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Linearizability 
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More generally 

 Suppose we build a shared-memory data structure directly 
from read/write/CAS, rather than using locking as an 
intermediate layer 
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H/W primitives: read, 
write, CAS, ... 

Locks 

Data structure 

H/W primitives: read, 
write, CAS, ... 

Data structure 

 Why might we want to do this? 

 What does it mean for the data structure to be correct? 



What we’re building 

 A set of integers, represented by a sorted linked list 
 

 find(int) -> bool 

 insert(int) -> bool 

 delete(int) -> bool 
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Searching a sorted list 

 find(20): 

H 10 30 T 

20? 

 find(20) -> false 
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Inserting an item with CAS 

 insert(20): 

 

H 10 30 T 

20 

30  20 
 

 insert(20) -> true 
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Inserting an item with CAS 

 insert(20): 

 

H 10 30 T 

20 

30  20 

25 

30  25 

 

 

• insert(25): 
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Searching and finding together 

 find(20) 

H 10 30 T 

 -> false 

 

20 

20? 

• insert(20)  -> true 

 

This thread saw 20 
was not in the set... 

...but this thread 
succeeded in putting 

it in! 

• Is this a correct implementation of a set? 

• Should the programmer be surprised if this happens? 

• What about more complicated mixes of operations? 
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Correctness criteria 
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Informally:  

 

Look at the behaviour of the data structure (what 
operations are called on it, and what their results are).   
 
If this behaviour is indistinguishable from atomic calls 
to a sequential implementation then the concurrent 
implementation is correct. 



Sequential history 

time 

T
1: in

sert(10
) 

->
 t

ru
e

 

T
2

: in
sert(20

) 

->
 t

ru
e

 

T
1: fin

d
(15) 

->
 f
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se

 

• No overlapping invocations:  

10 10, 20 10, 20 
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Concurrent history 

time 

• Allow overlapping invocations:  

Thread 2: 

Thread 1: 

insert(10)->true insert(20)->true 

find(20)->false 
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Linearizability 

• Is there a correct sequential history: 

• Same results as the concurrent one 

• Consistent with the timing of the 
invocations/responses? 
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Example: linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true insert(20)->true 

find(20)->false 
A valid sequential 

history: this concurrent 
execution is OK 
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Example: linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true delete(10)->true 

find(10)->false 

15 

A valid sequential 
history: this concurrent 

execution is OK 



Example: not linearizable 

time 

Thread 2: 

Thread 1: 

insert(10)->true insert(10)->false 

delete(10)->true 
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Returning to our example 

• find(20) 

H 10 30 T 

   -> false 

 

20 

20? 

• insert(20)  -> true 

 

Thread 2: 

Thread 1: 

insert(20)->true 

find(20)->false 

A valid sequential history: 
this concurrent execution 

is OK 
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Recurring technique 

 For updates: 

 Perform an essential step of an operation by a single atomic 
instruction 

 E.g. CAS to insert an item into a list 

 This forms a “linearization point” 

 For reads:  

 Identify a point during the operation’s execution when the 
result is valid  

 Not always a specific instruction 
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Adding “delete” 

 First attempt: just use CAS 
delete(10): 

 

H 10 30 T 

10  30  
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Delete and insert: 

 delete(10) & insert(20): 

 

H 10 30 T 

10  30  

20 

30  20  

 
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Logical vs physical deletion 

H 10 30 T 

20 

10  30 
 

30  30X 
 

 

30  20  

 

21 

 Use a ‘spare’ bit to indicate logically deleted nodes: 



Delete-greater-than-or-equal 

 DeleteGE(int x) -> int 

 Remove “x”, or next element above “x” 

H 10 30 T 

• DeleteGE(20) -> 30 

H 10 T 
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Does this work: DeleteGE(20) 

H 10 30 T 

1. Walk down the list, as in a 
normal delete, find 30 as 

next-after-20 

2. Do the deletion as normal: 
set the mark bit in 30, then 

physically unlink 
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Delete-greater-than-or-equal 

time 

Thread 2: 

Thread 1: 

insert(25)->true insert(30)->false 

deleteGE(20)->30 

A B 

C 

A must be after C 
(otherwise C should 

have returned 15) 

C must be after B 
(otherwise B should 

have succeeded) 

B must be after A 
(thread order) 
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Lock-free progress 
 
properties 
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static volatile int MY_LIST = 0; 

 

bool find(int key) { 

 

  // Wait until list available 

  while (CAS(&MY_LIST, 0, 1) == 1) {  

  } 

 

  ...  

 

  // Release list 

  MY_LIST = 0; 

} 

OK, we’re not calling 
pthread_mutex_lock... but 
we’re essentially doing the 

same thing 
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Progress: is this a good “lock-free” list? 



static volatile int MY_LIST = 0; 

 

bool find(int key) { 

 

  // Wait until list available 

  while (CAS(&MY_LIST, 0, 1) == 1) {  

  } 

 

  ...  

 

  // Release list 

  MY_LIST = 0; 

} 

OK, we’re not calling 
pthread_mutex_lock... but 
we’re essentially doing the 

same thing 
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Progress: is this a good “lock-free” list? 

The version number mechanism last week is an example of  
a technique that is often effective in practice, does not  
use locks, but is not lock-free in this technical sense 



System model 
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time 

L
o

o
ku

p
(20

) 

Tru
e

 

In
se

rt(15) 

Tru
e

 

High-level operation 

Primitive step 
(read/write/CAS) 

H H->10 10->20 H H->10 New CAS  



time 

Lock-free 

 Some thread finishes its operation if threads continue taking 
steps 

S
tart 

S
tart 

F
in

ish
 

F
in

ish
 

S
tart 

S
tart 

F
in

ish
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Implementing lock-free algorithms 

 Ensure that one thread (A) only has to repeat work if some 
other thread (B) has made “real progress” 

 e.g., insert(x) starts again if it finds that a conflicting update 
has occurred 

 Use helping to let one thread finish another’s work 

 e.g., physically deleting a node on its behalf 
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time 

Stronger than lock-free: wait-free 

 A thread finishes its own operation if it continues executing steps 

S
tart 

F
in

ish
 

F
in

ish
 

S
tart 

F
in

ish
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S
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Implementing wait-free algorithms 

 Queuing and helping strategies: everyone ensures oldest 
operation makes progress 
 Often a high sequential overhead 

 Often limited scalability 

 Fast-path / slow-path constructions 
 Start out with a faster lock-free algorithm 

 Switch over to a wait-free algorithm if there is no progress 

 ...if done carefully, obtain wait-free progress overall 

 In practice, progress guarantees can vary between 
operations on a shared object 
 e.g., wait-free find + lock-free delete 

 General construction techniques exist (“universal 
constructions”) 
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time 

Weaker than lock-free: obstruction-free 

 A thread finishes its own operation if it runs in isolation 

S
tart 

S
tart 

F
in

ish
 Interference here can prevent 

any operation finishing 
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Building obstruction-free algorithms 

 Ensure that none of the low-level steps leave a data 
structure “broken” 

 On detecting a conflict: 

 Lock-free: help the other thread’s operation finish 

 Obstruction-free: get the other operation out of the way 

 Use contention management to reduce likelihood of live-
lock  
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Hashtables 
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Hash tables 

0 16 24 

5 

3 11 

Bucket array: 
8 entries in 

example 

List of items with  
hash val modulo 8 == 0 
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Hash tables: Contains(16) 

0 16 24 

5 

3 11 

1. Hash 16.  
Use bucket 0 

2. Use normal 
list operations 
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Hash tables: Delete(11) 

0 16 24 

5 

3 11 

1. Hash 11.  
Use bucket 3 

2. Use normal 
list operations 
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Practical difficulties: 

 Key-value mapping 

 Population count 

 Iteration 

 Resizing the bucket array 

Options to consider when  
implementing a “difficult” operation: 

 
 
 
 
 
 
 
 
 

Relax the semantics  
(e.g., non-exact count, or non-linearizable count) 

Fall back to a simple implementation if permitted 
(e.g., lock the whole table for resize) 

Design a clever implementation 
(e.g., split-ordered lists) 

Use a different data structure 
(e.g., skip lists) 
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Queues 
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Work stealing queues 

PushBottom(Item) 
PopBottom() -> Item 

PopTop() -> Item 

Add/remove items, 
PopBottom must return 
an item if the queue is 

not empty 

Try to steal an item.  
May sometimes return 

nothing “spuriously” 1. Semantics relaxed for “PopTop” 

2. Restriction: only one thread ever calls “Push/PopBottom” 

3. Implementation costs skewed toward “PopTop” complex 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom “Bottom” is a normal 
integer, updated only by 

the local end of the queue 

Items between the 
indices are present in the 

queue “Top” has a version 
number, updated 
atomically with it 

42 Arora, Blumofe, Plaxton 



0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 
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Top / V1 

0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

if (bottom==top) { 

  bottom = 0; 

  if (CAS( &<top,version>, 

 <tmp_top,tmp_v>, 

 <0,tmp_v+1>)) { 

    return result; 

  } 

} 

<top,version>=<0,v+1> 

Item popTop() { 

  if (bottom <= top) return null; 

  <tmp_top,tmp_v> = <top, version>; 

  result = tasks[tmp_top]; 

  if (CAS( &<top,version>, 

 <tmp_top, tmp_v>, 

 <tmp_top+1, tmp_v+1>)) { 

    return result; 

  } 

  return null; 

} 
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0 

1 

2 

3 

4 

Bounded deque 

Top / V0 

Bottom 

void pushBottom(Item i){ 

   tasks[bottom] = i; 

   bottom++; 

} 

Item popBottom() { 

  if (bottom ==0) return null; 

  bottom--;  

  result = tasks[bottom]; 

  <tmp_top,tmp_v> = <top,version>; 

  if (bottom > tmp_top) return result; 

  …. 

  return null; 

} 

if (bottom==top) { 

  bottom = 0; 

  if (CAS( &<top,version>, 

 <tmp_top,tmp_v>, 

 <0,tmp_v+1>)) { 

    return result; 

  } 

} 

<top,version>=<0,v+1> 

Item popTop() { 

  if (bottom <= top) return null; 

  <tmp_top,tmp_v> = <top, version>; 

  result = tasks[tmp_top]; 

  if (CAS( &<top,version>, 

 <tmp_top, tmp_v>, 

 <tmp_top+1, tmp_v+1>)) { 

    return result; 

  } 

  return null; 

} 

46 



ABA problems 

0 

1 

2 

3 

4 

Top 

Item popTop() { 

  if (bottom <= top) return null; 

  tmp_top = top; 

  result = tasks[tmp_top]; 

  if (CAS(&top, top, top+1)) { 

      return result; 

  } 

  return null; 

} 

AAA 

BBB 

CCC 

Bottom 

result = CCC 

FFF 

EEE 

DDD 
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General techniques 

 Local operations designed to avoid CAS 

 Traditionally slower, less so now 

 Costs of memory fences can be important (“Idempotent work 
stealing”, Michael et al, and the “Laws of Order” paper) 

 Local operations just use read and write 

 Only one accessor, check for interference 

 Use CAS: 

 Resolve conflicts between stealers  

 Resolve local/stealer conflicts 

 Version number to ensure conflicts seen 
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Reducing contention 
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Reducing contention 

 Suppose you’re implementing a shared counter with the 
following sequential spec: 
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void increment(int *counter) { 

   atomic { 

       (*counter) ++; 

   } 

} 

How well can this scale? 

void decrement(int *counter) { 

   atomic { 

       (*counter) --; 

   } 

} 

bool isZero(int *counter) { 

   atomic { 

       return (*counter) == 0; 

   } 

} 



SNZI trees 
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SNZI 

(10,100) 

SNZI 

(2,230) 

SNZI 

(5,250) 

T2 T1 T3 T5 T4 T6 

Child SNZI forwards 
inc/dec to parent when 

the child changes 
to/from zero 

Each node holds a value 
and a version number 

(updated together with 
CAS)  

SNZI: Scalable NonZero Indicators, Ellen et al 



SNZI trees, linearizability on 0->1 change 
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SNZI 

(0,100) 

SNZI 

(0,230) 

T2 T1 

1. T1 calls increment 
2. T1 increments child to 1 
3. T2 calls increment 
4. T2 increments child to 2 
5. T2 completes 
6. Tx calls isZero 
7. Tx sees 0 at parent 
8. T1 calls increment on parent 
9. T1 completes 

 

Tx 



SNZI trees 
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void increment(snzi *s) { 

   bool done=false; 

   int undo=0; 

   while(!done) { 

      <val,ver> = read(s->state); 

      if (val >= 1 && CAS(s->state, <val,ver>, <val+1,ver>)) { done = true; } 

      if (val == 0 && CAS(s->state, <val,ver>, <½, ver+1>)) {  

          done = true;  val=½; ver=ver+1 

      } 

      if (val == ½) { 

          increment(s->parent); 

          if (!CAS(s->state, <val, ver>, <1, ver>)) { undo ++; } 

      } 

   } 

   while (undo > 0) { 

      decrement(s->parent); 

   } 

} 



Reducing contention: stack 
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A scalable lock-free stack algorithm, Hendler et al 

Existing lock-free stack 
(e.g., Treiber’s): good 

performance under low 
contention, poor 

scalability 

P
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Pairing up operations 

55 

P
u

sh
(10

) 

P
u

sh
(20

) 

P
u

sh
(30

) 

P
o

p
 

20 

P
o

p
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Back-off elimination array 
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Stack 

Elimination array 

Contention on  
the stack?  Try  
the array 

Don’t get  
eliminated?  

Try the stack 

Operation record: Thread, Push/Pop, … 



Explicit memory  
 
management 
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Deletion revisited: Delete(10) 

H 10 30 T 

H 10 30 T 

H 10 30 T 
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De-allocate to the OS? 

H 30 T 10 

Search(20) 
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Re-use as something else? 

H 30 T 10 100 200 

Search(20) 
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Re-use as a list node? 

H 30 T 10 

H 30 T 

20 

Search(20) 
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H 10 30 T 

Reference counting 

1 1 1 1 

1. Decide what to access 
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H 10 30 T 

Reference counting 

2 1 1 1 

1. Decide what to access 
2. Increment reference count 
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H 10 30 T 

Reference counting 

2 1 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

2 2 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

1 2 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
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H 10 30 T 

Reference counting 

1 1 1 1 

1. Decide what to access 
2. Increment reference count 
3. Check access still OK 
4. Defer deallocation until count 0 
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Epoch mechanisms 
Global epoch: 1000 
Thread 1 epoch: - 
Thread 2 epoch: - 

H 10 30 T 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1000 

Thread 1 epoch: 1000 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1000 

Thread 1 epoch: 1000 
Thread 2 epoch: 1000 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

Deallocate @ 1000 
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H 10 30 T 

Epoch mechanisms 
Global epoch: 1001 

Thread 1 epoch: 1000 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

3. Increment global epoch at end 
of operation (or periodically) 

71 

Deallocate @ 1000 



Epoch mechanisms 
Global epoch: 1002 
Thread 1 epoch: - 
Thread 2 epoch: - 

1. Record global epoch at start of 
operation 

2. Keep per-epoch deferred 
deallocation lists 

3. Increment global epoch at end 
of operation (or periodically) 

4. Free when everyone past epoch 

10 

Deallocate @ 1000 

72 

H 30 T 



The “repeat offender problem” 
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Free: ready for 
allocation 

Allocated and 
linked in to a data 

structure 

Escaping: unlinked, 
but possibly 

temporarily in use 



Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 

77 

H 10 30 T 



Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

1. Decide what to access 
2. Set guard 
3. Check access still OK 

Thread 1 
guards 
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Re-use via ROP 

H 10 30 T 

1. Decide what to access 
2. Set guard 
3. Check access still OK 
4. Batch deallocations and defer on 

objects while guards are present 

Thread 1 
guards 
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See also:  “Safe 
memory reclamation” 

& hazard pointers, 
Maged Michael 
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