

P51: High Performance Networking

Lecture 3: High Throughput Devices

Bandwidth, Throughput and Goodput

- Bandwidth how much data can pass through a channel.
- Throughput how much data actually travels through a channel.
- Goodput is often referred to as application level throughput.

But bandwidth can be limited below link's capacity and vary over time, throughput can be measured differently from bandwidth etc.....

Speed and Bandwidth

- Higher bandwidth does not necessarily mean higher speed
- E.g., can mean the aggregation of links
 - 100G = 2x50G or 4x25G or 10x10G
 - A very common practice in interconnects

Packet Rate

- Throughput may change under different conditions
 - E.g., packet size
- Packet Rate: how many packets can be processed in a given amount of time
 - Also changes under different conditions
 - But often provides better insights

Switch Models

Switch Models

• A single packet mental model:

Circuit Switches

- Input A is connected to output X
- Example: a crossbar
 - Not the only option
- Used mostly in optical switching
 - No header processing!
- But also in electrical switching
 - E.g., high frequency trading (HFT)
- Scheduling is a limiting factor

Packet Switches

In a circuit switch:

The path is determined at time of connection establishment

- In a packet switch, packets carry a destination field
- Need to look up destination port on-the-fly
 - Two consecutive packets may head to different destinations

Pipelining

To achieve high throughput, packet switches are pipelined:

Store and Forward

- Wait for the entire packet to arrive
- Check the FCS, then start processing
 - FCS frame check sequence, terminates the packet
- Once the packet is checked, it starts propagating through the pipeline
 - Not necessarily the entire packet

Cut Through

- Start processing the packet as soon as the first chunk arrives
 - Does not wait for the FCS
- If FCS error is detected, the packet is dropped somewhere along the pipeline

Measuring Performance

- Bandwidth: number of bits (or bytes) through the channel every unit of time
 - One way to calculate: bus width × clock frequency

Measuring Performance

Throughput = clock frequency x bus width?

Measuring Performance

Throughput ≠ clock frequency x bus width!

Example: NetFPGA SUME – Switch Throughput

Performance Profile

- An aggregation of the performance estimates of a device
- Considering both I/O and modules
- Helps identify bottlenecks
- Informs design decisions, e.g.:
 - -Bus width
 - -Clock frequency

Packet Rate "on the wire"

- Calculating the packet rate on (e.g.,) 10GE port:
- Line rate = 10.3125Gbps
- Line coding 64b/66b
 - $-10.3125G \times 64/66 = 10Gbps$
- Before each Ethernet packet there is 8B preamble and 12B Inter Packet Gap (IPG)
 - Data rate: $10.3125G \times 64/66 \times (packet size) / (packet size + 12B + 8B)$
- Divide it by packet size and convert bytes to bits:
 - Packet rate: $10.3125G \times 64/66 / ((packet size + 12B +8B) * 8)$

- "Cycles per packet"
 - How many cycles are required to process a single packet within a module?
- Example 1: Cycles required to fit a packet into the data bus
- On NetFPGA SUME:
 - -10G Port: 64b (8B) wide
 - -64B packet: 8 clocks
 - -65B packet: 9 clocks
 - -Data path: 256b (32B) wide
 - -64B packet: 2 clocks
 - -65B packet: 3 clocks

- Why 64b bus in the 10G port?
 - 64b \times 156.25MHz clock = 10Gbps
 - Also, 64b fits the 64b/66b coding
 - No need for a gear box
- Why 256b bus in the data path?
 - Need to process data from 4 × 10G ports
 - $-4 \times 64b = 256b$
- Important! Packet size may differ between modules
 - 10G port packet size includes FCS, in the data path FCS is not included
 - -4B difference

- "Cycles per packet"
 - How many cycles are required to process a single packet within a module?
- Example 2: Packet processing
 - How many cycles are required to process the packet's header?
 - E.g. Look up in the memory
 - Actions that are not pipelined
- Example 3: Scheduling / Arbitration
 - How many cycles are required to schedule a packet?
 - E.g. can a new packet enter the arbiter every clock cycle?

Performance profile - example

- 10G Port clock 156.25MHz
- Data path clock 200MHz

Packet Size [B]	"Wire" packet rate [Mpps]	_	MAX packet rate (10G port) [Mpps]	"data path" packet rate [Mpps]	packet	MAX packet rate (data path) [Mpps]	Speed Up
64	14.88	8	19.53	59.52	2	100	1.68
65	14.71	9	17.36	58.82	3	66.66	1.14
66	14.53	9	17.36	58.14	3	66.66	1.15

Performance profile - example

- 10G Port clock 156.25MHz
- Data path clock 150MHz

Packet Size [B]	"Wire" packet rate [Mpps]	Clocks per packet (10G port)	MAX packet rate (10G port) [Mpps]	"data path" packet rate [Mpps]	packet	rate	Speed Up
64	14.88	8	19.53	59.52	2	75	1.26
65	14.71	9	17.36	58.82	3	50	0.85
66	14.53	9	17.36	58.14	3	50	0.86

Example: NetFPGA SUME – Switch Throughput

- Question:
- 10G Port supports full line rate at 156.25MHz
- Data path supports full line rate for 64B packets at 150MHz (measured!)
- But data path input is 4 x 10G port...

- How do we get 100% throughput at a lower data path frequency?
- And what did we neglect?

The Truth About Switch Silicon Design

12.8Tbps Switches!

Lets convert this to packet rate requirements:

5800 Mpps @ 256B

19048 Mpps @ 64B

But clock rate is only ~1GHz....

Multi-Core Switch Design

Project

Project

- Today
 - P4
 - Proposal and aims
- Next Week
 - Revised proposals
 - Architecture device level + block level
 - Dividing the effort

Architecture (Cut through switch, Verilog design)

Architecture (P4Debug, P4 pipeline)

P4DNS: Architecture

Woodruff et al., "P4DNS: In-network DNS", EuroP4 2019

P4DNS: (Real) Architecture

Data Plane (P4) + Control Plane (Python)

Woodruff et al., "P4DNS: In-network DNS", EuroP4 2019

