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Project — Next Milestone

Due: Tuesday, 17/02/19 16:00
» Updated architecture
» Performance profile, including (but not limited to):
e 10G interconnect
e 10G module
« Data path (no logic)
» Architecture specific - e.g., memory access, recuirculation, externs etc.
» Expected overall speedup and throughput

 Memory requirements (if applicable)
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Very High Throughput Switches
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The Truth About Switch Silicon Design

12.8Tbps Switches!

Lets convert this to packet rate requirements:

5800 Mpps @ 2568

19048 Mpps @ 64B

But clock rate is only ~1GHz....
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Multi-Core Switch Design
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Multi Core Switch Design

 So what? Multi-core in CPUs for over a decade

 Network devices are not like CPUs:
— CPU: Pipeline - instructions, memory — data

—Switch: pipeline — data, memory — control

* Network devices have a strong notion of time
—Must process the header on cycle X
—Headers are split across clock cycles

—Pipelining is the way to achieve performance
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Multi Core Switch Design

« The limitations of processing packetsin the host:

« DPDK is a popular set of libraries and drivers
for fast packet processing

« DPDK can process a packetin 80 clock cycles

— Lets assume 4GHz clock (0.25ns/cycle)

—Can process 4 x 10° +80 = 50 x 10° pkts/sec
—50Mpps is not sufficient for 40GE. 30% of 64B packets at 100GE.
—Can dedicate multiple cores...

—And this is just sending / receiving, not operating on the packet!
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Multi Core Switch Design

e The problem with multi-core switch design: look up tables.
—Shared tables:
—need to allow access from multiple pipelines
— need to support query rate at packet rate
—Separate tables:
—wastes resources

—need to maintain consistency

— Not everyone agrees with this assumption
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Multi Core Switch Design
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High Throughput Interfaces
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Performance Limitations

o So far we discussed performance limitations due to:
e Data path
* Network Interfaces
» Other common critical paths include:
 Memory interfaces
» Lookup tables, packet buffers
» Host interfaces

 PCle, DMAengine
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Memory Interfaces

e On chip memories

« Advantage: fast accesstime

« Disadvantage: limited size (10’s of MB)
« Off chip memory:

* Advantage: large size (up to many GB)

e Disadvantage: accesstime, cost, area, power
* New technologies

« Offer mid-way solutions
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Example: QDR-IV SRAM

* Does 4 operations every clock: 2 READs, 2 WRITEs ODR SRAM

« Constantlatency

« Maximum random transaction rate: 2132 MT/s

e Maximum bandwidth: 153.3Gbps Switch

e Maximum density: 144Mb

« Example applications: Statistics, head-tail cache, descriptors lists
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Example: QDR-IV SRAM

* Does 4 operations every clock: 2 READs, 2 WRITEs

« DDR4 DRAM: 2 operations every clock QDR SRAM
e Constantlatency

« DDR4 DRAM: variable latency
e Maximum random transaction rate: 2132 MT/s

« DDR4 DRAM: 20MT/s (worst case! tr-~50ns) Switch

« DDRA4theoretical best case 3200MT/s

e Maximum bandwidth: 153.3Gbps

e DDR4 DRAM maximum bandwidth: 102.4Gbps (for 32b (2x16) bus)
 Maximum density: 144Mb

e DDR4 maximum density: 16Gb
« Example applications: Statistics, head-tail cache, descriptors lists

* No longer applicable: packet buffer
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Random Memory Access

« Random accessis a “killer” when accessing DRAM based memories
* Due to strong timing constraints
o Examples: rules access, packet buffer access

 DRAMSs perform well (better) when there is strong locality or when
accessing large chunks of data

* E.g. large cache lines, files etc.
e Large enough to hide timing constraints

e E.g.for 3200MT/s, 64b bus: 50ns~ 1KB
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Memory Access Pattern vs Performance

Memory Throughput vs Access Pattern

e
o N b~
o O O

Throughput [Gbps]
(00]
o

60

: I I I .

- l l . l
0

Sequential Read Sequential Write Random Read  Random Write Random R/W
mDDR3 mDDR4

DDR3 on NetFPGA SUME, 1600MT/s
DDR4 on VCU1525, 2400MT/s




Memory Access Pattern vs Performance

Memory Utilization vs Access Pattern
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Example: PCl Express Gen 3, x8

» The theoretical performance profile:
« PCle Gen 3 — each lane runs at 8Gbps

* ~97% link utilization (128/130 coding, control overheads)
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Example: PCl Express Gen 3, x8

 Actual throughput on VC709, using Xilinx reference project:
(same FPGA as NetFPGA SUME)

PCle Throughput - Network to CPU
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Flow Control




Crossing Clock Domains

» Last week we discussedthe clock frequency required in different places

In the design.
» Crossing clock domains requires careful handling
Data In 4 x 25G

Clkin .v .v

Write CIk
. —
Write Ptr
Read CIlk
Data Out 10 x 10G
Asynchronous FIFO Gear Box Synchronizer
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Crossing Clock Domains

 Why do we care about clock domain crossing?
* Adds latency
« The latency is not deterministic
e But bounded
* Crossing clock domains multiple times increases the jitter
» Using a single clock is often not an option:
 Insufficient packet processing rate
« Multiple interface clocks

* Need speed up (e.g., to handle control events)
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Flow Control

* The flow of the data through the device (the network) needs to be
regulated

» Different events may lead to stopping the data:

e An indication from the destination to stop

Congestion (e.g. 2 ports sending to 1 port)

Crossing clock domains Data

Rate control

* ... Back pressure
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Flow Control

* Providing back pressure is not always allowed

* Insuch cases, need to make amendments in the design
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Flow Control

 Whatto do if an output queue is congested?
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Flow Control and Buffering

e Back pressure may take time

Stop Data
triggered stops

 Need to either:

» Assert back pressure sufficient time before traffic needs to stop
OR

* Provide sufficient buffering
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Flow Control and Buffering

Calculating buffer size:

1. Stop
triggered

“TdIINE

3. In-flight
data arrives

2. Data stops

Intuitively:
Nearby sender: Buffer size > Reaction time x Datarate
Remote sender: Buffer size > RTT x Data rate

Buffer size > (RTT + Reactiontime) x Data rate

a8 UNIVERSITY OF

" CAMBRIDGE



Flow Control and Buffering

Calculating buffer size:

1. Stop
triggered

AAREEER

3. In-flight
data arrives

2 switches, connected using 100m fibre, 10G port, instantaneous
response time:

Propagation delay in a fibre is 5ns/m

2. Data stops

Buffer size > 1us x 10Gbps = ~1.25KB
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Low Latency Switches
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How to lower the latency of a switch?

« Obvious option 1: Increase clock frequency
—E.g. change core clock frequency from 100MHz to 200MHz
—Half the time through the pipeline

NIF I

Scheduler
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How to lower the latency of a switch?

* Obvious option 1: Increase clock frequency

e Limitations:
— Frequency is often a property of manufacturing process
— Some modules (e.g. PCS) must work at a specific frequency (multiplications)

NIF I

Scheduler
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How to lower the latency of a switch?

* Obvious option 2: Reduce the number of pipeline stages
—Can you do the same in 150 pipeline stages instead of 200?
—Limitation: hard to achieve.

NIF |

Scheduler
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How to lower the latency of a switch?

« Can we achieve ~0 latency switch?

—Is there a lower bound on switch latency?
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