: shared communication channel
— A set of parallel wires for data and synchronization of
data transfer

— Can become a hottleneck

 Performance limited by physical factors

— Wire length, number of connections

« More recent alternative: high-speed serial connections with switches
— Like networks
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/O System Characteristics

 Performance measures
— Latency (response time)

— Throughput (bandwidth)
— Desktops & embedded systems

« Mainly interested in response time & diversity of devices
— Servers

* Mainly interested in throughput & expandability of devices
* Reliability

— Particularly for storage devices (fault avoidance, fault tolerance, fault
forecasting)
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/O Management and strategies

 |/Ois mediated by the OS

— Multiple programs share I/O resources
e Need protection and scheduling
— 1/O causes asynchronous interrupts
e Same mechanism as exceptions
— 1/O programming is fiddly
* OS provides abstractions to programs

Strategies characterize the amount of work done by the CPU in the I/O
operation:

. Polling
. Interrupt Driven
. Direct Memory Access
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The I/O Access Problem

e Question: how to transfer data from 1/O devices to memory
(RAM)?

e Trivial solution:

* Processor individually reads or writes every word

« Transferred to/from 1/O through an internal register to memory
e Problems:

o Extremely inefficient — can occupy a processor for 1000’s of cycles
e Pollute cache
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DMA

DMA — Direct Memory Access
A modern solution to the I/O access problem

The peripheral I/O can issue read/write commands directly to
the memory

* Through the main memory controller

* The processor does not need to execute any operation

Write: The processor is notified when a transaction is
completed (interrupt)

Read: The processor issues a signal to the 1/0O when the data
IS ready in memory
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Example — Intel Xeon D

PCle Gen3
24 Lanes, 6 Controllers

DDR3L-1600
DDR4-2133

PCle Gen2
8 Lanes
8 Controllers
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Example (Legacy Embedded Processor)
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DMA

« DMA accesses are usually handled in buffers

« Single word/block is typically inefficient

* The processors assigns the peripheral unit the buffers in
advance
* The buffers are typically handled by buffer descriptors
» Pointer to the buffer in the memory
« May point to the next buffer as well
* Indicates buffer status: owner, valid etc.

* May include additional buffer properties as well
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Example (Legacy Embedded Processor)

Transfers blocks of data
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Intel Data Direct /O (DDIO)

o Data is written and read directly to/from the last level cache
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PCle - introduction

PCle is a serial point-to-point interconnect between two devices

Implements packet based protocol (TLPs) for information transfer
Scalable performance based on # of signal Lanes implemented on the PCle

interconnect

Supports credit-based point-to-point flow control (not end-to-end)

CPU

PCle
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Bridge To
PCI/PCI-X

PCI/PCI-X

Provides:

* Processor independence &
buffered isolation

e Bus mastering

Plug and Play operation
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PCle transaction types

Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

 |/O Read or I/O Write. Used to transfer data from or to an 1/O
location

« Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

 Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.
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PCle architecture
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Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- Interrupt the CPU by writing to a specific address in memory with a

payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to

different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller
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Processing Overheads

* Processing in the kernel takes a lot of time...

Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016
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Processing Overheads

Processing in the kernel takes a lot of time...

Order of microseconds (~2-4us on Xeon E5-v4)

x10 the time through a switch
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Solution: don’t go through the kernel!




Kernel Bypass

 The Kernel is slow — lets bypass the Kernel!
« There are many ways to achieve kernel bypass
 Some examples:

* Device drivers:

» Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

e Custom hardware and use bespoke device drivers for the
specialized hardware.

» Userspace library: anything from basic I/O to the entire TCP/IP stack
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Kernel Bypass - Examples

User Application
space
Socket API
TCP/IP/ETH
Kernel -
OS packet I/O
Device driver
Hardware

No Bypass
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User Space




DPDK

« DPDK is a popular set of libraries and drivers for fast packet
processing.

» Originally designed for Intel processors
* Now running also on ARM and Power CPUs
* Runs mostly in Linux User space.

« Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

* Itis not a networking stack
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DPDK

« Usage examples:
« Send and receive packets within minimum number of CPU cycles
 E.g.less than 80 cycles
» Fast packet capture algorithms
* Running third-party stacks
« Some projects demonstrated 100’s of millions packets per seconds
o But with limited functionality

 E.g. as a software switch / router
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What are the challenges ahead?
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Designing new network devices

A decade ago: “Can we implement this feature?”

« Today: “Is this feature worth implementing, given the design
constraints?”
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The resource wall

* Network silicon die > 20 Billion transistors (2019)

« Limited by:

 Power density

e Die size

« Manufacturing feasibility
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The switch pipeline

12.8Tbps Switches! 32x400GE!

Lets convert to packet rate requirements:
5800 Mpps @ 256B (100GE—38.7Mpps)
19050 Mpps @ 64B (100GE—150Mpps)

But clock rate is only ~1GHz....
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The single-pipeline switch

Observation:

To support full line rate for all packet sizes, network devices
need to process multiple packets each and every clock cycle.

The age of multi core has reached switching...
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The switch pipeline

... Surely it has little effect on real workloads...

Bus Width Data-path Utilization
TensorFlow KMeans PageRank Web Server
256B 97% 97.6% 96.2% 97.3%
512B 95.8% 97.6% 92.9% 96.4%
1024B 71.1% 73.2% 68% 72.7%

Assuming VXLAN headers and 1500B NIC MTU

Using traces from Dukic et al., “Is advance knowledge of flow sizes a plausible assumption?”, NSDI'19
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Do data centre networks scale?

« Example: Building DC with 100K servers (2500 ToR switches)

e Option 1 — Link bundle of 1 (L=1):
—6.4Tbps Fabric Switch, 256x25G
—Requires 2 Tiers
#fabric-switches = 1172

e Option 2 — Link bundle of 4 (L=4):
—6.4Tbps Fabric Switch, 64x100G
—Requires 3 Tiers
#fabric-switches = 1954 (x1.66 more)
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Number of end-hosts

In a network of n tiers
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Scalability limitations

x Significant resources are wasted within the network fabric
x Aggregating links into ports limits the scalability of the network

x Misaligned packet sizes require significant resource overprovisioning (or
lead to performance loss)

% To support full line rate for all packet sizes, network devices need to
process multiple packets each and every clock cycle.
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What should we do?
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My personal opinion

* Think before you code

« Make it easier for the network: batching, large packets, ...

e Think again: do you really need this feature ?
* Maybe there is a different way to get the same results?

 Maybe a trade-off is worth the cost?

 Make the core of the network simple, push complexity to the
edge

* And then push complexity outside the DC
 Why? Latency, privacy, data is too big to move, ...

* (not always possible)
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P51 Summary

» Architecture of high-performance network devices

« High throughput devices

DEAD

* Low latency devices END

 Programmable network devices
YOU'VEZ REACHED T'HE

IZND O1" THE INTERNIET

o This is just a little glimpse into high performance networking...
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