4P CAMBRIDGE

& 8 UNIVERSITY OF

P51: High Performance Networking

Lecture 6. Low Latency Devices

Noa Zilberman Lent 2019/20

noa.zilberman@cl.cam.ac.uk

Latency matters

Latency effect on facial recognition source: Glimpse project, MIT, 2014

Remote Processing

Local Processing

e “being fast really matters...half a second delay caused a 20% drop in traffic
and it killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

e “A millisecond decrease in a trade delay may boost a high-speed firm's
earnings by about 100 million per year” — SAP, 2012

7% UNIVERSITY OF

“§ CAMBRIDGE

Latency within the data centre matters

1.2 ' T T T 1T 1
1.0
0.8

0.6

0.4 9—&¥Memcached Server

0.2 |_¥-Vlasso Regression. . . e L .
®—&@Ridge Regression - . .

Normalized Performance

0.0

Q
o

1000.0

Added Delay [pts]

INIVERSITY OF Popescu et al. “Characterizing the impact of network latency on cloud-

CAMBRIDGE based applications’ performance”, 2017

DMA

UNIVERSITY OF

CAMBRIDGE

Host arch

AGP Connector

AGP 2.0
AGP

Graphics

itecture

Intel
Pentium lll/Celeron
Processor (CPU)

i Intel 815 Chipset Family

System Memory

Intel

82815 GMCH | 100/133MHz

SDRAM 1

(Intel 815E
Northbridge)

SDRAM 2

EoTECrOR . oL)

Hub
Interface

Intel
ICH2

PCIl Bus '

PCI
Slots

(Southbridge)

Firmware Hub (FWH)
Interface

Flash BIOS

UNIVERSITY OF
CAMBRIDGE

.
H

Core1 || Core2 || Core3 Core 4
(8SP) || (AP) (AP) (AP)
T 1 T — T
¥ integrated
+ Graphics 1
---- pads r System Memory
——== “BeioRasiconpioc agi) 4 ([DoRamodued] |
PCle | | Pty Ve) § N ! :
Graphics i B control H
(PCle Endpoint) PClto-PCI Bridge § E’ i t tl DDR3 Module 2 I
3 Chipset Interconnect §
&] Logic [J
This PCle link is viewed as
originating from the root port Proprietary
(in PCle graphics point of view) Chipset Interconnect

(Chipset

Virtual

Bridge

PCle link originating from | {

PCl-to-PCI

Logic

PCl-to-PCI

This PCle link is viewed
as originating from root
port (from the PCle switch
point of view)

Virtual

Bridge

the PCle switch port [~

Add-In Network Card
(PCle Endpoint)

) PCle link originating
from the PCle switch port

(PCle Endpoint)

Add-In SCSI Controller

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

 Need interconnections between
— CPU, memory, storage, network, 1/0 controllers

e Shared Bus: shared communication channel
— A set of parallel wires for data and synchronization of
data transfer

— Can become a hottleneck

 Performance limited by physical factors

— Wire length, number of connections

« More recent alternative: high-speed serial connections with switches
— Like networks

7% UNIVERSITY OF

“§ CAMBRIDGE

/O System Characteristics

 Performance measures
— Latency (response time)

— Throughput (bandwidth)
— Desktops & embedded systems

« Mainly interested in response time & diversity of devices
— Servers

* Mainly interested in throughput & expandability of devices
* Reliability

— Particularly for storage devices (fault avoidance, fault tolerance, fault
forecasting)

7% UNIVERSITY OF

“§ CAMBRIDGE

/O Management and strategies

 |/Ois mediated by the OS

— Multiple programs share I/O resources
e Need protection and scheduling
— 1/O causes asynchronous interrupts
e Same mechanism as exceptions
— 1/O programming is fiddly
* OS provides abstractions to programs

Strategies characterize the amount of work done by the CPU in the I/O
operation:

. Polling
. Interrupt Driven
. Direct Memory Access

7% UNIVERSITY OF

“§ CAMBRIDGE

The I/O Access Problem

e Question: how to transfer data from 1/O devices to memory
(RAM)?

e Trivial solution:

* Processor individually reads or writes every word

« Transferred to/from 1/O through an internal register to memory
e Problems:

o Extremely inefficient — can occupy a processor for 1000’s of cycles
e Pollute cache

7% UNIVERSITY OF

“§ CAMBRIDGE

DMA

DMA — Direct Memory Access
A modern solution to the I/O access problem

The peripheral I/O can issue read/write commands directly to
the memory

* Through the main memory controller

* The processor does not need to execute any operation

Write: The processor is notified when a transaction is
completed (interrupt)

Read: The processor issues a signal to the 1/0O when the data
IS ready in memory

7% UNIVERSITY OF

" CAMBRIDGE

Example — Intel Xeon D

PCle Gen3
24 Lanes, 6 Controllers

DDR3L-1600
DDR4-2133

PCle Gen2
8 Lanes
8 Controllers

= UNIVERSITY OF

CAMBRIDGE

Example (Legacy Embedded Processor)

Message arrives on I/O Memory Mapped Access
interface. ~
Message is decoded to DDR_, DDHfDDHzf'f)._f . || Seouity
) SDRAM Memory Contrall Engine
Mem read/write. \ > e
. - t

Address is converted to sosiiie| Locaigus convoer fe—»| | | b, || |2 Coche
. SRAM
|nternal addl’eSS IRQs Programmable Interrupt 8500 Core

. > Controller (PIC) [< > 500 # i
Mem Read/\N”te Serial<—>{ DUART Gﬁ:{;’igcy f‘Core Gomple; |n-3,truyc:~(:i!on L1-Da:'rca{.9
command goes through : R

. . I=C P
the switch to the internal o< conoler " ——
b d memor 20 <> c « > . ?fpldlo 4x RapidlO
us an Yy IC Controller o g PCI Express -‘—bxg P?:FIjI ss
controller. MFIIIi' gméﬁ:: o LemsE] N _ < @ :/
Memory controller RMI 1010071 Gl e 5CI 32.b1
=0l us Interfiace |--—e
executes the command 'Risl remil <o Lo < inoabitnotused) | %0 MHz
RMII 10/1001 Gb
32-bit PCI/

to the DRAM'_ _ M tol | eTSEC | o] smipoIPCX RO
Returns data if required RMI 10/100/1Gb Bus Intertace
H eTSEC 4-Channel DMA
in the same manner. e e T e « s FChame D

. UNIVERSITY OF

CAMBRIDGE

DMA

« DMA accesses are usually handled in buffers

« Single word/block is typically inefficient

* The processors assigns the peripheral unit the buffers in
advance
* The buffers are typically handled by buffer descriptors
» Pointer to the buffer in the memory
« May point to the next buffer as well
* Indicates buffer status: owner, valid etc.

* May include additional buffer properties as well

7% UNIVERSITY OF

" CAMBRIDGE

Example (Legacy Embedded Processor)

Transfers blocks of data

DMA Access

between external interfaces oA DDR/DDRY e Secuy
and local address space SDRAM Memory Controller Engine
Flash XOR 512-Kbyte @O
. SDRAM=—» Local Bus Controller |&— : L2 Cache/ 2
1. Atransfer is started by SW GPIO =ae [- sham | [/.
. . e are
writing to DMA engine IROs <) P o J
configuration registers % o € KoyteLt| | a2-Kbyte
Serial «— DUART = Module | Core Complex Inétruinon L(; De;ta
ache ache
2. SW Polls DMA channel Pc
. - o Controller) :
state to idle and sets trigger > Serial RapidO
12C <> e ar 4x RapidlO
Controller PClExpress [«<=»x8 PC| Express
3. DMA engine fetches a MiGMIL T8l [eTSEC | S
descriptor from memory CURMI [10/1001Gb] .
| miomi,Te, [etsEC | 32:bit PO Bus Interface - 01 S2°01
4. DMA engine reads block of AT RON <10 oman [~ (If 64-bit not used)
data from source MII, GMII, TBI, TSEC 32-bit PCY PCIPCI-X
ATBL, RGMIL <> 10?100;1% = - 643.32 Ew?;frggéx 133 Mz
: . RMII
5. DMA engine writes data to I — —
destination RMIL ™ [1010011Gb > Controller

UNIVERSITY OF
CAMBRIDGE

Intel Data Direct /O (DDIO)

o Data is written and read directly to/from the last level cache

M| ‘M)
':I CPU | CPU CPU N CPU | CPU CPU
1 2 N m 1 2 N
) =
o 0]
r
; Last Level Cache ‘ y Last Level Cache
CPU Socket C"EJ Socket
Many Cores/Socket Many Cores/Socket
- 2 l 1
I/O Irterconnect
I/C Interconnect J
l Intel Adapter/NIC
Intel Adagter/NIC
l Fabric Interconnect
Fabric Intercannect l

JNIVERSITY OF

CAMBRIDGE

PCle - introduction

PCle is a serial point-to-point interconnect between two devices

Implements packet based protocol (TLPs) for information transfer
Scalable performance based on # of signal Lanes implemented on the PCle

interconnect

Supports credit-based point-to-point flow control (not end-to-end)

CPU

PCle

JNIVERSITY OF

Bridge To
PCI/PCI-X

PCI/PCI-X

Provides:

* Processor independence &
buffered isolation

e Bus mastering

Plug and Play operation

CAMBRIDGE

PCle transaction types

Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

 |/O Read or I/O Write. Used to transfer data from or to an 1/O
location

« Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

 Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.

7% UNIVERSITY OF

“§ CAMBRIDGE

PCle architecture

PCI Express Device A PCI Express Device B

Device Core

PCI Express Core
s s bGiCIRIEITALES o

Device Core

PCI Express Core
» osQQIC JNICEIRET e o

Transacdon Layer

Transaction Layer

Transact.on Layer

T-Layer Packet Data Link Layer

Data L'n< Layer Data | ik Layer

Physica' Layer Physi<al Layer

"ssensess "ssnsesss Link fesedenes® "snse .-.:
FAN
(] L-Layer Packet Physical Layer
|V
Buffer space
available

TLP

._, C Buffer
111111

w

Transmitter

—1

Flow Control DLLP (FCx)

UNIVERSITY OF

CAMBRIDGE

Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- Interrupt the CPU by writing to a specific address in memory with a

payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to

different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

7% UNIVERSITY OF

“§ CAMBRIDGE

10GE
10GE
10GE
10GE

%

dnyoo7 110d <
1ndinQ

ulv 191191V N
indu

p)
)
O
Q
@)
| -
al
()]
&)
C
()
| -
()]
(.
()
ad
<
@)
al
LL
-+
()
Z

y>
$S999V 108UU0JIOIU| ||
U
AloWwa IXV al=
7
199l1d mB
IL ==
e ——— 7. <
juiodpua |Dd 2l

Wa1SAS 1SOH

Processing Overheads

* Processing in the kernel takes a lot of time...

Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016

JNIVERSITY OF

Processing Overheads

Processing in the kernel takes a lot of time...

Order of microseconds (~2-4us on Xeon E5-v4)

x10 the time through a switch

7% UNIVERSITY OF

Solution: don’t go through the kernel!

Kernel Bypass

 The Kernel is slow — lets bypass the Kernel!
« There are many ways to achieve kernel bypass
 Some examples:

* Device drivers:

» Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

e Custom hardware and use bespoke device drivers for the
specialized hardware.

» Userspace library: anything from basic I/O to the entire TCP/IP stack

7% UNIVERSITY OF

“§ CAMBRIDGE

Kernel Bypass - Examples

User Application
space
Socket API
TCP/IP/ETH
Kernel -
OS packet I/O
Device driver
Hardware

No Bypass

JNIVERSITY OF

User
Space

Application

User Application

space

Framework

TCP/IP/

Kernel 4 ETH Buffers
Library

Device drivir Device driver

Hardware Hardware NIC
Completely in

Partly within Kernel
User Space

DPDK

« DPDK is a popular set of libraries and drivers for fast packet
processing.

» Originally designed for Intel processors
* Now running also on ARM and Power CPUs
* Runs mostly in Linux User space.

« Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

* Itis not a networking stack

7% UNIVERSITY OF

“§ CAMBRIDGE

DPDK

« Usage examples:
« Send and receive packets within minimum number of CPU cycles
 E.g.less than 80 cycles
» Fast packet capture algorithms
* Running third-party stacks
« Some projects demonstrated 100’s of millions packets per seconds
o But with limited functionality

 E.g. as a software switch / router

7% UNIVERSITY OF

“§ CAMBRIDGE

What are the challenges ahead?

sg5 UNIVERSITY OF

%% CAMBRIDGE

Designing new network devices

A decade ago: “Can we implement this feature?”

« Today: “Is this feature worth implementing, given the design
constraints?”

7% UNIVERSITY OF

" CAMBRIDGE

The resource wall

* Network silicon die > 20 Billion transistors (2019)

« Limited by:

 Power density

e Die size

« Manufacturing feasibility

7% UNIVERSITY OF

“§ CAMBRIDGE

1

1/0
Network I/F
Egress Processing
%b Switching
S Queueing
Ingress Processing
Network I/F
1/0

I

1/0
Network I/F
Egress Processing
Switching
Queueing
Ingress Processing
Network I/F
1/0

1

1/0
Network I/F
Egress Processing
Switching
Queueing
Ingress Processing
Network I/F
1/0

1

1/0
Network I/F
Egress Processing
Switching
Queueing
Ingress Processing
Network I/F
1/0

1

1/0
Network I/F
Egress Processing
Switching
Queueing
Ingress Processing
Network I/F
1/0

1

ToR Switch

ToR Switch

Aggregate
(Tier 1)

ToR Switch

Aggregate
(Tier 1)

ToR Switch

]

Edge

(S
o
b
=
[
W
=
=
T
[
Z
(-

.
)
=
=
aa)
Z
®

Spine Layer
Aggregate
Layer

(0p
-
| -
@)
=
.
(D)
c
(D)
-
e
-
(D)
&)
(©
-
©
A

=
m
V)
N
(0p)
i
[z
=
)

PKT

1/0
Network I/F

Switching
Network I/F

1/O

Line card

Line card

1

/0 _

Network I/F

Egress Processing |

Switching

Network I/F

I/O

1

I/O

Network I/F

Switching
Network I/F

I/O

i

I/O

Network I/F

Switching

Network I/F

Fabric card Fabric card

I/O

1

I/O

Network I/F

Switching

Network I/F

Fabric card

I/O

1

I/O

Network I/F

Switching

Queueing

Ingress qunmmmmzm_
Network I/F

I/O |

|

55
£8
5
i
> =
7. <
o O

Q-
V)
QO
&
p o
-
o
0
O
S

'
S
@)
=
s’
(D)
-
S
(D)

—
-

=

Why waste

O(nx(Switching+2xI/0O+2xNIF)+nx(Ingress Processing + Egress Processing + Queueing))

Aggregate Spine Aggregate Edee
(Tier 1) (Tier 2) (Tier 1) &

Edge

1

1/O

Network I/F

Egress Processing

Switching

Queueing

Ingress Processing

Network I/F

I/0

|

1/0

Network I/F

Egress Processing

Switching

Queueing

Ingress Processing
Network I/F

1/0

1

1/0

Network I/F

Egress Processing

Switching

Queueing

Ingress Processing

Network I/F

1/0

1

1/0

Network I/F

Egress Processing

Switching
Queueing

Ingress Processing
Network I/F

1/0

1

I/0

Network I/F |
Egress Processing

Switching

Queueing _
Ingress Processing

Network I/F

1/0

1

Edge

Spine Aggregate
(Tier 2) (Tier 1)

Aggregate
(Tier 1)

Edge

!

time

1/0

Network I/F

Egress Processing

Switching

Network I/F

1/0

1

1/0

Network I/F

Switching

Network I/F

1/0

1

1/0

Network I/F
Switching

Network I/F

1/0

1

1/0

Network I/F

Switching
Network I/F

1/0

1

1/0

Network I/F

Switching

Queueing

\Ingress Processing

Network I/F

1/0

|

O(nx(Switching+2xI/O+2xNIF)+1x(Ingress Processing + Egress Processing + Queueing))

.
)
=
=
aa)
Z
®

(S
o
b
=
[
W
=
=
T
[
Z
(-

The switch pipeline

12.8Tbps Switches! 32x400GE!

Lets convert to packet rate requirements:
5800 Mpps @ 256B (100GE—38.7Mpps)
19050 Mpps @ 64B (100GE—150Mpps)

But clock rate is only ~1GHz....

7% UNIVERSITY OF

Required Parallelism

20
18
16
14
12

oON P~ O

64 320 576 832 108813441600
Packet Size [B]

“§ CAMBRIDGE

The single-pipeline switch

Observation:

To support full line rate for all packet sizes, network devices
need to process multiple packets each and every clock cycle.

The age of multi core has reached switching...

7% UNIVERSITY OF

" CAMBRIDGE

The switch pipeline

... Surely it has little effect on real workloads...

Bus Width Data-path Utilization
TensorFlow KMeans PageRank Web Server
256B 97% 97.6% 96.2% 97.3%
512B 95.8% 97.6% 92.9% 96.4%
1024B 71.1% 73.2% 68% 72.7%

Assuming VXLAN headers and 1500B NIC MTU

Using traces from Dukic et al., “Is advance knowledge of flow sizes a plausible assumption?”, NSDI'19

: UNIVERSITY OF

Do data centre networks scale?

« Example: Building DC with 100K servers (2500 ToR switches)

e Option 1 — Link bundle of 1 (L=1):
—6.4Tbps Fabric Switch, 256x25G
—Requires 2 Tiers
#fabric-switches = 1172

e Option 2 — Link bundle of 4 (L=4):
—6.4Tbps Fabric Switch, 64x100G
—Requires 3 Tiers
#fabric-switches = 1954 (x1.66 more)

7% UNIVERSITY OF

Number of end-hosts

In a network of n tiers
scaleis O(L™)

FT, 4006x32 (L=8) —e
FT, 200GX64 (L=4) s
FT, 100GX128 (L=2) e
| Stardust, 50Gx256 (L=1) me "

Number of tiers

" CAMBRIDGE

Scalability limitations

x Significant resources are wasted within the network fabric
x Aggregating links into ports limits the scalability of the network

x Misaligned packet sizes require significant resource overprovisioning (or
lead to performance loss)

% To support full line rate for all packet sizes, network devices need to
process multiple packets each and every clock cycle.

7% UNIVERSITY OF

“§ CAMBRIDGE

What should we do?

sg5 UNIVERSITY OF

" CAMBRIDGE

My personal opinion

* Think before you code

« Make it easier for the network: batching, large packets, ...

e Think again: do you really need this feature ?
* Maybe there is a different way to get the same results?

 Maybe a trade-off is worth the cost?

 Make the core of the network simple, push complexity to the
edge

* And then push complexity outside the DC
 Why? Latency, privacy, data is too big to move, ...

* (not always possible)

7% UNIVERSITY OF

" CAMBRIDGE

P51 Summary

» Architecture of high-performance network devices

« High throughput devices

DEAD

* Low latency devices END

 Programmable network devices
YOU'VEZ REACHED T'HE

IZND O1" THE INTERNIET

o This is just a little glimpse into high performance networking...

s@7 UNIVERSITY OF

" CAMBRIDGE

	P51: High Performance Networking
	Latency matters
	Latency within the data centre matters
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Legacy Embedded Processor)
	DMA
	Example (Legacy Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 16
	Slide Number 17
	PCIe architecture
	Slide Number 19
	NetFPGA Reference Projects
	Processing Overheads
	Processing Overheads
	Kernel Bypass
	Kernel Bypass - Examples
	DPDK
	DPDK
	Slide Number 27
	Designing new network devices
	The resource wall
	Slide Number 30
	Switch system
	Why waste resources?�in n tier network
	The switch pipeline
	The single-pipeline switch
	The switch pipeline
	Do data centre networks scale?
	Scalability limitations
	Slide Number 38
	My personal opinion
	P51 Summary

