NLP Practical: Part II

Simone Teufel1

Michaelmas 2019/20

1This part of practical based on a design by Helen Yannadoukakis
Practical Session Today:
- How to develop the baseline system(s)
- How to write the (baseline) Report 1 (20%; ticked)

Practical Session Oct 30:
- Check performance of your baseline system
- Move to doc2vec system
- Some diagnostics
- Write Report 2 (40%; assessed)

Nov 8: Submit Report 1 by 4pm

Practical Session Nov 13: Text understanding

Nov 22: Receive Feedback on Report 1

Nov 29: Submit Report 2 by 4pm

Dec 6: Submit Report 3 by 4pm
What you should have by now

- NB classifier
- code for feature treatment
- SVM Light
- crossvalidation code
- stemming
- Sign test
Validation corpus

- Use of Validation corpus is another guard against overfitting
- Use it for tuning model parameters
 - eg feature frequency cutoff (for SVM BOW)
 - eg setting doc2vec-related parameters (for SVM with neural embeddings)
- Rules: never train nor test on validation corpus
- Here: designate 10% (first fold)
How to use the validation corpus (here)

- Declare fold 1 (n=10 Round Robin Xval) as validation corpus
- You can now set all your parameters to your heart’s content on this validation corpus, without risking overtraining.
 - Train on all remaining 90%
 - Test each parameter on the validation corpus
- After parameter setting, run an entirely new experiment, using only the information of what parameters work best.
- This entirely new experiment is a cross-validation as you did before.
- Note: you have lost some data, and your folds are now a bit smaller.
Standard way to use the validation corpus

- Work with a 10-10-80 split (validation, test, training)
- Set your parameters by training on the 80% training split
- Choose the best parameters by comparing results on the validation split
- Then test the best system, with the supposedly best parameters, only once, on the test data.
- Not done here, as we want to compare to published cross-validated results.
- **word2vec**: learning neural word embeddings (Mikolov et al., 2013)
- word2vec is a distributional model with dimensionality reduction created on-the-fly, via prediction.
- **doc2vec** (Le and Mikolov, 2014): embeddings for *sequences* of words
- Agnostic to granularity: sentence, paragraph, document
- Learned ‘document’ vector effective for various/some tasks, including sentiment analysis

\[\text{2 Or paragraph vectors, or document vectors . . .}\]
Distributed representation of words

Task: predict the next word given the context

Optimisation objective:

\[
\frac{1}{T} \sum_{t=k}^{T-k} \log p(w_t | w_{t-k}, \ldots, w_{t+k})
\]

Softmax output layer:

\[
p(w_t | w_{t-k}, \ldots, w_{t+k}) = \frac{\exp y_{w_t}}{\sum_i \exp y_i}
\]

\[
y = b + U h(w_{t-k}, \ldots, w_{t+k}; W)
\]
Doc2vec: distributed memory (dm) architecture

- Add paragraph token: each paragraph mapped to a unique vector
- Paragraph vector now also contributes to the prediction task
 - Shared across all contexts from the same paragraph
- Works as a “memory” of context / topic
Train paragraph vector to predict context words in a window (no word order, given a document vector). This is similar to word2vec Skip-gram model, which was trained to predict context words given a word vector.
Our level of granularity: document / review

Parameters:
- Training algorithm (dm, dbow)
- The size of the feature vectors (e.g., 100 dimensions good enough for us)
- Number of iterations/epochs (e.g., 10 or 20)
- Context window
- Hierarchical softmax (faster version) …

Use gensim python library
Doc2vec: how can we use it for sentiment analysis?

- Train vectors using a larger 100,000 review corpus (details in instructions)
- Vectors can then be used as features within a typical supervised machine learning framework
A more powerful test: Permutation test

- Paired samples: two systems are run on identical data
- Tests whether the population mean is different (H_1) or the same (H_0)
- Non-parametric tests: no assumptions about distribution in your underlying data

\[\alpha = P(\text{Type I Error}) = P(\text{Reject } H_0 | H_0 \text{ is True}) \]

- α is the probability of a false positive (significance level).

\[\beta = P(\text{Type II Error}) = P(\text{Do Not Reject } H_0 | H_1 \text{ is True}) \]

- β is the probability of a false negative. $1-\beta$ is the power of the test.
Consider the n paired results of System A and B.
You will observe a difference d between the means of system A and B.
If there is no real difference between the systems (and they come from one and the same distribution), it should not matter how many times I swap the two results, right?
There are 2^n permutations (each row can be 0 or 1; swapped or not).
How many of these permutations result in a difference d as high as the unpermuted version, or higher?
That proportion is your p
Final twist: If you cannot test 2^n resamplings, test a large enough random subset
More formally

- The Permutation test evaluates the probability that the observed difference in mean M between the runs has been obtained by random chance.
- If the two runs are indeed the same, then the paired re-assignments should have no impact on the difference in M between the samples.
- Re-sampling: For each paired observation in the original runs, a_i and b_i, a coin is flipped. If 1, then swap the score for b_i with a_i. Otherwise, leave the pair unchanged.
- Repeat R times; compare differences in M.
The probability of observing the difference between the original runs by chance approximated by:

$$p = \frac{s + 1}{R + 1}$$ \hspace{1cm} (1)

s: number of permuted samples with difference in M higher than the one observed in the original runs.

If $R < 2^n$ because of size, we call this a Monte Carlo Permutation test.
Permutation test: Example with real-valued results

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>One permutation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System A</td>
<td>System B</td>
</tr>
<tr>
<td>Item 1</td>
<td>0.01</td>
<td>0.1</td>
</tr>
<tr>
<td>Item 2</td>
<td>0.03</td>
<td>0.15</td>
</tr>
<tr>
<td>Item 3</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Item 4</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Item 5</td>
<td>0.04</td>
<td>0.3</td>
</tr>
<tr>
<td>Item 6</td>
<td>0.02</td>
<td>0.4</td>
</tr>
<tr>
<td>Observed MAP</td>
<td>0.0267</td>
<td>0.205</td>
</tr>
<tr>
<td>Absolute Observed Difference</td>
<td>0.178</td>
<td></td>
</tr>
</tbody>
</table>

- 2^6 possible permutations for coin throws over 6 items
- Exhaustive resampling: 2 out of 64 permutations are equal or larger than the observed difference in MAP, 0.178.
- p-value$=\frac{2}{64} = 0.0462$.
- Reject Null hypothesis at confidence level $\alpha = 0.05$.
What you should do

- Implement Monte Carlo Permutation test
- Use it in the future for all stat. testing where possible
- Use $R=5000$
Goal of this Practical – “good science”

- Getting high numerical results isn’t everything – neither in this practical nor in science in general
- Good science means:
 - An interesting research question
 - Sound methodology
 - Insightful analysis (something non-obvious)
Goal of this Practical – “good science”

- Getting high numerical results isn’t everything – neither in this practical nor in science in general
- Good science means:
 - An interesting research question
 - Sound methodology
 - **Insightful analysis (something non-obvious)**
Finding out what the model is really doing (visualisation via t-SNE, selected / targeted experimentation . . .)

E.g., see Lau and Baldwin (2016), and Li et al. (2015):
- Are meaningfully similar documents close to each other?
- Are document embeddings close in space to their most critical content words?
- Error analysis – on which documents does SVM misclassify in the worst way? Patterns?
Visualisation example using t-SNE

From Lau and Baldwin (2016)

Figure from arxiv.org/abs/1607.05368
Writing tips

- **Introduction**: pretend this is not a class assignment but your own idea
- Reader has no pre-knowledge
- Describe your data/datasets
- Describe your methodology appropriately
 - Not too detailed (otherwise you look like a beginner)
 - Enough detail for somebody expert (reimplementation)
 - Technical terms: use them – define them first
- Describe your numerical results (after your methods, clearly separated)
- **Analyse** your numerical results: what is a source of errors? Interpretability of doc2vec space?
Questions?