
P51: High Performance Networking
Lecture 6: Low Latency Devices

Noa Zilberman
noa.zilberman@cl.cam.ac.uk Lent 2019/20

Latency matters

• “being fast really matters…half a second delay caused a 20% drop in traffic
and it killed user satisfaction” - Marissa Mayer @ Web 2.0 (2008)

• “A millisecond decrease in a trade delay may boost a high-speed firm's
earnings by about 100 million per year” – SAP, 2012

Latency effect on facial recognition Source: Glimpse project, MIT, 2014

Remote Processing Local Processing

Latency within the data centre matters

Popescu et al. “Characterizing the impact of network latency on cloud-
based applications’ performance”, 2017

DMA

Host architecture

Legacy vs. Recent (courtesy of Intel)

Interconnecting components

• Need interconnections between
– CPU, memory, storage, network, I/O controllers

• Shared Bus: shared communication channel
– A set of parallel wires for data and synchronization of

data transfer

– Can become a bottleneck

• Performance limited by physical factors

– Wire length, number of connections

• More recent alternative: high-speed serial connections with switches
– Like networks

I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Reliability
– Particularly for storage devices (fault avoidance, fault tolerance, fault

forecasting)

I/O Management and strategies

• I/O is mediated by the OS
– Multiple programs share I/O resources

• Need protection and scheduling
– I/O causes asynchronous interrupts

• Same mechanism as exceptions
– I/O programming is fiddly

• OS provides abstractions to programs
Strategies characterize the amount of work done by the CPU in the I/O
operation:

• Polling
• Interrupt Driven
• Direct Memory Access

The I/O Access Problem

• Question: how to transfer data from I/O devices to memory
(RAM)?

• Trivial solution:
• Processor individually reads or writes every word
• Transferred to/from I/O through an internal register to memory

• Problems:
• Extremely inefficient – can occupy a processor for 1000’s of cycles
• Pollute cache

DMA

• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write commands directly to

the memory
• Through the main memory controller
• The processor does not need to execute any operation

• Write: The processor is notified when a transaction is
completed (interrupt)

• Read: The processor issues a signal to the I/O when the data
is ready in memory

Example – Intel Xeon D

1

1. Message arrives on I/O
interface.
Message is decoded to
Mem read/write.
Address is converted to
internal address.

2

2. Mem Read/Write
command goes through
the switch to the internal
bus and memory
controller.

3

3. Memory controller
executes the command
to the DRAM.
Returns data if required
in the same manner.

Memory Mapped Access

Example (Legacy Embedded Processor)

DMA

• DMA accesses are usually handled in buffers
• Single word/block is typically inefficient

• The processors assigns the peripheral unit the buffers in
advance

• The buffers are typically handled by buffer descriptors
• Pointer to the buffer in the memory
• May point to the next buffer as well
• Indicates buffer status: owner, valid etc.
• May include additional buffer properties as well

Transfers blocks of data
between external interfaces
and local address space

DMA Access

1
1. A transfer is started by SW

writing to DMA engine
configuration registers

3

3. DMA engine fetches a
descriptor from memory

4. DMA engine reads block of
data from source

4

2

2. SW Polls DMA channel
state to idle and sets trigger

5. DMA engine writes data to
destination

5

Example (Legacy Embedded Processor)

Intel Data Direct I/O (DDIO)

• Data is written and read directly to/from the last level cache
(LLC)

PCIe - introduction

• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the PCIe

interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor independence &

buffered isolation

• Bus mastering

• Plug and Play operation

PCIe transaction types

• Memory Read or Memory Write. Used to transfer data from or to a
memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O
location

• Configuration Read or Configuration Write. Used to discover device
capabilities, program features, and check status in the 4KB PCI
Express configuration space.

• Messages. Handled like posted writes. Used for event signaling and
general purpose messaging.

PCIe architecture

Interrupt Model

PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory with a
payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual interrupts to
different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

NetFPGA Reference Projects
H

os
ts

ys
te

m
PC

Ie
nd

po
in

t

D
ire

ct

M
em

or
y

A
cc

es
s

10GE

10GE

10GE

10GE

In
pu

t
A

rb
ite

r

O
ut

pu
t

Po
rt

Lo
ok

up

O
ut

pu
t

Q
ue

ue
s

A
XI

In
te

rc
on

ne
ct

Processing Overheads

• Processing in the kernel takes a lot of time…

Source: Yasukata et al. “StackMap: Low-Latency Networking with the OS Stack and
Dedicated NICs”, Usenix ATC 2016

Component Time [us]
Driver RX 0.60
Ethernet & IPv4 RX 0.19
TCP RX 0.53
Socket Enqueue 0.06
TCP TX 0.70
IPv4 & Ethernet TX 0.06
Driver TX 0.43

Processing Overheads

• Processing in the kernel takes a lot of time…

• Order of microseconds (~2-4us on Xeon E5-v4)

• ×10 the time through a switch

• Solution: don’t go through the kernel!

Kernel Bypass

• The Kernel is slow – lets bypass the Kernel!

• There are many ways to achieve kernel bypass

• Some examples:

• Device drivers:

• Customized kernel device driver. E.g. Netmap forks standard Intel
drivers with extensions to map I/O memory into userspace.

• Custom hardware and use bespoke device drivers for the
specialized hardware.

• Userspace library: anything from basic I/O to the entire TCP/IP stack

Kernel Bypass - Examples

NIC

Device driver

OS packet I/O
TCP/IP/ETH

Socket API

Application

Kernel

User
space

Hardware

Framework

NIC

Device driver

TCP/IP/
ETH

Application

Kernel

User
space

Hardware

Buffers

NIC

Device driver

ApplicationUser
space

Hardware

Library

No Bypass Partly within Kernel Completely in
User Space

DPDK

• DPDK is a popular set of libraries and drivers for fast packet
processing.

• Originally designed for Intel processors

• Now running also on ARM and Power CPUs

• Runs mostly in Linux User space.

• Main libraries: multicore framework, huge page memory, ring buffers,
poll-mode drivers (networking, crypto etc)

• It is not a networking stack

DPDK

• Usage examples:

• Send and receive packets within minimum number of CPU cycles

• E.g. less than 80 cycles

• Fast packet capture algorithms

• Running third-party stacks

• Some projects demonstrated 100’s of millions packets per seconds

• But with limited functionality

• E.g. as a software switch / router

What are the challenges ahead?

Designing new network devices

• A decade ago: “Can we implement this feature?”

• Today: “Is this feature worth implementing, given the design
constraints?”

The resource wall

• Network silicon die > 20 Billion transistors (2019)

• Limited by:

• Power density

• Die size

• Manufacturing feasibility

PKT

Data centre networks

Switch system

Line card Fabric card Fabric card Fabric card Line card

PKT

Why waste resources?
in n tier network

O(n×(Switching+2×I/O+2×NIF)+n×(Ingress Processing + Egress Processing + Queueing))

O(n×(Switching+2×I/O+2×NIF)+1×(Ingress Processing + Egress Processing + Queueing))

0
2
4
6
8

10
12
14
16
18
20

64 320 576 832 108813441600

R
eq

ui
re

d
Pa

ra
lle

lis
m

Packet Size [B]

12.8Tbps Switches! 32×400GE!

Lets convert to packet rate requirements:

5800 Mpps @ 256B (100GE→38.7Mpps)

19050 Mpps @ 64B (100GE→150Mpps)

But clock rate is only ~1GHz….

The switch pipeline

Observation:

To support full line rate for all packet sizes, network devices
need to process multiple packets each and every clock cycle.

The age of multi core has reached switching…

The single-pipeline switch

... Surely it has little effect on real workloads…

Assuming VXLAN headers and 1500B NIC MTU

Using traces from Dukic et al., “Is advance knowledge of flow sizes a plausible assumption?”, NSDI’19

The switch pipeline

Bus Width Data-path Utilization
TensorFlow KMeans PageRank Web Server

256B 97% 97.6% 96.2% 97.3%
512B 95.8% 97.6% 92.9% 96.4%

1024B 71.1% 73.2% 68% 72.7%

• Example: Building DC with 100K servers (2500 ToR switches)
• Option 1 – Link bundle of 1 (L=1):

–6.4Tbps Fabric Switch, 256×25G
–Requires 2 Tiers
#fabric-switches = 1172

• Option 2 – Link bundle of 4 (L=4):
–6.4Tbps Fabric Switch, 64×100G
–Requires 3 Tiers
#fabric-switches = 1954 (×1.66 more)

Do data centre networks scale?

In a network of 𝑛𝑛 tiers
scale is 𝑂𝑂(𝐿𝐿−𝑛𝑛)

 Significant resources are wasted within the network fabric

 Aggregating links into ports limits the scalability of the network

 Misaligned packet sizes require significant resource overprovisioning (or
lead to performance loss)

 To support full line rate for all packet sizes, network devices need to
process multiple packets each and every clock cycle.

Scalability limitations

What should we do?

• Think before you code
• Make it easier for the network: batching, large packets, …

• Think again: do you really need this feature ?
• Maybe there is a different way to get the same results?

• Maybe a trade-off is worth the cost?

• Make the core of the network simple, push complexity to the
edge
• And then push complexity outside the DC

• Why? Latency, privacy, data is too big to move, …

• (not always possible)

My personal opinion

P51 Summary

• Architecture of high-performance network devices

• High throughput devices

• Low latency devices

• Programmable network devices

• This is just a little glimpse into high performance networking…

	P51: High Performance Networking
	Latency matters
	Latency within the data centre matters
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Legacy Embedded Processor)
	DMA
	Example (Legacy Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 16
	Slide Number 17
	PCIe architecture
	Slide Number 19
	NetFPGA Reference Projects
	Processing Overheads
	Processing Overheads
	Kernel Bypass
	Kernel Bypass - Examples
	DPDK
	DPDK
	Slide Number 27
	Designing new network devices
	The resource wall
	Slide Number 30
	Switch system
	Why waste resources?�in n tier network
	The switch pipeline
	The single-pipeline switch
	The switch pipeline
	Do data centre networks scale?
	Scalability limitations
	Slide Number 38
	My personal opinion
	P51 Summary

