
P51: High Performance Networking
Lecture 6: Low Latency Devices

Noa Zilberman
noa.zilberman@cl.cam.ac.uk Lent 2019/20

Latency matters

• “being fast really matters…half a second delay caused a 20% drop in traffic
and it killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

• “A millisecond decrease in a trade delay may boost a high-speed firm's
earnings by about 100 million per year” – SAP, 2012

Latency effect on facial recognition Source: Glimpse project, MIT, 2014

Remote Processing Local Processing

Latency within the data centre matters

Popescu et al. “Characterizing the impact of network latency on cloud-
based applications’ performance”, 2017

DMA

Host architecture

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

• Need interconnections between
– CPU, memory, storage, network, I/O controllers

• Shared Bus: shared communication channel
– A set of parallel wires for data and synchronization of

data transfer

– Can become a bottleneck

• Performance limited by physical factors

– Wire length, number of connections

• More recent alternative: high-speed serial connections with switches
– Like networks

I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Reliability
– Particularly for storage devices (fault avoidance, fault tolerance, fault

forecasting)

I/O Management and strategies

• I/O is mediated by the OS
– Multiple programs share I/O resources

• Need protection and scheduling
– I/O causes asynchronous interrupts

• Same mechanism as exceptions
– I/O programming is fiddly

• OS provides abstractions to programs
Strategies characterize the amount of work done by the CPU in the I/O
operation:

• Polling
• Interrupt Driven
• Direct Memory Access

The I/O Access Problem

• Question: how to transfer data from I/O devices to memory
(RAM)?

• Trivial solution:
• Processor individually reads or writes every word
• Transferred to/from I/O through an internal register to memory

• Problems:
• Extremely inefficient – can occupy a processor for 1000’s of cycles
• Pollute cache

DMA

• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write commands directly to

the memory
• Through the main memory controller
• The processor does not need to execute any operation

• Write: The processor is notified when a transaction is
completed (interrupt)

• Read: The processor issues a signal to the I/O when the data
is ready in memory

Example – Intel Xeon D

1

1. Message arrives on I/O
interface.
Message is decoded to
Mem read/write.
Address is converted to
internal address.

2

2. Mem Read/Write
command goes through
the switch to the internal
bus and memory
controller.

3

3. Memory controller
executes the command
to the DRAM.
Returns data if required
in the same manner.

Memory Mapped Access

Example (Legacy Embedded Processor)

DMA

• DMA accesses are usually handled in buffers
• Single word/block is typically inefficient

• The processors assigns the peripheral unit the buffers in
advance

• The buffers are typically handled by buffer descriptors
• Pointer to the buffer in the memory
• May point to the next buffer as well
• Indicates buffer status: owner, valid etc.
• May include additional buffer properties as well

Transfers blocks of data
between external interfaces
and local address space

DMA Access

1
1. A transfer is started by SW

writing to DMA engine
configuration registers

3

3. DMA engine fetches a
descriptor from memory

4. DMA engine reads block of
data from source

4

2

2. SW Polls DMA channel
state to idle and sets trigger

5. DMA engine writes data to
destination

5

Example (Legacy Embedded Processor)

Intel Data Direct I/O (DDIO)

• Data is written and read directly to/from the last level cache
(LLC)

PCIe - introduction

• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the PCIe

interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor independence &

buffered isolation

• Bus mastering

• Plug and Play operation

PCIe transaction types

• Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O
location

• Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

• Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.

PCIe architecture

Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory with a
payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to
different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

NetFPGA Reference Projects
H

os
ts

ys
te

m
PC

Ie
nd

po
in

t

D
ire

ct

M
em

or
y

A
cc

es
s

10GE

10GE

10GE

10GE

In
pu

t
A

rb
ite

r

O
ut

pu
t

Po
rt

Lo
ok

up

O
ut

pu
t

Q
ue

ue
s

A
XI

In
te

rc
on

ne
ct

Processing Overheads

• Processing in the kernel takes a lot of time…

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016

Component Time [us]
Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Processing Overheads

• Processing in the kernel takes a lot of time…

• Order of microseconds (~2-4us on Xeon E5-v4)

• ×10 the time through a switch

• Solution: don’t go through the kernel!

Kernel Bypass

• The Kernel is slow – lets bypass the Kernel!

• There are many ways to achieve kernel bypass

• Some examples:

• Device drivers:

• Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

• Custom hardware and use bespoke device drivers for the
specialized hardware.

• Userspace library: anything from basic I/O to the entire TCP/IP stack

Kernel Bypass - Examples

NIC

Device driver

OS packet I/O
TCP/IP/ETH

Socket API

Application

Kernel

User
space

Hardware

Framework

NIC

Device driver

TCP/IP/
ETH

Application

Kernel

User
space

Hardware

Buffers

NIC

Device driver

ApplicationUser
space

Hardware

Library

No Bypass Partly within Kernel Completely in
User Space

DPDK

• DPDK is a popular set of libraries and drivers for fast packet
processing.

• Originally designed for Intel processors

• Now running also on ARM and Power CPUs

• Runs mostly in Linux User space.

• Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

• It is not a networking stack

DPDK

• Usage examples:

• Send and receive packets within minimum number of CPU cycles

• E.g. less than 80 cycles

• Fast packet capture algorithms

• Running third-party stacks

• Some projects demonstrated 100’s of millions packets per seconds

• But with limited functionality

• E.g. as a software switch / router

What are the challenges ahead?

Designing new network devices

• A decade ago: “Can we implement this feature?”

• Today: “Is this feature worth implementing, given the design
constraints?”

The resource wall

• Network silicon die > 20 Billion transistors (2019)

• Limited by:

• Power density

• Die size

• Manufacturing feasibility

PKT

Data centre networks

Switch system

Line card Fabric card Fabric card Fabric card Line card

PKT

Why waste resources?
in n tier network

O(n×(Switching+2×I/O+2×NIF)+n×(Ingress Processing + Egress Processing + Queueing))

O(n×(Switching+2×I/O+2×NIF)+1×(Ingress Processing + Egress Processing + Queueing))

0
2
4
6
8

10
12
14
16
18
20

64 320 576 832 108813441600

R
eq

ui
re

d
Pa

ra
lle

lis
m

Packet Size [B]

12.8Tbps Switches! 32×400GE!

Lets convert to packet rate requirements:

5800 Mpps @ 256B (100GE→38.7Mpps)

19050 Mpps @ 64B (100GE→150Mpps)

But clock rate is only ~1GHz….

The switch pipeline

Observation:

To support full line rate for all packet sizes, network devices
need to process multiple packets each and every clock cycle.

The age of multi core has reached switching…

The single-pipeline switch

... Surely it has little effect on real workloads…

Assuming VXLAN headers and 1500B NIC MTU

Using traces from Dukic et al., “Is advance knowledge of flow sizes a plausible assumption?”, NSDI’19

The switch pipeline

Bus Width Data-path Utilization
TensorFlow KMeans PageRank Web Server

256B 97% 97.6% 96.2% 97.3%
512B 95.8% 97.6% 92.9% 96.4%

1024B 71.1% 73.2% 68% 72.7%

• Example: Building DC with 100K servers (2500 ToR switches)
• Option 1 – Link bundle of 1 (L=1):

–6.4Tbps Fabric Switch, 256×25G
–Requires 2 Tiers
#fabric-switches = 1172

• Option 2 – Link bundle of 4 (L=4):
–6.4Tbps Fabric Switch, 64×100G
–Requires 3 Tiers
#fabric-switches = 1954 (×1.66 more)

Do data centre networks scale?

In a network of 𝑛𝑛 tiers
scale is 𝑂𝑂(𝐿𝐿−𝑛𝑛)

 Significant resources are wasted within the network fabric

 Aggregating links into ports limits the scalability of the network

 Misaligned packet sizes require significant resource overprovisioning (or
lead to performance loss)

 To support full line rate for all packet sizes, network devices need to
process multiple packets each and every clock cycle.

Scalability limitations

What should we do?

• Think before you code
• Make it easier for the network: batching, large packets, …

• Think again: do you really need this feature ?
• Maybe there is a different way to get the same results?

• Maybe a trade-off is worth the cost?

• Make the core of the network simple, push complexity to the
edge
• And then push complexity outside the DC

• Why? Latency, privacy, data is too big to move, …

• (not always possible)

My personal opinion

P51 Summary

• Architecture of high-performance network devices

• High throughput devices

• Low latency devices

• Programmable network devices

• This is just a little glimpse into high performance networking…

	P51: High Performance Networking
	Latency matters
	Latency within the data centre matters
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Legacy Embedded Processor)
	DMA
	Example (Legacy Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 16
	Slide Number 17
	PCIe architecture
	Slide Number 19
	NetFPGA Reference Projects
	Processing Overheads
	Processing Overheads
	Kernel Bypass
	Kernel Bypass - Examples
	DPDK
	DPDK
	Slide Number 27
	Designing new network devices
	The resource wall
	Slide Number 30
	Switch system
	Why waste resources?�in n tier network
	The switch pipeline
	The single-pipeline switch
	The switch pipeline
	Do data centre networks scale?
	Scalability limitations
	Slide Number 38
	My personal opinion
	P51 Summary

