
1

Object Oriented Programming
Dr Andrew Rice

IA CST and NST (CS)

Michaelmas 2019/20

2

With thanks to Dr Robert Harle who
designed this course and wrote the

material.

3

The OOP Course

 So far you have studied some procedural programming in Java
and functional programming in ML

 Here we take your procedural Java and build on it to get
object-oriented Java

 You have practical work too

 This course complements the practicals

 Some material appears only here

 Some material appears only in the practicals

 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate.
4

Practical work is on chime.cl.cam.ac.uk

 Selection of exercises roughly mapped to
lectures

 I want to write more so let me know where
you see holes

 Attempt to get a bit closer to what you
would do in industry

 Git version control system

 Automated testing

5

Drop-in sessions

 Thursday afternoons are drop-in help
sessions

 Intel Lab: 2-4pm

 21st Nov, 28th Nov, 16th Jan, 23rd Jan

 I will be there with some demonstrators

 Come talk to me about Java

 Bring your laptop if you want some help
with your code

6

Other ways to get help

 Use the discussion forum on Moodle

 Do not post your code or give answers: you’ll spoil
the practical work for others

 If you need to include your code then please
include a link to chime instead

 Please answer your own question if you resolve it!

 Your supervisor

 They can see your work on chime (if they ask me)

 Please do not email me directly – I get a lot of
email

7

Assessment (1 of 2): Tripos exam

 There are two OOP questions in Paper 1

 You will need to choose one of them

 Previous year’s questions for this course
are a good example of what you might be
asked this year

 Only material that I lecture is examinable

8

Assessment (2 of 2): Take-home test

 9am on 21st April – 9am on 23rd April 2020

 Pass/fail – worth 2 ticks

 I will aim for an exercise which will take about
4 hours (but there is big variance on this)

 Take-home test will be done through chime too

 But no automated tests

 I’ll provide a mock test for you to try

9

Outline

1.How to do a practical exercise

2.Types, Objects and Classes

3. Designing Classes

4. Pointers, References and Memory

5. Inheritance

6. Polymorphism

7. Lifecycle of an Object

8. Error Handling

9. Java Collections

10. Object Comparison

11. Design Patterns

12. Design Pattern (cont.)

10

Books and Resources I

 OOP Concepts

 Look for books for those learning to first program in an OOP
language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another OOP
language

 Java specification book: http://java.sun.com/docs/books/jls/

 Lots of good resources on the web

 Design Patterns by Gamma et al.

 My favourites

 Effective Java by Joshua Bloch

 Java Puzzlers by Joshua Bloch (this one is just for fun)

11

Books and Resources II

 Also check the course web page

 Updated notes (with annotations)

 Videos of the lectures (if I can make it work)

 Links to practical work

 Code from the lectures

 Sample tripos questions

 Suggested supervision work

 And the Moodle site “Computer Science Paper 1 (1A)”

 Watch for course announcements

h�p://www.cl.cam.ac.uk/teaching/current/OOProg/

12

Lecture 1:

How to do a practical exercise

13

Objectives

 To understand the workflow and tools to
complete a practical exercise

14

We’d like to use your code for research

 Research into teaching and learning is
important!

 We want your consent to use your code
and share it with others

 We will ‘anonymise’ it

 Consent is optional and it has no impact
on your grades or teaching if you do not

Demo: Log into chime and opt-in/opt-out

15

We use git over SSH for version control

 Same setup as github and
gitlab.developers.cam.ac.uk

 Generate an SSH key

 Put the public part of the key on chime

Demo: creating an SSH key and adding it
to chime

16

Practical exercises are linked online

 Go to the course webpages to find links to
the practical exercises

 Follow the link and start the task

Demo: starting a task

17

Software licensing and copyright

 Complicated area…

 The default is that if you write software you own
the copyright and other people can’t copy it

 We add licenses to make it clear what people can
and can’t do

 The initial code for the tasks is Apache 2
Licensed

 The system assumes your changes will be
licensed the same...but they don’t have to be

 Apache 2 License lets you do almost anything

 Except remove or change the license

Demo: licenses on your code

18

Using an IDE is recommended!

 I’ll use IntelliJ here but you can use
whatever you like

 You only need the (free) ‘community
edition’

 IntelliJ has built-in support for git but you
can use the command line or other tools if
you prefer

 Sourcetree on Mac is really nice

Demo: cloning your task into a new project

19

Maven is a build system for Java

 In the pre-arrival course you built your
code manually

 This doesn’t scale well

 Use a build system!

 There are many build systems for Java

 All of them have strengths and weaknesses

 We will use Maven in this course

Demo: Maven pom file and build

20

Be careful about what you check in

 Imagine you are working in a team on a
shared code base

 Other engineers don’t want your IDE
settings

 Or your temp files

 Or your class files

 Or personal information!!!

 We use .gitignore to tell git to ignore some
files

21

IntelliJ can run tests and a debugger

Demo: solve the task, run the tests, debug
 something

22

Git can be very simple

 Your local repository contains all
information

 Local workflow: add files, then commit
them

 There’s another copy on chime

 You use this as a remote

 It’s default name is ‘origin’

 Full workflow: pull updates from remote,
add and commit files, push back to
remote

23

Git can be complicated

 You can have as many remotes as you
like

 You can have branches and merge
changes and and and…

 Just remember to pull before you make
any changes and push when you are done
and you should avoid any complexity

Demo: git with IntelliJ

24

Chime can run acceptance tests for you

 These are designed to give you feedback on
your solution and whether its right

 These are hard to write so please help me
improve them

 If your solution was wrong but passed the tests then
let me know

 And vice-versa

Demo: run tests on chime

25

You should be writing your own tests

 Some tasks will measure instruction
coverage

 In this course we’re interested in ‘unit tests’

 Test a single, small piece of functionality

Demo: running tests with coverage in
IntelliJ, writing a test

26

Lecture 2:

Types, Objects and Classes

27

Objectives

 Remember procedural Java

 Understand function overloading

 Know the difference between a class and
an object

 Know how to construct an object

28

Types of Languages

 Declarative - specify what to do, not how
to do it. i.e.
 E.g. HTML describes what should appear on a web page,

and not how it should be drawn to the screen

 E.g. SQL statements such as “select * from table” tell a
program to get information from a database, but not how to
do so

 Imperative – specify both what and how

 E.g. “triple x“ might be a declarative instruction that you
want the variable x tripled in value. Imperatively we would
have “x=x*3” or “x=x+x+x”

29

Top 20 Languages 2016

30

Top 20 Languages 2016 (Cont)

31

Top 20 Languages 2016 (Cont Cont)

32

Top 20 Languages 2016 (Cont Cont Cont)

33

ML as a Functional Language

 Functional languages are a subset of declarative
languages

 ML is a functional language

 It may appear that you tell it how to do everything, but
you should think of it as providing an explicit example
of what should happen

 The compiler may optimise i.e. replace your
implementation with something entirely different but
100% equivalent.

let rec factorial n =
 match n with
 | 0 -> 1
 | 1 -> 1
 | n -> n * (factorial (n – 1)); 34

Function Side Effects

 Functions in imperative languages can use or
alter larger system state → procedures

Maths:m(x,y) = xy

ML: fun m(x,y) = x*y;

Java:

int y = 7;

int m(int x) {

y=y+1;

return x*y;

}

Side e(ect

35

void Procedures

 A void procedure returns nothing:

int count=0;

void addToCount() {

 count=count+1;

}

Void is not quite the

same as unit in ML

count+=1 count++ ++count

36

Control Flow: Looping

for(ini�alisa�on; termina�on; increment)

while(boolean_expression)

for (int i=0; i<8; i++) …

int j=0; for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0; while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

Demo: prin9ng the numbers

from 1 to 10

37

Control Flow: Looping Examples

int arr[] = {1,2,3,4,5};

for (int i=0; i<arr.length;i++) {

System.out.println(arr[i]);

}

int i=0;

while (i<arr.length) {

System.out.println(arr[i]);

i=i+1;

}

38

Control Flow: Branching I

 Branching statements interrupt the current control flow

 return

 Used to return from a function at any point

boolean linearSearch(int[] xs, int v) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) return true;

 }

 return false;

}

39

Control Flow: Branching II

 Branching statements interrupt the current control flow

 break

 Used to jump out of a loop

boolean linearSearch(int[] xs, int v) {

 boolean found=false;

 for (int i=0;i<xs.length; i++) {

if (xs[i]==v) {

found=true;

break; // stop looping

}

 }

 return found;

}

40

Control Flow: Branching III

 Branching statements interrupt the current control flow

 continue

 Used to skip the current iteration in a loop

void printPositives(int[] xs) {

 for (int i=0;i<xs.length; i++) {

if (xs[i]<0) continue;

System.out.println(xs[i]);

 }

}

41

Immutable to Mutable Data

- val x=5;

> val x = 5 : int

- x=7;

> val it = false : bool

- val x=9;

> val x = 9 : int

int x=5;

x=7;

int x=9;

for(int i=0;i<10;i++) {

 System.out.println(i);

}

Java

ML

ML is a language of expressions

Java is a language of statements and expressions

Evaluates to the value 7 with type int

Does not evaluate to a value and has no type

Demo: returning vs prin9ng 42

Types and Variables

 Java and C++ have limited forms of type inference

 The high-level language has a series of primitive (built-in)
types that we use to signify what’s in the memory
 The compiler then knows what to do with them

 E.g. An “int” is a primitive type in C, C++, Java and many
languages. In Java it is a 32-bit signed integer.

 A variable is a name used in the code to refer to a specific
instance of a type
 x,y,z are variables above

 They are all of type int

var x = 512;

int y = 200;

int z = x+y;

43

E.g. Primitive Types in Java

 “Primi9ve” types are the built in ones.

 They are building blocks for more complicated types that we will be
looking at soon.

 boolean – 1 bit (true, false)

 char – 16 bits

 byte – 8 bits as a signed integer (-128 to 127)

 short – 16 bits as a signed integer

 int – 32 bits as a signed integer

 long – 64 bits as a signed integer

 Hoat – 32 bits as a Hoa9ng point number

 double – 64 bits as a Hoa9ng point number

Widening

Vs

Narrowing

Demo: int → byte overHow 44

Overloading Functions

 Same function name

 Different arguments

 Possibly different return type

 But not just a different return type

int myfun(int a, int b) {…}

Hoat myfun(Hoat a, Hoat b) {…}

double myfun(double a, double b) {...}

int myfun(int a, int b) {…}

Hoat myfun(int a, int b) {…} x

45

Function Prototypes

 Functions are made up of a prototype and
a body

 Prototype specifies the function name,
arguments and possibly return type

 Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

46

Custom Types

type 'a seq =

 | Nil

 | Cons of 'a * (unit -> 'a seq);

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

}

47

State and Behaviour

type 'a seq =

 | Nil

 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

48

State and Behaviour

type 'a seq =

 | Nil

 | Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 void add(Hoat vx, Hoat vy, Hoat vz) {

 x=x+vx;

 y=y+vy;

 z=z+vz;

 }

}

STATE

BEHAVIOUR

49

Loose Terminology (again!)

Behaviour

Func9ons

Methods

Procedures

State

Fields

Instance Variables

Proper9es

Variables

Members

50

Classes, Instances and Objects

 Classes can be seen as templates for representing
various concepts

 We create instances of classes in a similar way.
e.g.

makes two instances of class MyCoolClass.

 An instance of a class is called an object

MyCoolClass m = new MyCoolClass();

MyCoolClass n = new MyCoolClass();

51

Defining a Class

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 void add(Hoat vx, Hoat vy, Hoat vz) {

 x=x+vx;

 y=y+vy;

 z=z+vz;

 }

}

52

Constructors

 You will have noticed that the RHS looks rather like a function
call, and that's exactly what it is.

 It's a method that gets called when the object is constructed,
and it goes by the name of a constructor (it's not rocket
science). It maps to the datatype constructors you saw in ML.

 We use constructors to initialise the state of the class in a
convenient way

 A constructor has the same name as the class

 A constructor has no return type

MyObject m = new MyObject();

53

Constructors with Arguments

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 Vector3D(�oat xi, �oat yi, �oat zi) {

 x=xi;

 y=yi;

 z=zi;

 }

 // ...

}

Vector3D v = new Vector3D(1.f,0.f,2.f);

You can use ‘this’ to disambiguate names

if needed: e.g. this.x = xi;

54

Overloaded Constructors

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

 Vector3D(�oat xi, �oat yi, �oat zi) {

 x=xi;

 y=yi;

 z=zi;

 }

 Vector3D() {

 x=0.f;

 y=0.f;

 z=0.f;

 }

 // ...

}

Vector3D v = new Vector3D(1.f,0.f,2.f);

Vector3D v2 = new Vector3D();

55

Default Constructor

public class Vector3D {

 Hoat x;

 Hoat y;

 Hoat z;

}

Vector3D v = new Vector3D();

 No constructor provided

 So blank one generated with
no arguments

If you don’t ini9alise a Zeld it

gets set to the ‘zero’ value for

that type (don’t do this)

If you provide any constructor

then the default will not be

generated

56

Lecture 3:

Designing Classes

57

Objectives

 Understand the static keyword

 Be able to identify what should be an
object

 Start thinking about why OOP helps with
modularity

 Know what encapsulation means

 Know what the access modifiers mean

 Be able to make an immutable object

 Understanding of simple generics

58

Class-Level Data and Functionality I

 A static field is created only once in the program's execution,
despite being declared as part of a class

public class ShopItem {

 Hoat mVATRate;

 sta9c Hoat sVATRate;

}

One of these created every

9me a new ShopItem is

instan9ated. Nothing keeps

them all in sync.

Only one of these created ever. Every

ShopItem object references it.

sta9c => associated with the class

instance => associated with the object

59

Class-Level Data and Functionality II

 Shared between
instances

 Space efficient

17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {

 public sta9c void main(String[] args) {

 ...

 }

}

 Also static methods:

instance Zeld

(one per object)

sta9c Zeld

(one per class)
sta9c Zelds are good for

constants. otherwise use

with care.

60

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

public class Math {

 public Hoat sqrt(Hoat x) {…}

 public double sin(Hoat x) {…}

 public double cos(Hoat x) {…}

}

…

Math mathobject = new Math();

mathobject.sqrt(9.0);

...

public class Math {

 public sta9c Hoat sqrt(Hoat x) {…}

 public sta9c Hoat sin(Hoat x) {…}

 public sta9c Hoat cos(Hoat x) {…}

}

…

Math.sqrt(9.0);

...

vs

61

What Not to Do

 Your ML has doubtless been one big file where
you threw together all the functions and value
declarations

 Lots of C programs look like this :-(

 We could emulate this in OOP by having one
class and throwing everything into it

 We can do (much) better

62

Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using grammar

 Noun → Object

 Verb → Method

“A quiz program that asks questions

and checks the answers are correct”

63

UML: Representing a Class Graphically

Ques9on

- prompt : String

- solu9on: String

+ ask() : void

+ check(answer : String) : boolean Behaviour

State

“+” means

public access

“-” means

private access

64

The has-a Association

Quiz Ques9on1 0...*

 Arrow going left to right says “a Quiz has zero or more
questions”

 Arrow going right to left says “a Question has exactly 1 Quiz”

 What it means in real terms is that the Quiz class will contain
a variable that somehow links to a set of Question objects,
and a Question will have a variable that references a Quiz
object.

 Note that we are only linking classes: we don't start drawing
arrows to primitive types.

Demo: implement quiz

65

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;

public String someText;

public void someMethod() {

}

public sta9c void main(String[] args) {

MyFancyClass c = new

MyFancyClass();

}

}

Class name

Class state (proper9es that an

object has such as colour or size)

Class behaviour (ac9ons an

object can do)

'Magic' start point for

the program (named

main by conven9on)

Create an object of type

MyFancyClass in memory
Create a reference to a

MyFancyClass object and call

it c

Access modiZer

66

OOP Concepts

 OOP provides the programmer with a
number of important concepts:

 Modularity

 Code Re-Use

 Encapsulation

 Inheritance (lecture 5)

 Polymorphism (lecture 6)

 Let's look at these more closely...

67

Modularity and Code Re-Use

 You've long been taught to break down complex
problems into more tractable sub-problems.

 Each class represents a sub-unit of code that (if
written well) can be developed, tested and updated
independently from the rest of the code.

 Indeed, two classes that achieve the same thing
(but perhaps do it in different ways) can be swapped
in the code

 Properly developed classes can be used in other
programs without modification.

68

Encapsulation I

class Student {

 int age;

};

void main() {

 Student s = new Student();

 s.age = 21;

 Student s2 = new Student();

 s2.age=-1;

 Student s3 = new Student();

 s3.age=10055;

}

69

Encapsulation II

class Student {

 private int age;

 boolean setAge(int a) {

 if (a>=0 && a<130) {

age=a;

return true;

 }

 return false;

 }

 int getAge() {return age;}

}

void main() {

 Student s = new Student();

 s.setAge(21);

}
70

Encapsulation III

class Loca9on {

 private Hoat x;

 private Hoat y;

 Hoat getX() {return x;}

 Hoat getY() {return y;}

 void setX(Hoat nx) {x=nx;}

 void setY(Hoat ny) {y=ny;}

}

class Loca9on {

 private Vector2D v;

 Hoat getX() {return v.getX();}

 Hoat getY() {return v.getY();}

 void setX(Hoat nx) {v.setX(nx);}

 void setY(Hoat ny) {v.setY(ny);}

}

Encapsula9on =

1) hiding internal state

2) bundling methods with state

71

Access Modifiers

Everyone Subclass Same
package
(Java)

Same
Class

private X

package
(Java)

X X

protected X X X

public X X X X

Surprising!

72

Immutability

 Everything in ML was immutable (ignoring the
reference stuff). Immutability has a number of
advantages:

 Easier to construct, test and use

 Can be used in concurrent contexts

 Allows lazy instantiation

 We can use our access modifiers to create
immutable classes

 If you mark a variable or field as ‘final’ then it can’t
be changed after initalisation

Demo: NotImmutable

73

Parameterised Classes

 ML's polymorphism allowed us to specify functions that could
be applied to multiple types

 In Java, we can achieve something similar through Generics;
C++ through templates

 Classes are defined with placeholders (see later lectures)

 We fill them in when we create objects using them

> fun self(x)=x;

val self = fn : 'a -> 'a

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

Fun fact: iden9ty is the only

func9on in ML with type ‘a → ‘a

74

Creating Parameterised Types

 These just require a placeholder type

class Vector3D<T> {

 private T x;

 private T y;

 T getX() {return x;}

 T getY() {return y;}

 void setX(T nx) {x=nx;}

 void setY(T ny) {y=ny;}

}

75

Generics use type-erasure

class Vector3D<T> {

 private T x;

 private T y;

 T getX() {return x;}

 T getY() {return y;}

 void setX(T nx) {x=nx;}

 void setY(T ny) {y=ny;}

}

Vector3D<Integer> v =

 new Vector3D<>();

Integer x = v.getX();

v.setX(4);

class Vector3D {

 private Object x;

 private Object y;

 Object getX() {return x;}

 Object getY() {return y;}

 void setX(Object nx) {x=nx;}

 void setY(Object ny) {y=ny;}

}

Vector3D v = new Vector3D();

Integer x = (Integer)v.getX();

v.setX((Object)4);

a_er type

checking

this

compiles

to

------>

76

Lecture 4:

Pointers, References and Memory

77

Objectives

 Know what a call-stack and a heap are

 Understand the difference between
pointers and Java references

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>> static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>> sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>
static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s
sum()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 arg1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 arg1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 arg1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 arg1

return

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

sum(0) 10
0 n

return

m
r

r
m

Return the value 0 and then

execute instruc9on 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

0
1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m

sum(1) 10 return
1 n

r
m

0
1

Return the value 1 and then

execute instruc9on 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m1

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

sum(2) 10 return
2 n

r
m1

3

Return the value 3 and then

execute instruc9on 10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

3
6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s

sum(3) 2 return
3 n

m
r

3
6

Return the value 6 and then

execute instruc9on 2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

>>

sum()static int sum() {
 int s = sum(3);
 return s;
}

static int sum(int n) {
 if (n == 0) {
 return 0;
 }
 int m = sum(n - 1);
 int r = m + n;
 return r;
}

s6

Return the value 6 and then

execute whatever called us

110

Distinguishing References and Pointers

Pointers References
in Java

Can be unassigned
(null)

Yes Yes

Can be assigned to
established object

Yes Yes

Can be assigned to an
arbitrary chunk of
memory

Yes No

Can be tested for validity No Yes

Can perform arithmetic Yes No

111

References in Java

 Declaring unassigned

 Defining/assigning

SomeClass ref = null; // explicit

SomeClass ref2; // implicit

// Assign

SomeClass ref = new ClassRef();

// Reassign to alias something else

ref = new ClassRef();

// Reference the same thing as another reference

SomeClass ref2 = ref;
112

Lecture 5: Inheritance

113

Objectives

 Understand what pass-by-value means in
Java

 Know the difference between code and
type inheritance

 Can apply narrowing and widening to
subtyping relations

 Appreciate how fields are inherited and
shadowed

 Know how to override a method

114

Argument Passing

 Pass-by-value. Copy the value into a new one in
the stack

void test(int x) {...}

int y=3;

test(y);

void test(Object o) {…}

Object p = new Object();

test(p);

The value passed here is the

reference to the object.

When run the test method’s

argument o is copy of the reference

p that points to the same object

115

Passing Procedure Arguments In Java

class Reference {

 public sta9c void update(int i, int[] array) {

 i++;

 array[0]++;

 }

 public sta9c void main(String[] args) {

 int test_i = 1;

 int[] test_array = {1};

 update(test_i, test_array);

 System.out.println(test_i);

 System.out.println(test_array[0]);

 }

}

prints 1

prints 2

the value here is an int

the value here is a reference to an int array

Demo: reference aliasing 116

Inheritance I

class Student {

 private int age;

 private String name;

 private int grade;

 ...

}

class Lecturer {

 private int age;

 private String name;

 private int salary;

 …

}

 There is a lot of duplication here

 Conceptually there is a hierarchy that we're

not really representing

 Both Lecturers and Students are people

(no, really).

 We can view each as a kind of

specialisation of a general person

 They have all the properties of a person

 But they also have some extra stuff

specific to them

Demo: expression evaluator

117

Inheritance II

class Person {

 protected int age;

 protected String name;

 ...

}

class Student extends Person {

 private int grade;

 ...

}

class Lecturer extends Person {

 private int salary;

 ...

}

 We create a base class (Person)

and add a new notion: classes can

inherit properties from it

 Both state, functionality and type

 We say:

 Person is the superclass of

Lecturer and Student

 Lecturer and Student subclass

Person

‘extends’ in Java gives you both code- and type-inheritance

Note: Java is a nomina*ve type language (rather than a structurally

typed one)

If you mark a class ‘Znal’ then it can’t be extended and ‘Znal’ methods

can’t be overridden
118

Liskov Substitution Principle

 If S is a subtype of T then objects of type T
may be replaced with objects of type S

 Student is a subtype of Person so
anywhere I can have a Person I can have
a Student instead

119

Representing Inheritance Graphically

exam_score

Student

salary

Lecturer

name

age

Person
Also known as an “is-a” rela9on

As in “Student is-a Person”

S
p

e
cia

l ise

G
e

n
e

ra
li

se

name and age

inherited if not

private
120

Casting

 Many languages support type casting
between numeric types

 With inheritance it is reasonable to type
cast an object to any of the types above it
in the inheritance tree...

int i = 7;

Hoat f = (Hoat) i; // f==7.0

double d = 3.2;

int i2 = (int) d; // i2==3

121

Widening

 Student is-a Person

 Hence we can use a Student object
anywhere we want a Person object

 Can perform widening conversions
(up the tree)

Person

Student

Student s = new Student()

Person p = s;

public void print(Person p) {...}

Student s = new Student();

print(s);

Implicit widening 122

Narrowing

 Narrowing conversions move down
the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS at run9me. Not enough info

In the real object to represent

a Student

public void print(Person p) {

 Student s = (Student) p;

}

Student s = new Student();

print(s);

OK because underlying object

really is a Student

123

Fields and Inheritance

class Person {

 public String name;

 protected int age;

 private double height;

}

class Student extends Person {

 public void do_something() {

 name=”Bob”;

 age=70;

 height=1.70;

 }

}

Student inherits this as a public

variable and so can access it

Student inherits this as a

protected variable and so can

access it

Student inherits this but as a

private variable and so cannot

access it directly

This line doesn’t compile

124

Fields and Inheritance: Shadowing

class A { public int x; }

class B extends A {

 public int x;

}

class C extends B {

 public int x;

 public void ac9on() {

 // Ways to set the x in C

 x = 10;

 this.x = 10;

 // Ways to set the x in B

 super.x = 10;

 ((B)this).x = 10;

 // Ways to set the x in A

 ((A)this.x = 10;

 }

}

‘this’ is a reference to the current object

‘super’ is a reference to the parent object

all classes extend Object (capital O)

if you write ‘class A {}’ you actually get

‘class extends Object {}’

Object a = new A(); // subs9tu9on principle

Don’t write code like this. No-one will

understand you!

125

Methods and Inheritance: Overriding

 We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {

 public void dance() {

 jiggle_a_bit();

 }

}

class Student extends Person {

 public void dance() {

 body_pop();

 }

}

class Lecturer extends Person {

 public void dance(int dura9on) {...}

}

Person deZnes an

original implementa9on

of dance()

Lecturer inherits the

original implementa9on

and jiggles

Student overrides the

original

Know the di(erence: overriding vs overloading

Lecturer overloads the

inherited dance()

method
126

Abstract Methods

 Sometimes we want to force a class to implement a method
but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this

 It has no implementation whatsoever

class abstract Person {

 public abstract void dance();

}

class Student extends Person {

 public void dance() {

 body_pop();

 }

}

class Lecturer extends Person {

 public void dance() {

 jiggle_a_bit();

 }

}

127

Abstract Classes

 Note that I had to declare the class abstract too. This is
because it has a method without an implementation so
we can't directly instantiate a Person.

 All state and non-abstract methods are inherited as
normal by children of our abstract class

 Interestingly, Java allows a class to be declared abstract
even if it contains no abstract methods!

public abstract class Person {

 public abstract void dance();

}

128

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the class

or method is abstract

129

Lecture 6:

Polymorphism and Multiple Inheritance

130

Objectives

 Dynamic and static polymorphism

 Problems that arise from multiple code
inheritance

 Java interfaces provide multiple type
inheritance

131

Polymorphic Methods

 Assuming Person has a
dance() method, what should
happen here?

Student s = new Student();

Person p = (Person)s;

p.dance();

 General problem: when we refer to an object via a parent

type and both types implement a particular method: which

method should it run?

Demo: revisit expressions from last 9me

Polymorphism: values and variables can have more than one type

int eval(Expression e) {

}
can be Literal, Mult or Plus

132

Polymorphic Concepts I

 Static polymorphism

 Decide at compile-time

 Since we don't know what the true type of the
object will be, we just run the method based on
its static type

Student s = new Student();

Person p = (Person)s;

p.dance();

 Compiler says “p is of type Person”

 So p.dance() should do the default

dance() ac9on in Person

C++ can do this. Java cannot

133

Polymorphic Concepts II

 Dynamic polymorphism

 Run the method in the child

 Must be done at run-time since that's when we
know the child's type

 Also known as ‘dynamic dispatch’

Student s = new Student();

Person p = (Person)s;

p.dance();

 Compiler looks in memory and Znds

that the object is really a Student

 So p.dance() runs the dance() ac9on

in Student

C++ can do this when you choose, Java does it always
134

The Canonical Example I

 A drawing program that can draw circles,
squares, ovals and stars

 It would presumably keep a list of all the
drawing objects

 Option 1

 Keep a list of Circle objects, a list of
Square objects,...

 Iterate over each list drawing each
object in turn

 What has to change if we want to add
a new shape?

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

Demo

135

The Canonical Example II

 Option 2

 Keep a single list of Shape references

 Figure out what each object really is,
narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList

 if (s is really a Circle)

 Circle c = (Circle)s;

 c.draw();

 else if (s is really a Square)

 Square sq = (Square)s;

 sq.draw();

 else if...

Demo 136

The Canonical Example III

 Option 3 (Polymorphic)

 Keep a single list of Shape references

 Let the compiler figure out what to do
with each Shape reference

 What if we want to add a new shape?

Shape

- x_posi9on: int

- y_posi9on: int

+ draw()

Circle

+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList

 s.draw();

Demo

137

Implementations

 Java

 All methods are dynamic polymorphic.

 Python

 All methods are dynamic polymorphic.

 C++

 Only functions marked virtual are dynamic polymorphic

 Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

138

Harder Problems

 Given a class Fish and a class DrawableEntity, how do we
make a BlobFish class that is a drawable fish?

Fish

DrawableEn9ty

BlobFish

FishDrawableEn9ty BlobFish

X Dependency

between two

independent

concepts

X Conceptually wrong

0..1 0..1

139

Multiple Inheritance

 If we multiple inherit, we capture
the concept we want

 BlobFish inherits from both and
is-a Fish and is-a DrawableEntity

 C++:

 But...

Fish DrawableEn9ty

BlobFish

+ swim() + draw()

+ swim()

+ draw()

class Fish {…}

class DrawableEn9ty {…}

class BlobFish : public Fish,

 public DrawableEn9ty {...}

140

Multiple Inheritance Problems

 What happens here? Which of
the move() methods is inherited?

 Have to add some grammar to
make it explicit

 C++:

 Yuk.

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();

bf->Fish::move();

bf->DrawableEn9ty::move();

This is like Zeld shadowing e.g.

class A { class B extends A {

 int x; int x;

} }

141

Multiple Inheritance Problems

 What happens if Fish and
DrawableEntity extend the same
class?

 Do I get two copies?

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

CountableEn9ty

+ freq: int

CountableEn9ty

+ freq: int

142

The diamond problem

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

CountableEn9ty

+ freq: int

CountableEn9ty

+ freq: int

Fish DrawableEn9ty

BlobFish

+ move() + move()

????

CountableEn9ty

+ freq: int

or

143

Fixing with Abstraction

 Actually, this problem
goes away if one or more
of the conflicting
methods is abstract

Fish DrawableEn�ty

BlobFish

+ move() + move()

+ move()

144

Java's Take on it: Interfaces

 Classes can have at most one parent. Period.

 But special 'classes' that are totally abstract can do
multiple inheritance – call these interfaces

<<interface>>

 Drivable

+ turn()

+ brake()

Car

<<interface>>

 Iden�&able

+ getIden�&er()

Bicycle

+ turn()

+ brake()

+ turn()

+ brake()

+ turn()

+ brake()

+ getIden9Zer()

interface Drivable {

 public void turn();

 public void brake();

}

interface Iden9Zable {

 public void getIden9Zer();

}

class Bicycle implements Drivable {

 public void turn() {...}

 public void brake() {… }

}

class Car implements Drivable, Iden9Zable {

 public void turn() {...}

 public void brake() {… }

 public void getIden9Zer() {...}

}

This is type

inheritance

(not code

inheritance)

adjec9ve

145

Interfaces have a load of implicit modifiers

interface Foo {
 int x = 1;
 int y();
}

interface Foo {
 public static final int x = 1;
 public int y();
}

means

146

Interfaces can have default methods

interface Foo {
 int x = 1;
 int y();
 default int yPlusOne() {
 return y() + 1;
 }
}

 Allows you to add new functionality without

breaking old code

 If you implement conflicting default methods

you have to provide your own

147

Lecture 7:

Lifecycle of an Object

148

Objectives

 Know the procedure for object initialisation

 Difference between destructors and
finalisers

 RAII and TWR

 High level idea of a garbage collector

149

Creating Objects in Java

new MyObject()

Load

MyObject.class

Create

java.lang.Class

object

Allocate any

sta9c Zelds and run

sta9c ini9aliser

blocks

Allocate memory

for object

Run non-sta9c

ini9aliser blocks

Run constructor

Yes

No Is MyObject already loaded

in memory?

demo ObjectConstruc9on

demo InheritedConstruc9onsta9c ini9alisa9on is done

in textual order

150

Initialisation Example

public class Blah {

 private int mX = 7;

 public sta9c int sX = 9;

 {

 mX=5;

 }

 sta9c {

 sX=3;

 }

 public Blah() {
 mX=1;

 sX=9;

 }

}

Blah b = new Blah();

Blah b2 = new Blah();

1. Blah loaded

2. sX created

3. sX set to 9

4. sX set to 3

5. Blah object allocated

6. mX set to 7

7. mX set to 5

8. Constructor runs (mX=1, sX=9)

9. b set to point to object

10. Blah object allocated

11. mX set to 7

12. mX set to 5

13. Constructor runs (mX=1, sX=9)

14. b2 set to point to object

151

Constructor Chaining

 When you construct an object of a type with parent
classes, we call the constructors of all of the parents
in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

152

Chaining without Default Constructors

 What if your classes have explicit constructors that take
arguments? You need to explicitly chain

 Use super in Java:

Person

Student

-mName : String

+Person(String name)

+Student()

public Person (String name) {

 mName=name;

}

public Student () {

 super(“Bob”);

}

Demo: NoDefaultConstructor

153

Deterministic Destruction

 Objects are created, used and (eventually) destroyed. Destruction is very language-
specific

 Deterministic destuction is what you would expect

 Objects are deleted at predictable times

 Perhaps manually deleted (C++):

 Or auto-deleted when out of scope (C++):

void UseRawPointer()

{

 MyClass *mc = new MyClass();

 // ...use mc...

 delete mc;

}

void UseSmartPointer()

{

 MyClass mc;

 // ...use mc...

} // mc deleted here

In C++ this means

create a new instance

of MyClass on the stack

using the default

constructor

154

Destructors

 Most OO languages have a notion of a destructor too

 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or memory
that we might have created especially for the object

class FileReader {

 public:

 // Constructor

 FileReader() {

 f = fopen(“myZle”,”r”);

 }

 // Destructor

 ~FileReader() {

 fclose(f);

 }

 private :

 FILE *Zle;

}

int main(int argc, char ** argv) {

 FileReader f;

 // Use object here

 ...

} // object destructor called here

C++

This is called RAII = Resource Acquisi9on Is Ini9alisa9on

155

Non-Deterministic Destruction

 Deterministic destruction is easy to understand and seems simple
enough. But it turns out we humans are rubbish of keeping track of
what needs deleting when

 We either forget to delete (→ memory leak) or we delete multiple
times (→ crash)

 We can instead leave it to the system to figure out when to delete

 “Garbage Collection”

 The system somehow figures out when to delete and does it for us

 In reality it needs to be cautious and sure it can delete. This leads
to us not being able to predict exactly when something will be
deleted!!

 This is the Java approach!!

Demo: Finalizer
156

What about Destructors?

 Conventional destructors don’t make
sense in non-deterministic systems

 When will they run?

 Will they run at all??

 Instead we have finalisers: same concept
but they only run when the system deletes
the object (which may be never!)

 Java provides try-with-resources as an
alternative to RAII

Demo: TryWithResources

157

Garbage Collection

 So how exactly does garbage collection work? How can a
system know that something can be deleted?

 The garbage collector is a separate process that is constantly
monitoring your program, looking for things to delete

 Running the garbage collector is obviously not free. If your
program creates a lot objects, you will soon notice the collector
running

 Can give noticeable pauses to your program!

 But minimises memory leaks (it does not prevent them…)

 Keywords:

 ‘Stop the world’ - pause the program when collecting garbage

 ‘incremental’ - collect in multiple phases and let the program
run in the gaps

 ‘concurrent’ - no pauses in the program

Demo: Leak
158

Mark and sweep

 Start with a list of all references you can get to

 Follow all references recursively, marking each object

 Delete all objects that were not marked

object

object

object

object

x

y

z

object

object

Unreachable

so deleted

Genera9onal garbage collec9on: split

objects into short-lived and long-lived and

collect short-lived more frequently

159

Lecture 8:

Java Collections and Object Comparison

160

Objectives

 Understand boxing and unboxing

 A general idea about Java collections: Set,
List, Queue and Map

 Fail-fast iterators

161

Java Class Library

 Java the platform contains around 4,000 classes/interfaces

 Data Structures

 Networking, Files

 Graphical User Interfaces

 Security and Encryption

 Image Processing

 Multimedia authoring/playback

 And more...

 All neatly(ish) arranged into packages (see API docs)

lots of this in 1B

Further Java

162

Boxing and unboxing

 Boxing: turn an int into an Integer

 Unboxing: turn an Integer into an int

 Java will do auto-boxing and unboxing

public void something(Integer I) {
 ...
}

int i = 4;
something(i);

public void other(int i) {
 …
}

Integer i = null;
other(i);

auto-boxing

auto-unboxing

(and a NPE)

163

Java's Collections Framework

<<interface>>

Collec�on

<<interface>>

Collec�on

<<interface>>

Collec�on

<<interface>>

Iterable

 Important chunk of the class library

 A collection is some sort of grouping of things

(objects)

 Usually when we have some grouping we want

to go through it (“iterate over it”)

 The Collections framework has two main

interfaces: Iterable and Collection. They define

a set of operations that all classes in the

Collections framework support

 add(Object o), clear(), isEmpty(), etc.

Some9mes an opera9on doesn’t make sense – throw UnsupportedOpera9onError

164

Sets

<<interface>> Set

 A collection of elements with no duplicates that
represents the mathematical notion of a set

 TreeSet: objects stored in order

 HashSet: objects in unpredictable order but fast
to operate on (see Algorithms course)

A
B

C

Set<Integer> ts = new TreeSet<>();

ts.add(15);

ts.add(12);

ts.contains(7); // false

ts.contains(12); // true

ts.Zrst(); // 12 (sorted)

A form of type inference

TreeSet

SortedSet HashSet

Set

LinkedHashSet

Collec9on

Iterable

165

Lists

<<interface>> List

 An ordered collection of elements that may contain
duplicates

 LinkedLIst: linked list of elements

 ArrayList: array of elements (efficient access)

 Vector: Legacy, as ArrayList but threadsafe

A

B

C

B

List<Double> ll = new ArrayList<>();

ll.add(1.0);

ll.add(0.5);

ll.add(3.7);

ll.add(0.5);

ll.get(1); // get element 2 (==3.7)

LinkedList ArrayList

List

Vector

Collec9on

Iterable

legacy
good default

choice

166

Queues

<<interface>> Queue

 An ordered collection of elements that may contain
duplicates and supports removal of elements from the head
of the queue

 offer() to add to the back and poll() to take from the front

 LinkedList: supports the necessary functionality

 PriorityQueue: adds a notion of priority to the queue so more
important stuff bubbles to the top

A

B

C

B

Queue<Double> ll = new LinkedList<>();

ll.o(er(1.0);

ll.o(er(0.5);

ll.poll(); // 1.0

ll.poll(); // 0.5

167

Maps

<<interface>> Map

 Like dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and
(sometimes) null.

 TreeMap: keys kept in order

 HashMap: Keys not in order, efficient
(see Algorithms)

K1
A

B

B

K3 K2

Map<String, Integer> tm = new TreeMap<String,Integer>();

tm.put(“A”,1);

tm.put(“B”,2);

tm.get(“A”); // returns 1

tm.get(“C”); // returns null

tm.contains(“G”); // false

168

Hash Table
Resizable
Array Balanced Tree Linked List

Hash Table +
Linked List

Set HashSet TreeSet LinkedHashSet
List ArrayList LinkedList
Deque ArrayDeque LinkedList
Map HashMap TreeMap LinkedHashMap

get add contains next remove(0)
iterator.
remove

ArrayList O(1) O(1) O(n) O(1) O(n) O(n)
LinkedList O(n) O(1) O(n) O(1) O(1) O(1)

add contains next
HashSet O(1) O(1) O(h/n)
TreeSet O(log n) O(log n) O(log n)
LinkedHashSet O(1) O(1) O(1)

get containsKey next
HashMap O(1) O(1) O(h/n)
LinkedHashMap O(1) O(1) O(1)
TreeMap O(log n) O(log n) O(log n)

peek offer poll size
LinkedList O(1) O(log n) O(log n) O(1)
ArrayDeque O(1) O(1) O(1) O(1)
PriorityQueue O(1) O(log n) O(log n) O(1)

Source: https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html
Source: Java Generics and Collections (pages: 188, 211, 222, 240)

Don’t just memorise these – think about how the datastructure works

169

Specific return type and general argument

 Should your method take a Set, a
SortedSet or a TreeSet?

 General rule of thumb:

 use the most general type possible for
parameters

 use the most specific type possible for return
values (without over committing your
implementation)

170

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList<Integer> list = new LinkedList<Integer>();

...

for (int i=0; i<list.size(); i++) {

 Integer next = list.get(i);

}

LinkedList list = new LinkedList();

...

for (Integer i : list) {

 ...

}

171

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {

 If (i==3) list.remove(i);

}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

while(it.hasNext()) {

 it.remove();

}
Demo: Fast fail behaviour 172

Comparing Objects

 You often want to impose orderings on your
data collections

 For TreeSet and TreeMap this is automatic

 For other collections you may need to explicitly
sort

 For numeric types, no problem, but how do you
tell Java how to sort Person objects, or any
other custom class?

TreeMap<String, Person> tm = ...

LinkedList<Person> list = new LinkedList<Person>();

//...

Collec9ons.sort(list);

173

Lecture 9:

Error Handling Revisited

174

Objectives

 Comparing and Comparable

 Error handling approaches

 How to define your own exceptions

 Pros and cons of exceptions

175

Comparing Primitives

> Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive

 But what does (ref1==ref2) do??

 Test whether they point to the same object?

 Test whether the objects they point to have the same
state?

176

Reference Equality

 r1==r2, r1!=r2

 These test reference equality
 i.e. do the two references point ot the same chunk of

memory?

Person p1 = new Person(“Bob”);

Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references di(er)

True (references di(er)

True

177

Value Equality

 Use the equals() method in Object

 Default implementation just uses reference equality (==)
so we have to override the method

public EqualsTest {

 public int x = 8;

 @Override

 public boolean equals(Object o) {

 EqualsTest e = (EqualsTest)o;

 return (this.x==e.x);

 }

 public sta9c void main(String args[]) {

 EqualsTest t1 = new EqualsTest();

 EqualsTest t2 = new EqualsTest();

 System.out.println(t1==t2);

 System.out.println(t1.equals(t2));

 }

}
Demo: What’s wrong with equals

Learn the ‘equals’ contract

178

Java Quirk: hashCode()

 Object also gives classes hashCode()

 Code assumes that if equals(a,b) returns
true, then a.hashCode() is the same as
b.hashCode()

 So you should override hashCode() at the
same time as equals()

Learn the ‘hashcode’ contract

179

Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework

 Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

 Returns an integer, r:
 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj

180

Comparable<T> Interface II

public class Point implements Comparable<Point> {

 private Znal int mX;

 private Znal int mY;

 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x

 public int compareTo(Point p) {

 if (mY>p.mY) return 1;

 else if (mY<p.mY) return -1;

 else {

 if (mX>p.mX) return 1;

 else if (mX<p.mX) return -1;

 else return 0.

 }

 }

}

// This will be sorted automa9cally by y, then x

Set<Point> list = new TreeSet<Point>();

implemen9ng Comparable

deZnes a natural ordering

for your class

ideally this should be

consistent with equals i.e.

x.compareTo(y) == 0 <=> x.equals(y)

must deZne a total order

Demo

181

Comparator<T> Interface I

int compare(T obj1, T obj2)

 Also part of the Collections framework and allows us
to specify a specific ordering for a particular job

 E.g. a Person might have natural ordering that sorts
by surname. A Comparator could be written to sort
by age instead...

182

Comparator<T> Interface II

public class Person implements Comparable<Person> {

 private String mSurname;

 private int mAge;

 public int compareTo(Person p) {

 return mSurname.compareTo(p.mSurname);

 }

}

public class AgeComparator implements Comparator<Person> {

 public int compare(Person p1, Person p2) {

 return (p1.mAge-p2.mAge);

 }

}

…

ArrayList<Person> plist = …;

…

Collec9ons.sort(plist); // sorts by surname

Collec9ons.sort(plist, new AgeComparator()); // sorts by age

delegate to the Zeld’s

compareTo method

183

Operator Overloading

 Some languages have a neat feature that allows
you to overload the comparison operators. e.g. in
C++

class Person {

 public:

 Int mAge

 bool operator==(Person &p) {

 return (p.mAge==mAge);

 };

 }

Person a, b;

b == a; // Test value equality

people argue about

whether this is good

or bad.

(Java won’t let you do it)

184

Return Codes

 The traditional imperative way to handle errors is to
return a value that indicates success/failure/error

 Problems:

 Could ignore the return value

 Have to keep checking what the return values are meant to
signify, etc.

 The actual result often can't be returned in the same way

 Error handling code is mixed in with normal execution

public int divide(double a, double b) {

 if (b==0.0) return -1; // error

 double result = a/b;

 return 0; // success

}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Go – returns a pair res, err

Haskell – Maybe type

185

Deferred Error Handling

 A similar idea (with the same issues) is to set some state in
the system that needs to be checked for errors.

 C++ does this for streams:

ifstream Zle("test.txt");

if (Zle.good())

{

 cout << "An error occurred opening the Zle" << endl;

}

186

Exceptions

 An exception is an object that can be thrown or raised by a
method when an error occurs and caught or handled by the
calling code

 Example usage:

try {

 double z = divide(x,y);

}

catch(DivideByZeroExcep9on d) {

 // Handle error here

}

187

Flow Control During Exceptions

 When an exception is thrown, any code left to run in the try
block is skipped

double z=0.0;

boolean failed=false;

try {

 z = divide(5,0);

 z = 1.0;

}

catch(DivideByZeroExcep9on d) {

 failed=true;

}

z=3.0;

System.out.println(z+” “+failed);

188

Throwing Exceptions

 An exception is an object that has Exception as an
ancestor

 So you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroExcep9on {

 if (y==0.0) throw new DivideByZeroExcep9on();

 else return x/y;

}

189

Multiple Handlers

 A try block can result in a range of different exceptions. We
test them in sequence

try {

 FileReader fr = new FileReader(“someZle”);

 Int r = fr.read();

}

catch(FileNoteFound fnf) {

 // handle Zle not found with FileReader

}

catch(IOExcep9on d) {

 // handle read() failed

}

190

finally

 With resources we often want to ensure
that they are closed whatever happens

try {

 fr,read();

 fr.close();

}

catch(IOExcep9on ioe) {

 // read() failed but we must s9ll close the FileReader

 fr.close();

}

191

finally II

 The finally block is added and will always
run (after any handler)

try {

 fr.read();

}

catch(IOExcep9on ioe) {

 // read() failed

}

Znally {

 fr.close();

}

Remember try-with-resources

192

Creating Exceptions

 Just extend Exception (or RuntimeException if you need it to
be unchecked). Good form to add a detail message in the
constructor but not required.

 You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

public class DivideByZero extends Excep9on {}

public class Computa9onFailed extends Excep9on {

 public Computa9onFailed(String msg) {

 super(msg);

 }

}

If your excep9on is caused

by another then chain

them - demo

Keyword: excep9on chaining

193

Exception Hierarchies

 You can use inheritance hierarchies

 And catch parent classes

public class MathExcep9on extends Excep9on {...}

public class InZniteResult extends MathExcep9on {…}

public class DivByZero extends MathExcep9on {…}

try {

 …

}

catch(InZniteResult ir) {

 // handle an inZnite result

}

catch(MathExcep9on me) {

 // handle any MathExcep9on or DivByZero

}

194

Checked vs Unchecked Exceptions

 Checked: must be handled or passed up.

 Used for recoverable errors

 Java requires you to declare checked exceptions that your
method throws

 Java requires you to catch the exception when you call the
function

 Unchecked: not expected to be handled. Used for
programming errors

 Extends RuntimeException

 Good example is NullPointerException

double somefunc() throws SomeExcep*on {}

195

No acceptance tests for take-home test

 Get in the habit of writing good tests

 There will be no acceptance tests for the
take-home test – you have to get it right on
your own!

196

Evil I: Exceptions for Flow Control

 At some level, throwing an exception is like a GOTO

 Tempting to exploit this

 This is not good. Exceptions are for exceptional circumstances
only

 Harder to read

 May prevent optimisations

try {

 for (int i=0; ; i++) {

 System.out.println(myarray[i]);

 }

}

catch (ArrayOutOfBoundsExcep9on ae) {

 // This is expected

}

197

Evil II: Blank Handlers

 Checked exceptions must be handled

 Constantly having to use try...catch blocks to do this can be
annoying and the temptation is to just gaffer-tape it for now

 ...but we never remember to fix it and we could easily be missing
serious errors that manifest as bugs later on that are extremely
hard to track down

try {

 FileReader fr = new FileReader(Zlename);

}

catch (FileNotFound fnf) {

}
If it can’t happen then throw

a chained Run9meExcep9on

198

Advantages of Exceptions

 Advantages:

 Class name can be descriptive (no need to look up error
codes)

 Doesn't interrupt the natural flow of the code by requiring
constant tests

 The exception object itself can contain state that gives lots of
detail on the error that caused the exception

 Can't be ignored, only handled

 Disadvantages:

 Surprising control flow – exceptions can be thrown from
anywhere

 Lends itself to single threads of execution

 Unrolls control flow, doesn’t unroll state changes

199

Lecture 10:

Copying Objects

200

Objectives

 Substitutability: covariance and
contravariance

 Inner classes

 Lambda!

 Functional interfaces

201

Remember the substitution principle?

 If A extends B then I should be able to use
B everywhere I expect an A

void process(A o) {
 drawShape(o.getShape());
}
process(new B());

class A {

 Polygon getShape() {
 return new Polygon(…);
 }

}

class B extends A {

 Polygon getShape() {
 return …
 }

}

202

Covariant return types are substitutable

void process(A o) {
 drawShape(o.getShape());
}
process(new B());

class A {

 Polygon getShape() {
 return new Polygon(…);
 }

}

class B extends A {

 Triangle getShape() {
 return …
 }

} o.getShape() returns

a Triangle but Triangle

is a subtype of Polygon

and so by subs9tutability

we can pass it to

drawShape

 Overriding methods are covariant in their
return types

203

Contravariant parameters also substitute

 Overriding methods can be contravariant
in their parameters

void process(A o) {
 o.setShape(new Triangle());
}
process(new B());

class A {

 void setShape(Triangle o) {
 …
 }

}

class B extends A {

 void setShape(Polygon o) {
 …
 }

} o.setShape() wants a

Polygon and by

subs9tutability its ok

to pass it a Triangle

You can’t actually

do this in Java! The

two setShapes are

overloads not

overrides

204

Java arrays are covariant

String[] s = new String[] { “v1”, “v2” };

Object[] t = s;

Object v = t[0];

t[1] = new Integer(4);

 If B is a subtype of A then B[] is a subtype
of A[]

Compiles – arrays are covariant

Works – t[0] is actually a String

but we can assign that to Object

Fails (at run9me) – t[] is actually

an array of Strings, you can’t

put an Integer in it

205

Imagine if Arrays were a generic class

class Array<Object> {

 // Object x = array[i]
 Object get(int index) {
 …
 }

 // array[i] = value
 void set(int index,
 Object value) {
 …
 }
}

class Array<String> {

 // String x = array[i]
 String get(int index) {

 }

 // array[i] = value
 void set(int index,
 String value) {

 }
}

Covariant return type – all is good!

Covariant parameter type – bad news

206

Generics in Java are not covariant

 if B is a subtype of A then T is not a
subtype of T<A>

List<String> s = List.of(“v1”, “v2”);

List<Object> t = s;

Object v = t.get(0);

t.set(1,new Integer(4));

Does not compile

Would be safe – we can

assign String to Object

Is not safe

207

Wildcards let us capture this

 if B is a subtype of A then T is a
subtype of T<? extends A>

List<String> s = List.of(“v1”, “v2”);

List<? extends Object> t = s;

Object v = t.get(0);

t.set(1,new Integer(4));

Compiles

Works: ‘? extends Object’

is assignable to Object

Does not compile – the compiler knows it needs

something that extends object but it doesn’t

know what it is!

208

Inner classes

class Outer {

 private static void f();
 private int x = 4;

 static class StaticInner {

 void g() {
 f();
 new Outer().x = 3;
 }
 }

 class InstanceInner {
 int g() {
 return x + 1;
 }
 }

}

Sta9c inner classes are a member

of the outer class and so can

access private members

Instance inner classes are a member

of the outer object and so can access

outer instance variables:

Outer o = new Outer();

InstanceInner i = o.new InstanceInner()

Inner classes may not have sta9c

members

209

Method-local classes

class Outer {

 int y = 6;

 void f() {
 int x = 5;
 class Foo {
 int g() {
 return x + y + 1;
 }
 }
 Foo foo = new Foo();

 }

}

Method-local classes can

access local variables (and

so are never sta9c classes).

Method-local classes in

instance methods can access

instance variables of the class

210

Anonymous inner classes

class Outer {

 int y = 6;

 Object f() {
 int x = 5;
 Object o = new Object() {
 public String toString() {
 return String.valueOf(x+y+1);
 }
 };
 return o;
 }
}

o is a new class. It extends

Object but it has no name.

It can access all local and

instance variables.

Note: here we return o to the caller and it can be

used anywhere in the program even though it refers

to y and x.

x here is ‘e(ec9vely Znal’ - compile

error if you try to change it

211

Lambda

Consumer<String> c1 = s -> System.out.println(s);
c1.accept(“hello”);

BiFunction<Integer,Integer,Boolean> c2 = (i,j) -> i+j > 5;
boolean a = c2.apply(3,1);

Predicate<Integer> b4 = v -> {
 if (v > 0) {
 return isPrime(v);
 }
 else {
 return isPrime(v*v);
 }
}
boolean a = b4.test(43431);

expression lambda

statement lambda

212

Need a Functional Interface to use them

 A functional interface has only one method
in it

 (this is so the compiler knows which one to
map the lambda on to)

 That’s it

213

Lecture 11/12:

Design patterns

214

Objectives

 Simple use of streams

 What is a design pattern

 Open-closed principle

 Some example patterns

215

Streams

 Collections can be made into streams
(sequences)

 These can be filtered or mapped!

List<Integer> list = ...

list.stream().map(x->x+10).collect(Collectors.toList());

list.stream().Zlter(x->x>5).collect(Collectors.toList());

Demo:streams

create

stream

element-wise

opera9ons

aggrega9on

216

Design Patterns

 A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis

 Originally 23 patterns, now many more. Useful to look at
because they illustrate some of the power of OOP (and
also some of the pitfalls)

 We will only consider a subset

 It’s not a competition to see how many you can use in a
project!

217

The Open-Closed Principle

Classes should be open for extension
but closed for modification

 i.e. we would like to be able to modify the
behaviour without touching its source code

 This rule-of-thumb leads to more reliable
large software and will help us to evaluate
the various design patterns

218

Decorator

Abstract problem: How can we add state
or methods at runtime?

Example problem: How can we efficiently
support gift-wrapped books in an online
bookstore?

Demo: Readers

219

Decorator in General

 The decorator pattern adds
state and/or functionality to
an object dynamically

Reader

Bu(eredReader

FileReader

220

Singleton

Abstract problem: How can we ensure
only one instance of an object is created
by developers using our code?

Example problem: You have a class that
encapsulates accessing a database over a
network. When instantiated, the object will
create a connection and send the query.
Unfortunately you are only allowed one
connection at a time.

demo: SingletonConnec9on

221

Singleton in General

 The singleton pattern ensures
a class has only one instance
and provides global access to
it

Demo: FanSpeed 222

State

Abstract problem: How can we let an
object alter its behaviour when its internal
state changes?

Example problem: Representing
academics as they progress through the
rank

223

State in General

 The state pattern allows an
object to cleanly alter its
behaviour when internal
state changes

224

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime?

Example problem: We have many possible
change-making implementations. How do
we cleanly change between them?

Demo: ComparatorStrategy

225

Strategy in General

 The strategy pattern allows us to cleanly interchange
between algorithm implementations

226

Composite

Abstract problem: How can we treat a
group of objects as a single object?

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%
discount

Demo: DVDs

227

Composite in General

 The composite pattern lets
us treat objects and groups
of objects uniformly

228

Observer

Abstract problem: When an object
changes state, how can any interested
parties know?

Example problem: How can we write
phone apps that react to accelerator
events?

Demo: Ac9onListener

229

Observer in General

 The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents
automatically.

230

End of course

 Don’t forget to keep practising with the
practical exercises

 You will receive email about the take-
home test organisation closer to the time

 Thanks for listening!

