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A brief introduction to morphology

Morphology is the study of word structure

We need some vocabulary to talk about the structure:
I morpheme: a minimal information carrying unit
I affix: morpheme which only occurs in conjunction with

other morphemes (affixes are bound morphemes)
I words made up of stem and zero or more affixes.

e.g. dog+s
I compounds have more than one stem.

e.g. book+shop+s
I stems are usually free morphemes (meaning they can

exist alone)
I Note that slither, slide, slip etc have somewhat similar

meanings, but sl- not a morpheme.
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A brief introduction to morphology

Affixes comes in various forms

I suffix: dog+s, truth+ful
I prefix: un+wise
I infix: (maybe) abso-bloody-lutely
I circumfix: not in English

German ge+kauf+t (stem kauf, affix ge_t)

Listed in order of frequency across languages
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A brief introduction to morphology

Inflectional morphemes carry grammatical information

I Inflectional morphemes can tell us about tense, aspect,
number, person, gender, case...

I e.g., plural suffix +s, past participle +ed
I all the inflections of a stem are often referred to as a

paradigm



(Overview of) Natural Language Processing Lecture 2: Morphology and finite state techniques

Lecture 2: Morphology and finite state techniques

A brief introduction to morphology

Derivational morphemes change the meaning

I e.g., un-, re-, anti-, -ism, -ist ...
I broad range of semantic possibilities, may change part of

speech: help→ helper
I indefinite combinations:

antiantidisestablishmentarianism
anti-anti-dis-establish-ment-arian-ism
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A brief introduction to morphology

Languages have different typical word structures

I isolating languages: low number of morphemes per word
(e.g. Yoruba)

I synthetic languages: high number of morphemes per word
I agglutinative: the language has a large number of affixes

each carrying one piece of linguistic information (e.g.
Turkish)

I inflected: a single affix carries multiple pieces of linguistic
information (e.g. French)

What type of language is English?
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A brief introduction to morphology

English is an analytic language

English is considered to be analytic:
I very little inflectional morphology
I relies on word order instead
I and has lots of helper words (articles and prepositions)
I but not an isolating language because has derivational

morphology
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A brief introduction to morphology

English is an analytic language

English has a mix of morphological features:
I suffixes for inflectional morphology
I but also has inflection through sound changes:

I sing, sang, sung
I ring, rang, rung
I BUT: ping, pinged, pinged
I the pattern is no longer productive but the other inflectional

affixes are
I and what about:

I go, went, gone
I good, better, best

I uses both prefixes and suffixes for derivational morphology
I but also has zero-derivations: tango, waltz
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A brief introduction to morphology

Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually
ambiguous: e.g. paint (noun or verb), +s (plural or 3persg-verb)
Structural ambiguity: e.g., shorts or short -s
blackberry blueberry strawberry cranberry
unionised could be union -ise -ed or un- ion -ise -ed
Bracketing: un- ion -ise -ed
I un- ion is not a possible form, so not ((un- ion) -ise) -ed
I un- is ambiguous:

I with verbs: means ‘reversal’ (e.g., untie)
I with adjectives: means ‘not’ (e.g., unwise, unsurprised)

I therefore (un- ((ion -ise) -ed))
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Using morphology in NLP

Using morphological processing in NLP

I compiling a full-form lexicon
I stemming for IR (not linguistic stem)
I lemmatization (often inflections only): finding stems and

affixes as a precursor to parsing
morphosyntax: interaction between morphology and
syntax

I generation
Morphological processing may be bidirectional: i.e.,
parsing and generation.
party + PLURAL <-> parties
sleep + PAST_VERB <-> slept



(Overview of) Natural Language Processing Lecture 2: Morphology and finite state techniques

Lecture 2: Morphology and finite state techniques

Aspects of morphological processing

Spelling rules

I English morphology is essentially concatenative
I irregular morphology — inflectional forms have to be listed
I regular phonological and spelling changes associated with

affixation, e.g.
I -s is pronounced differently with stem ending in s, x or z
I spelling reflects this with the addition of an e (boxes etc)

morphophonology
I in English, description is independent of particular

stems/affixes
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Aspects of morphological processing

e-insertion
e.g. boxˆs to boxes

ε→ e/





s
x
z



 ˆ s

I map ‘underlying’ form to surface form
I mapping is left of the slash, context to the right
I notation:

position of mapping
ε empty string
ˆ affix boundary — stem ˆ affix

I same rule for plural and 3sg verb
I formalisable/implementable as a finite state transducer
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Finite state techniques

Finite state automata for recognition
day/month pairs:

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

I non-deterministic — after input of ‘2’, in state 2 and state 3.
I double circle indicates accept state
I accepts e.g., 11/3 and 3/12
I also accepts 37/00 — overgeneration
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Finite state techniques

Reminder: Finite-State Automata

FSA are defined as M = (Q,Σ,∆, s,F) where:
I Q = {q0,q1,q2...} is a finite set of states.
I Σ is the alphabet: a finite set of transition symbols.
I ∆ ⊆ Q× Σ×Q is a function Q×Σ→ Q which we write as
δ. Given q ∈ Q and i ∈ Σ then δ(q, i) returns a new state
q′ ∈ Q

I s is a starting state
I F is the set of all end states
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Finite state techniques

Recursive FSA
comma-separated list of day/month pairs:

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

I list of indefinite length
I e.g., 11/3, 5/6, 12/04



(Overview of) Natural Language Processing Lecture 2: Morphology and finite state techniques

Lecture 2: Morphology and finite state techniques

Finite state techniques

e-insertion

e.g. boxˆs to boxes

ε→ e/





s
x
z



 ˆ s

I map ‘underlying’ form to surface form
I mapping is left of the slash, context to the right
I notation:

position of mapping
ε empty string
ˆ affix boundary — stem ˆ affix
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Finite state techniques

Finite State Transducers for Morphology
We will be attempting to map between a word and its structure
and to do this we will need an augmentation to the FSA;
something called a Finite state transducer (FST).

q0start q1 q2 q3 q4
b:b a:o a:o

a:o

!:!

I FST are used to map between representations.
I You can think of a FST as being FSA which produces two

sequences for any given path through the states;
I Or alternatively as an FSA which maps one string into

another.
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Finite state techniques

The operation of a FST

baa!

baa!

q0start q1 q2 q3 q4
b:b a:o a:o

a:o

!:!
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Finite state techniques

The operation of a FST

baa!

boa!

q0start q1 q2 q3 q4
b:b a:o a:o

a:o

!:!
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Finite state techniques

The operation of a FST

baa!

boo!

q0start q1 q2 q3 q4
b:b a:o a:o

a:o

!:!
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Finite state techniques

The operation of a FST

baa!

boo!

q0start q1 q2 q3 q4
b:b a:o a:o

a:o

!:!
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Finite state techniques

Formal Definition of an FST
To define a FST formally we need to tweak the definition of an
FSA to include two more pieces of information.

q0start q1 q2 q3 q4
b:b a:o a:o

a:o

!:!

OUTPUT ALPHABET ∆ Now rather than a single alphabet we
need two alphabets: the input alphabet; and
output alphabet.

OUTPUT FUNCTION σ(q, i) The output function is a
mathematical function that takes two arguments
(the current state q and a member of the input
alphabet i) and returns the associated output
characters o ∈ ∆.
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Finite state techniques

Formal Definition of an FST
Our sheep to ghost language converter example is then
formally defined as follow:

Q = {q0,q1,q2,q3,q4}
Σ = {b,a, !}
∆ = {b,o, !}

q0 = q0

F = {q4}

δ(q, i) =

b a !

q0 q1 − −
q1 − q2 −
q2 − q3 −
q3 − q3 q4
q4 − − −

δ(q, i) =

b a !

q0 b − −
q1 − o −
q2 − o −
q3 − o !
q4 − − −
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Finite state techniques

An FST for the language Opish

parrot#

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

p

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

po

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

pop

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

popa

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

poparop

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

poparoprop

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

poparopropo

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

poparopropotop

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

An FST for the language Opish

parrot#

poparopropotop#

q0start

q1 q2

q3

vowel:vowel

cons:cons

ε:o

ε:p

#:#
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Finite state techniques

Finite state transducer

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : sx : xz : z e : ˆ

s : sx : xz : z

ε→ e/





s
x
z



 ˆ s

surface : underlying
c a k e s↔ c a k e ˆ s
b o x e s↔ b o x ˆ s
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Finite state techniques

Analysing b o x e s

1

b : b
ε : ˆ

2 3

4
Input: b
Output: b
(Plus: ε . ˆ)



(Overview of) Natural Language Processing Lecture 2: Morphology and finite state techniques

Lecture 2: Morphology and finite state techniques

Finite state techniques

Analysing b o x e s

1

o : o

2 3

4 Input: b o
Output: b o
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Finite state techniques

Analysing b o x e s

1 2 3

4

x : x

Input: b o x
Output: b o x
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Finite state techniques

Analysing b o x e s

1 2 3

4

e : e
e : ˆ

Input: b o x e
Output: b o x ˆ
Output: b o x e
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Finite state techniques

Analysing b o x e ε s

1

ε : ˆ

2 3

4

Input: b o x e
Output: b o x ˆ
Output: b o x e
Input: b o x e ε
Output: b o x e ˆ
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Finite state techniques

Analysing b o x e s

1 2

s : s

3

4

s : s Input: b o x e s
Output: b o x ˆ s
Output: b o x e s
Input: b o x e ε s
Output: b o x e ˆ s
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Finite state techniques

Analysing b o x e s

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : sx : xz : z e : ˆ

s : sx : xz : z

Input: b o x e s
Accept output: b o x ˆ s
Accept output: b o x e s
Input: b o x e ε s
Accept output: b o x e ˆ s
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Finite state techniques

Using FSTs

I FSTs assume tokenization (word boundaries) and words
split into characters. One character pair per transition!

I Analysis: return character list with affix boundaries, so
enabling lexical lookup.

I Generation: input comes from stem and affix lexicons.
I One FST per spelling rule: either compose to big FST or

run in parallel.
I FSTs do not allow for internal structure:

I can’t model un- ion -ize -d bracketing.
I can’t condition on prior transitions, so potential redundancy
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Finite state techniques

Lexical requirements for morphological processing

I affixes, plus the associated information conveyed by the
affix
ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN

I irregular forms, with associated information similar to that
for affixes
began PAST_VERB begin
begun PSP_VERB begin

I stems with syntactic categories (plus more)
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More applications for finite state techniques

Some other uses of finite state techniques in NLP

I Grammars for simple spoken dialogue systems (directly
written or compiled)

I Partial grammars for text preprocessing, tokenization,
named entity recognition etc.

I Dialogue models for spoken dialogue systems (SDS)
e.g. obtaining a date:

1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.
3. Day only is known. System prompts for month.
4. Month and day known.
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More applications for finite state techniques

Lee and Glass sentence segmentation

Table 1: Statistics from Punctuation Annotation
# reviews Avg. commas periods

type # words
Ambience 69 56.1 5.8% 4.9%

Cuisine type 38 16.6 10.4% 7.7%
Food quality 69 44.8 5.4% 5.9%

Service 70 47.3 5.9% 5.2%
General 129 86.2 5.3% 5.2%

sults. We can see that longer reviews (all except cuisine
type) have a similar percentage of commas and periods,
which implies that subjects tend to pause after saying a
certain number of words (i.e., to take a breath or think
of what to say next). The “cuisine type” review was the
only outlier in this regard, and we believe this is because
of the short nature of the responses (e.g., “Indian food”
or “American traditional breakfast”).

To examine the variation among annotations, we ran-
domly chose one as the reference and another one as the
hypothesis from the multiple annotations, repeated this
procedure 100 times and computed the average F-score.
When we treat commas and periods differently, the aver-
age F-score is 0.48, while it is 0.64 if we treat them the
same. These results indicate that the variation between
different annotating styles is not something we can com-
pletely ignore. Table 2 shows an example of two different
annotations on the same review.
2.3. Evaluation Metric
Given the availability of multiple reference annotations
and inspired by the fact that the BLEU score can achieve
high correlation with human evaluation when judging a
machine translation system [3], we present a modified
version for evaluating a sentence boundary detection sys-
tem. The BLEU score is defined as:

BLEU = BP ⇥ exp(
NX

n=1

wn log pn), (1)

where pn is the modified n-gram precision, BP the sen-
tence brevity penalty, N the maximum n-gram length that
is considered, and wn the weighting factor, which is usu-
ally set to 1/N . The modified n-gram precision can be
computed as:

pn =

P
C2{Candidates}

P
n-gram2C Countclip(n-gram)

P
C02{Candidates}

P
n-gram02C0 Count(n-gram0)

,

(2)
where Count(n-gram) is the total number of appear-
ance of an n-gram pattern in the hypothesis texts,
and Countclip(n-gram) is the smaller one between
Count(n-gram) and the maximum number of times
such n-gram pattern occurs in any single reference texts.
The sentence brevity penalty can be computed as:

BP =

⇢
1, if c > r
e(1�r/c), if c  r ,

(3)

where c is the total length of all the hypotheses, and r
is the sum of the length of references whose length best

Table 2: Different Annotations on the Same Review
(a) the food quality was great. we started with a salad
that was really good. for the meal we had a philly
sandwich. the mushrooms were cooked perfectly, and
the fries were great as well.
(b) the food quality was great. we started with a salad.
that was really good for the meal. we had a philly
sandwich, the mushrooms were cooked perfectly and
the fries were great as well.

match that of the corresponding hypothesis.
For sentence boundary detection evaluation, we only

consider n-gram patterns that reflect the places of SU
breaks. We keep the computation of pn, since it works
well in capturing opinions from different references and
punishing the results that over-generate breaks. Now
the denominator of pn counts all n-gram sequences con-
sisting of locations of the hypothesized SU breaks, and
the numerator counts all hypothesized n-gram sequences
containing locations of SU breaks that also occurred in at
least one of the references. However, instead of looking
for a reference annotation that is the closest to the hy-
pothesis in length when computing r in BP , we choose
the reference that best matches the hypothesis in terms of
F-score. In other words, we should consider the reference
with the annotation style that is the closest to that of the
hypothesis.

3. Sentence Boundary Detection System

Figure 1: System diagram

3.1. Related Work
There has been considerable prior research in sentence
boundary detection. The problem of sentence segmen-
tation can be modeled as a tagging problem, and a va-
riety of machine learning techniques, such as a hidden
Markov model (HMM), maximum entropy (Maxent) and
conditional random field (CRF) models, have been ex-
plored [4, 5, 6]. Many studies have shown that combining
both textual and prosodic features produces better results
than utilizing each of them in isolation [4, 5, 7].

One problem with the tagging approach is that the
prosodic features and the language models only consider
local information. To solve this problem, Matusov et.
al [2] processed the texts from left to right, and con-

INTERSPEECH 2012 1849
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More applications for finite state techniques

Concluding comments

I English is an outlier among the world’s languages: very
limited inflectional morphology.

I English inflectional morphology hasn’t been a practical
problem for NLP systems for decades.

I Limited need for probabilities, small number of possible
morphological analyses for a word.

I Lots of other applications of finite-state techniques: fast,
supported by toolkits (eg. openFST), good initial approach
for very limited systems.
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