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Project – Next Milestone

Due: Tuesday, 17/02/19 16:00

• Updated architecture

• Performance profile, including (but not limited to):

• 10G interconnect

• 10G module

• Data path (no logic)

• Architecture specific - e.g., memory access, recuirculation, externs etc.

• Expected overall speedup and throughput

• Memory requirements (if applicable)



Very High Throughput Switches



12.8Tbps Switches!

Lets convert this to packet rate requirements:

5800 Mpps @ 256B

19048 Mpps @ 64B

But clock rate is only ~1GHz….

The Truth About Switch Silicon Design

0
2
4
6
8

10
12
14
16
18
20

50 250 450 650 850 1050 1250 1450

R
eq

ui
re

d 
Pa

ra
lle

lis
m

Packet Size [B]



Multi-Core Switch Design

Broadcom Tomahawk 3

Barefoot Tofino

Image sources: https://p4.org/assets/p4_d2_2017_programmable_data_plane_at_terabit_speeds.pdf
https://www.nextplatform.com/2018/01/20/flattening-networks-budgets-400g-ethernet/



• So what? Multi-core in CPUs for over a decade

• Network devices are not like CPUs:

– CPU: Pipeline - instructions, memory – data

–Switch: pipeline – data, memory – control

• Network devices have a strong notion of time

–Must process the header on cycle X

–Headers are split across clock cycles

–Pipelining is the way to achieve performance 

Multi Core Switch Design



• The limitations of processing packets in the host:

• DPDK is a popular set of libraries and drivers 
for fast packet processing

• DPDK can process a packet in 80 clock cycles

– Lets assume 4GHz clock (0.25ns/cycle)

–Can process 4 × 109 ÷ 80 = 50 × 106 pkts/sec

–50Mpps is not sufficient for 40GE. 30% of 64B packets at 100GE.

–Can dedicate multiple cores…

–And this is just sending / receiving, not operating on the packet!

Multi Core Switch Design



• The problem with multi-core switch design: look up tables.

–Shared tables: 

–need to allow access from multiple pipelines

– need to support query rate at packet rate

–Separate tables: 

–wastes resources

–need to maintain consistency

– Not everyone agrees with this assumption

Multi Core Switch Design



Multi Core Switch Design
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High Throughput Interfaces



Performance Limitations

• So far we discussed performance limitations due to:

• Data path

• Network Interfaces

• Other common critical paths include:

• Memory interfaces

• Lookup tables, packet buffers

• Host interfaces

• PCIe, DMA engine



Memory Interfaces

• On chip memories

• Advantage: fast access time 

• Disadvantage: limited size (10’s of MB)

• Off chip memory:

• Advantage: large size (up to many GB)

• Disadvantage: access time, cost, area, power

• New technologies

• Offer mid-way solutions



Example: QDR-IV SRAM

• Does 4 operations every clock: 2 READs, 2 WRITEs

• Constant latency

• Maximum random transaction rate: 2132 MT/s

• Maximum bandwidth: 153.3Gbps

• Maximum density: 144Mb

• Example applications: Statistics, head-tail cache, descriptors lists

Switch

QDR SRAM



Example: QDR-IV SRAM

• Does 4 operations every clock: 2 READs, 2 WRITEs
• DDR4 DRAM: 2 operations every clock

• Constant latency
• DDR4 DRAM: variable latency

• Maximum random transaction rate: 2132 MT/s
• DDR4 DRAM: 20MT/s (worst case! tRC~50ns)

• DDR4 theoretical best case 3200MT/s
• Maximum bandwidth: 153.3Gbps

• DDR4 DRAM maximum bandwidth: 102.4Gbps (for 32b (2x16) bus)
• Maximum density: 144Mb

• DDR4 maximum density: 16Gb
• Example applications: Statistics, head-tail cache, descriptors lists

• No longer applicable: packet buffer

Switch

QDR SRAM



Random Memory Access

• Random access is a “killer” when accessing DRAM based memories

• Due to strong timing constraints

• Examples: rules access, packet buffer access

• DRAMs perform well (better) when there is strong locality or when 
accessing large chunks of data

• E.g. large cache lines, files etc.

• Large enough to hide timing constraints

• E.g. for 3200MT/s, 64b bus: 50ns~ 1KB



Memory Access Pattern vs Performance
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Memory Access Pattern vs Performance
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Example: PCI Express Gen 3, x8 

• The theoretical performance profile:

• PCIe Gen 3 – each lane runs at 8Gbps

• ~97% link utilization (128/130 coding, control overheads)

• Data overhead – 24B-28B
(including headers and CRC)

• Configurable MTU
(e.g., 128B, 256B, …)
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Example: PCI Express Gen 3, x8 

• Actual throughput on VC709, using Xilinx reference project:
(same FPGA as NetFPGA SUME)

• This is so far from the 
performance profile…

• Why?
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Flow Control



• Last week we discussed the clock frequency required in different places 
in the design.

• Crossing clock domains requires careful handling

Crossing Clock Domains

Data In

Data Out

Clk In

Clk Out

Asynchronous FIFO
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Read Ptr

Synchronizer



• Why do we care about clock domain crossing?

• Adds latency

• The latency is not deterministic

• But bounded

• Crossing clock domains multiple times increases the jitter 

• Using a single clock is often not an option:

• Insufficient packet processing rate

• Multiple interface clocks

• Need speed up (e.g., to handle control events)

Crossing Clock Domains



Flow Control

• The flow of the data through the device (the network) needs to be 
regulated

• Different events may lead to stopping the data:

• An indication from the destination to stop

• Congestion (e.g. 2 ports sending to 1 port)

• Crossing clock domains

• Rate control

• …

Data

Back pressure



Flow Control

• Providing back pressure is not always allowed

• In such cases, need to make amendments in the design
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Flow Control

• What to do if an output queue is congested? 
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Flow Control and Buffering

• Back pressure may take time

• Need to either:

• Assert back pressure sufficient time before traffic needs to stop
OR

• Provide sufficient buffering

time

Data
stops

Stop
triggered



Flow Control and Buffering

Calculating buffer size:

Intuitively: 

Nearby sender: Buffer size ≥ Reaction time × Data rate

Remote sender: Buffer size ≥ RTT × Data rate

Buffer size ≥ (RTT + Reaction time) × Data rate

3. In-flight 
data arrives

2. Data stops 1. Stop
triggered

BufferSender



Flow Control and Buffering

Calculating buffer size:

2 switches, connected using 100m fibre, 10G port, instantaneous 
response time:
Propagation delay in a fibre is 5ns/m

Buffer size ≥ 1us × 10Gbps = ~1.25KB

3. In-flight 
data arrives

2. Data stops 1. Stop
triggered

BufferSender



Low Latency Switches



• Obvious option 1: Increase clock frequency

–E.g. change core clock frequency from 100MHz to 200MHz

–Half the time through the pipeline

How to lower the latency of a switch?
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• Obvious option 1: Increase clock frequency

• Limitations:
– Frequency is often a property of manufacturing process
– Some modules (e.g. PCS) must work at a specific frequency (multiplications)

How to lower the latency of a switch?
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• Obvious option 2: Reduce the number of pipeline stages

–Can you do the same in 150 pipeline stages instead of 200?

–Limitation: hard to achieve.

How to lower the latency of a switch?
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• Can we achieve ~0 latency switch?

–Is there a lower bound on switch latency?

How to lower the latency of a switch?
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