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x86
I programmers can usually assume instructions execute in

program order (but with FIFO store buffer)
I (actual hardware may be more aggressive, but not visibly so)

ARM, IBM POWER, RISC-V
I by default, instructions can observably execute out-of-order

and speculatively
I ...except as forbidden by coherence, dependencies, barriers
I much weaker than x86-TSO
I similar but not identical to each other



Most observable relaxed phenomena can be viewed as arising from
pipeline effects – out-of-order and speculative execution:



Message Passing (MP) Again

STR X0,[X1]W x=1a:STR X0,[X2]

W y=1b:

Thread 0

po
LDR X0,[X1]R y=1c:LDR X2,[X3]

R x=0d:

Thread 1

porf
rffr

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
LDR X2,[X3]//d

Thread 1
MP AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y;

1:X0=0; 1:X2=0; y=0; x=0;

Allowed: 1:X0=1; 1:X2=0;



Message Passing (MP) Again

STR X0,[X1]W x=1a:STR X0,[X2]

W y=1b:

Thread 0

po
LDR X0,[X1]R y=1c:LDR X2,[X3]

R x=0d:

Thread 1

porf
rffr

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
LDR X2,[X3]//d

Thread 1
MP AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y;

1:X0=0; 1:X2=0; y=0; x=0;

Allowed: 1:X0=1; 1:X2=0;

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M



Message Passing (MP) Again

STR X0,[X1]W x=1a:STR X0,[X2]

W y=1b:

Thread 0

po
LDR X0,[X1]R y=1c:LDR X2,[X3]

R x=0d:

Thread 1

porf
rffr

STR X0,[X1]//a
STR X0,[X2]//b

Thread 0
LDR X0,[X1]//c
LDR X2,[X3]//d

Thread 1
MP AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y;

1:X0=0; 1:X2=0; y=0; x=0;

Allowed: 1:X0=1; 1:X2=0;

Microarchitecturally:
I pipeline: out-of-order execution of the writes
I pipeline: out-of-order execution of the reads
I storage subsystem: write propagation in either order



SB Again

STR X0,[X1]W x=1a:LDR X2,[X3]

R y=0b:

Thread 0

po
STR X0,[X1]W y=1c:LDR X2,[X3]

R x=0d:

Thread 1

porf rf
frfr

STR X0,[X1]//a
LDR X2,[X3]//b

Thread 0
STR X0,[X1]//c
LDR X2,[X3]//d

Thread 1
SB AArch64

Initial state: 0:X3=y; 0:X1=x;

0:X0=1; 0:X2=0; 1:X3=x;

1:X1=y; 1:X0=1; 1:X2=0; y=0;

x=0;

Allowed: 0:X2=0; 1:X2=0;



SB Again

STR X0,[X1]W x=1a:LDR X2,[X3]

R y=0b:

Thread 0

po
STR X0,[X1]W y=1c:LDR X2,[X3]

R x=0d:

Thread 1

porf rf
frfr

STR X0,[X1]//a
LDR X2,[X3]//b

Thread 0
STR X0,[X1]//c
LDR X2,[X3]//d

Thread 1
SB AArch64

Initial state: 0:X3=y; 0:X1=x;

0:X0=1; 0:X2=0; 1:X3=x;

1:X1=y; 1:X0=1; 1:X2=0; y=0;

x=0;

Allowed: 0:X2=0; 1:X2=0;

Microarchitecturally:
I pipeline: out-of-order execution of the store and load
I write buffering



So what guarantees do you get?



Coherence

Reads and writes to each location in isolation behave SC

CoRW1 CoWR0 CoWW

LDR X0,[X1]R x=1a:STR X2,[X1]

W x=1b:

porf
STR X0,[X1]W x=1a:LDR X2,[X1]

R x=0b:

po rffr

STR X0,[X1]W x=1a:STR X2,[X1]

W x=2b:

poco

CoRW2 CoWR CoRR

STR X0,[X1]W x=1a:
Thread 0

LDR X0,[X1]R x=1b:STR X2,[X1]

W x=2c:

Thread 1

poco

rf
STR X0,[X1]W x=1a:

Thread 0
STR X0,[X1]W x=2b:LDR X2,[X1]

R x=1c:

Thread 1

po

co

rf fr

STR X0,[X1]W x=1a:
Thread 0

LDR X0,[X1]R x=1b:LDR X2,[X1]

R x=0c:

Thread 1

po

rf

rffr

All these are forbidden



Coherence

Reads and writes to each location in isolation behave SC

In any execution, for each location, there exists some total order co
over the writes to that location, that’s consistent with program
order (on each hardware thread) and with reads-from.

Microarchitecturally:
I cache protocol (MSI, MESI, MOESI,...)
I interconnect design as a whole
I hazard checks in the pipeline



Enforcing Order with Barriers

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:DMB SYLDR X2,[X3]

R x=0f:

Thread 1

dmbrf
rffr

STR X0,[X1]//a
DMB SY//b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
DMB SY//e
LDR X2,[X3]//f

Thread 1
MP+dmb.sys AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y;

1:X0=0; 1:X2=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X2=0;



Enforcing Order with Barriers

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:DMB SYLDR X2,[X3]

R x=0f:

Thread 1

dmbrf
rffr

STR X0,[X1]//a
DMB SY//b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
DMB SY//e
LDR X2,[X3]//f

Thread 1
MP+dmb.sys AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y;

1:X0=0; 1:X2=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X2=0;

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M
MP+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G
MP+lwsyncs Forbid 0/6.9G 0/40G 0/220G — — — —

The ARMv8-A dmb sy, IBM POWER sync, or RISC-V fence rw,rw
memory barrier prevents reordering of loads and stores.

Likewise, inserting those barriers is enough to make SB forbidden.



Enforcing Order with Dependencies (read-to-read address)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:EOR X2,X0,X0LDR X3,[X4,X2]

R x=0e:

Thread 1

addrrf
rffr

STR X0,[X1]//a
DMB SY//b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 1
MP+dmb.sy+addr AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X4=x; 1:X1=y; 1:X0=0;

1:X3=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X3=0;



Enforcing Order with Dependencies (read-to-read address)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:EOR X2,X0,X0LDR X3,[X4,X2]

R x=0e:

Thread 1

addrrf
rffr

STR X0,[X1]//a
DMB SY//b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 1
MP+dmb.sy+addr AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X4=x; 1:X1=y; 1:X0=0;

1:X3=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X3=0;

Microarchitecturally: the processor is not (programmer-visibly)
speculating the value used for the address of the second read.



Enforcing Order with Dependencies (read-to-read address)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:EOR X2,X0,X0LDR X3,[X4,X2]

R x=0e:

Thread 1

addrrf
rffr

STR X0,[X1]//a
DMB SY//b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 1
MP+dmb.sy+addr AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X4=x; 1:X1=y; 1:X0=0;

1:X3=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X3=0;

Microarchitecturally: the processor is not (programmer-visibly)
speculating the value used for the address of the second read.

Architectural guarantee to respect read-to-read address
dependencies even if they are “false” or “artificial”, i.e. if they could
“obviously” be optimised away.

x=1; r1 = y;
y=2; r2 = *(&x + (r1 ^ r1)) ;

x=1; r1 = y;
y=&x; r2 = *r1;

Beware: C/C++ do not guarantee to respect dependencies!



Enforcing Order with Dependencies (read-to-read control)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:CBNZ X0,LC00LDR X2,[X3]

R x=0e:

Thread 1

ctrlrf
rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1]//d
CBNZ X0,LC00
LC00:
LDR X2,[X3]//e

Thread 1
MP+dmb.sy+ctrl AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y;

1:X0=0; 1:X2=0; y=0; x=0;

Allowed: 1:X0=1; 1:X2=0;

Microarchitecturally: processors do speculate the outcomes of
conditional branches, satisfying reads past them before they are
resolved.

Architecturally: read-to-read control dependencies are not
respected.



Enforcing Order with Dependencies (read-to-read ctrl-isb)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:CBNZ X0,LC00ISBLDR X2,[X3]

R x=0f:

Thread 1

ctrl+isbrf
rffr

STR X0,[X1]//a
DMB SY //b
STR X0,[X2]//c

Thread 0
LDR X0,[X1] //d
CBNZ X0,LC00
LC00:
ISB //e
LDR X2,[X3] //f

Thread 1
MP+dmb.sy+ctrlisb AArch64

Initial state: 0:X2=y; 0:X1=x;

0:X0=1; 1:X3=x; 1:X1=y; 1:X0=0;

1:X2=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X2=0;

Can strengthen with an ISB (Arm) or isync (POWER) instruction
between branch and second read.

Thread-local read-to-read ordering is enforced by a conditional
branch that is data-dependent on the first read, with an ISB/isync
between the branch and the second read – call this a
control-isb/control-isync dependency.



Enforcing Order with Dependencies: Summary

Read-to-Read: address and control-isb/control-isync dependencies
respected; control dependencies not respected

Read-to-Write: address, data, and control dependencies all
respected (writes are not observably speculated, at least as far as
other threads are concerned)

(POWER: all whether natural or artificial. ARM: still some debate
about artificial data dependencies?)



“Load Buffering”?
Dual of first SB test:

LDR X0,[X1]R x=1a:STR X2,[X3]

W y=1b:

Thread 0

po
LDR X0,[X1]R y=1c:STR X2,[X3]

W x=1d:

Thread 1

porf
rf

LDR X0,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
STR X2,[X3]//d

Thread 1
LB AArch64

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x;

1:X2=1; 1:X1=y; 1:X0=0; y=0;

x=0;

Allowed: 0:X0=1; 1:X0=1;

Microarchitecturally: simple out-of-order execution? read-request
buffering? think about precise exceptions...

Architecturally allowed on ARM, POWER, and RISC-V



“Load Buffering”?
Dual of first SB test:

LDR X0,[X1]R x=1a:STR X2,[X3]

W y=1b:

Thread 0

po
LDR X0,[X1]R y=1c:STR X2,[X3]

W x=1d:

Thread 1

porf
rf

LDR X0,[X1]//a
STR X2,[X3]//b

Thread 0
LDR X0,[X1]//c
STR X2,[X3]//d

Thread 1
LB AArch64

Initial state: 0:X3=y; 0:X2=1;

0:X1=x; 0:X0=0; 1:X3=x;

1:X2=1; 1:X1=y; 1:X0=0; y=0;

x=0;

Allowed: 0:X0=1; 1:X0=1;

Microarchitecturally: simple out-of-order execution? read-request
buffering? think about precise exceptions...

Architecturally allowed on ARM, POWER, and RISC-V
Forbid with address or data dependencies:

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB Allow 0/7.4G 0/43G 0/258G 1.5M/3.9G 124k/16M 58/1.6G 1.3M/185M
LB+addrs Forbid 0/6.9G 0/40G 0/216G 0/24G 0/39G 0/26G 0/2.2G
LB+datas Forbid 0/6.9G 0/40G 0/252G 0/16G 0/23G 0/18G 0/2.2G
LB+ctrls Forbid 0/4.5G 0/16G 0/88G 0/8.1G 0/7.5G 0/1.6G 0/2.2G



LB+datas – thin-air values?

LDR W0,[X1]R x=1a:EOR W2,W0,W0ADD W2,W2,#1STR W2,[X3]

W y=1b:

Thread 0

data

LDR W0,[X1]R y=1c:EOR W2,W0,W0ADD W2,W2,#1STR W2,[X3]

W x=1d:

Thread 1

datarf
rf

r1=x r2=y
y=r1 x=r2



LB+datas – thin-air values?

LDR W0,[X1]R x=1a:EOR W2,W0,W0ADD W2,W2,#1STR W2,[X3]

W y=1b:

Thread 0

data

LDR W0,[X1]R y=1c:EOR W2,W0,W0ADD W2,W2,#1STR W2,[X3]

W x=1d:

Thread 1

datarf
rf

r1=x r2=y
y=r1 x=r2

Forbidden!



Iterated Message Passing and Cumulative Barriers

WRC-loop Pseudocode
Thread 0 Thread 1 Thread 2
x=1 while (x==0) {} while (y==0) {}

y=1 r3=x
Initial state: x=0 ∧ y=0
Forbidden?: 2:r3=0

First, replace loops by a non-looping test with conditions on read
values...



Iterated Message Passing and Cumulative Barriers

STR X0,[X1]W x=1a:
Thread 0

LDR X0,[X1]R x=1b:STR X2,[X3]

W y=1c:

Thread 1

po
LDR X0,[X1]R y=1d:LDR X2,[X3]

R x=0e:

Thread 2

po

rf

rf
rf

fr

STR X0,[X1]//a
Thread 0

LDR X0,[X1]//b
STR X2,[X3]//c

Thread 1
LDR X0,[X1]//d
LDR X2,[X3]//e

Thread 2
WRC AArch64

Initial state: 0:X1=x; 0:X0=1; 1:X3=y; 1:X2=1;

1:X1=x; 1:X0=0; 2:X3=x; 2:X1=y; 2:X0=0;

2:X2=0; y=0; x=0;

Allowed: 1:X0=1; 2:X0=1; 2:X2=0;

Trivially allowed, just by local reordering. Add address
dependencies...



Iterated Message Passing and Cumulative Barriers

STR X0,[X1]W x=1a:
Thread 0

LDR X0,[X1]R x=1b:EOR X2,X0,X0STR X3,[X4,X2]

W y=1c:

Thread 1

addr

LDR X0,[X1]R y=1d:EOR X2,X0,X0LDR X3,[X4,X2]

R x=0e:

Thread 2

addr

rf

rf

fr
rf

STR X0,[X1]//a
Thread 0

LDR X0,[X1] //b
EOR X2,X0,X0
STR X3,[X4,X2]//c

Thread 1
LDR X0,[X1] //d
EOR X2,X0,X0
LDR X3,[X4,X2]//e

Thread 2
WRC+addrs AArch64

Initial state: 0:X1=x; 0:X0=1; 1:X4=y; 1:X3=1; 1:X1=x;

1:X0=0; 2:X4=x; 2:X1=y; 2:X0=0; 2:X3=0; y=0; x=0;

Allowed: 1:X0=1; 2:X0=1; 2:X3=1;

I IBM POWER: Allowed
I ARMv7-A and old ARMv8-A: Allowed
I current ARMv8-A: Forbidden
I RISC-V: Forbidden



Cumulative Barriers

A non-multicopy-atomic architecture needs cumulative barriers to
be useful
WRC+fen+addr



STR X0,[X1]W x=1a:
Thread 0

LDR X0,[X1]R x=1b:EOR X2,X0,X0LDR X3,[X4,X2]

R y=0c:

Thread 1

addr

STR X0,[X1]W y=1d:
Thread 2

LDR X0,[X1]R y=1e:EOR X2,X0,X0LDR X3,[X4,X2]

R x=0f:

Thread 3

addr

rf rf

rf
fr

rffr

STR X0,[X1]//a
Thread 0

LDR X0,[X1] //b
EOR X2,X0,X0
LDR X3,[X4,X2]//c

Thread 1
STR X0,[X1]//d

Thread 2
LDR X0,[X1] //e
EOR X2,X0,X0
LDR X3,[X4,X2]//f

Thread 3
IRIW+addrs AArch64

Initial state: 0:X1=x; 0:X0=1; 1:X4=y; 1:X1=x; 1:X0=0; 1:X3=0; 2:X1=y;

2:X0=1; 3:X4=x; 3:X1=y; 3:X0=0; 3:X3=0; y=0; x=0;

Forbidden: 1:X0=1; 1:X3=0; 3:X0=1; 3:X3=0;

Likewise.
I x86, current ARMv8-A, RISC-V: (other) multicopy atomic
I IBM POWER, old ARMv8-A, ARMv7-A: non-multicopy-atomic



. . . continuing ARM/POWER/RISC-V concurrency

I introduce the formal model
I revisit some examples using the model



Most observable relaxed phenomena can be viewed as arising from
pipeline effects – out-of-order and speculative execution.

So our model will have to explain this pipeline behaviour.



We could model the pipeline. But:

1. too complicated: micro-architectural detail
2. we don’t have a pipeline model: confidential
3. it would be model of one CPU’s pipeline,

not architectural envelope



pipeline effects abstractly:
I instructions can be fetched before predecessors finished

I instructions independently make progress
I branch speculation allows fetching successors of branches
I multiple potential successors can be explored
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pipeline effects abstractly:
I instructions can be fetched before predecessors finished
I instructions independently make progress
I branch speculation allows fetching successors of branches
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pipeline effects abstractly:
I instructions can be fetched before predecessors finished
I instructions independently make progress
I branch speculation allows fetching successors of branches
I multiple potential successors can be explored



Formal concurrency model

I each thread has a tree of instruction instances;
I threads execute in parallel above a simple memory state:

mapping from addresses to write request

I for Power: with fancier memory state

Thread Subsystem Storage Subsystem

0: Write 0x00000000

1: Write 0x00000000

2: Write 0x00000000
. . .

read/write

responses

(For now: plain memory reads, writes, strong barriers.
All memory accesses of the same size.)



Formal concurrency model

I each thread has a tree of instruction instances;
I threads execute in parallel above a simple memory state:

mapping from addresses to write request
I for Power: with fancier memory state

Thread Subsystem Storage Subsystem

0: Write 0x00000000

1: Write 0x00000000

2: Write 0x00000000
. . .

read/write

responses

(For now: plain memory reads, writes, strong barriers.
All memory accesses of the same size.)



Fetch instruction instance

i i ′

Condition:
A possible program-order successor i ′ of instruction instance i can
be fetched from address loc and decoded if:
1. it has not already been fetched as successor of i
2. there is a decodable instruction in program memory at loc ; and
3. loc is a possible next fetch address for i :

3.1 for a non-branch/jump instruction, the successor instruction
address (i.program_loc+4);

3.2 for an instruction that has performed a write to the program
counter register (PC), the value that was written;

3.3 for a conditional branch, either the successor address or the
branch target address; or

3.4 . . . .



Fetch instruction instance

i i ′

Action: construct a freshly initialised instruction instance i′ for the
instruction in program memory at loc and add i′ to the thread’s
instruction_tree as a successor of i.



Example: speculative fetching

MP+dmb.sy+ctrl
(with “real” control dependency)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:CBNZ X0,LC00LDR X2,[X3]

R x=0e:

Thread 1

ctrlrf
rffr

rmem web UI

(Allowed. the barrier orders the writes, but the control dependency
is weak: e can be speculatively fetched and satisfied early.)

https://is.gd/IdZDpP


Example: speculative fetching

MP+dmb.sy+ctrl
(with “real” control dependency)

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:CBNZ X0,LC00LDR X2,[X3]

R x=0e:

Thread 1

ctrlrf
rffr

rmem web UI

(Allowed. the barrier orders the writes, but the control dependency
is weak: e can be speculatively fetched and satisfied early.)

https://is.gd/IdZDpP


Instruction semantics (ignore the details)

How do instructions work?

Each instruction is specified as a small
imperative Sail program. For example:
function clause execute ( LoadRegister(n,t,m,acctype,memop, ...) ) = {
(bit[64]) offset := ExtendReg(m, extend_type, shift);
(bit[64]) address := 0;
(bit[’D]) data := 0; (* some local definitions *)
...
if n == 31 then { ... } else
address := rX(n); (* read the address register *)

if ~(postindex) then (* some bitvector arithmetic *)
address := address + offset;

if memop == MemOp_STORE then (* announce the address *)
wMem_Addr(address, datasize quot 8, acctype, false);

...

switch memop {
case MemOp_STORE -> {
if rt_unknown then
data := (bit[’D]) UNKNOWN

else
data := rX(t); (* read the data register *)

flush_write_buffer(
wMem(empty_write_buffer, address, datasize quot 8, acctype, data)

);
}

case MemOp_LOAD -> {
data := flush_read_buffer(
rMem(empty_read_buffer, address, datasize quot 8, acctype),
datasize quot 8

);
if _signed then
wX(t) := (bit[’R]) (SignExtend(data))

else
wX(t) := (bit[’R]) (ZeroExtend(data));

}

case MemOp_PREFETCH ->
Prefetch(address,(bit[5]) t)

};

(* ARM: the following code was moved up, see note there
if wback then {
if wb_unknown then
address := (bit[64]) UNKNOWN

else if postindex then
address := address + offset;

if n == 31 then
wSP() := address

else
wX(n) := address;

};

*)
}



Instruction semantics (ignore the details)

How do instructions work? Each instruction is specified as a small
imperative Sail program. For example:
function clause execute ( LoadRegister(n,t,m,acctype,memop, ...) ) = {
(bit[64]) offset := ExtendReg(m, extend_type, shift);
(bit[64]) address := 0;
(bit[’D]) data := 0; (* some local definitions *)
...
if n == 31 then { ... } else
address := rX(n); (* read the address register *)

if ~(postindex) then (* some bitvector arithmetic *)
address := address + offset;

if memop == MemOp_STORE then (* announce the address *)
wMem_Addr(address, datasize quot 8, acctype, false);

...

switch memop {
case MemOp_STORE -> {
if rt_unknown then
data := (bit[’D]) UNKNOWN

else
data := rX(t); (* read the data register *)

flush_write_buffer(
wMem(empty_write_buffer, address, datasize quot 8, acctype, data)

);
}

case MemOp_LOAD -> {
data := flush_read_buffer(
rMem(empty_read_buffer, address, datasize quot 8, acctype),
datasize quot 8

);
if _signed then
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}



Instruction instance states

each instruction instance has:
I pseudocode_state: the Sail state
I reg_reads, reg_writes: register accesses so far
I mem_reads, mem_writes: memory accesses so far
I status: finished, committed (for stores), . . .
I the statically known register footprint: regs_in, regs_out
I instruction_kind: load, store, barrier, branch, . . .
I . . .



Sail pseudocode states (ignore the details)

type outcome = (* request to concurrency model *)

| Done (* Sail execution ended *)

| Internal of .. (* Sail internal step *)

| Read_mem of .. (* read memory *)

| Write_ea of .. (* announce write at address *)

| Write_memv of .. (* request to write memory *)

| Read_reg of .. (* read register *)

| Write_reg of .. (* write register *)

| Barrier of .. (* barrier effect *)

type pseudocode_state =

| Plain of outcome

| Pending_memory_read of read_continuation

| Pending_memory_write of write_continuation
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Last lecture: in ARM, POWER, RISC-V, by default instructions
execute out of order. Except, they provide certain guarantees:
I (BO) ordering from barriers
I (DO) ordering from dependencies
I (CO) coherence
I . . .

The instruction tree machinery allows speculative and out-of-order
execution. We will see how the model provides these guarantees.



Instruction life time: barrier instructions

I fetch and decode
I commit barrier
I finish



Commit Barrier

Condition:
A barrier instruction i in state Plain (Barrier(barrier_kind,
next_state′)) can be committed if:
1. all po-previous conditional branch instructions are finished;
2. (BO) if i is a dmb sy instruction, all po-previous memory access

instructions and barriers are finished.



Commit Barrier

Action:
1. update the state of i to Plain next_state′.



Barrier ordering

I so: a dmb barrier can only commit when all preceding memory
accesses are finished

I a barrier commits before it finishes
I also (not seen yet): reads can only satisfy and writes can only

propagate when preceding dmb barriers are finished



Barrier ordering

MP+dmb.sys

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:DMB SYLDR X2,[X3]

R x=0f:

Thread 1

dmbrf
rffr

(Forbidden: c can only propagate when the dmb is finished, the
dmb can only finish when committed, and only commit when a is
propagated; similarly, the dmb on Thread 1 forces f to satisfy after
d .)



Instruction life time: non-load/store/barrier instructions

for instance: ADD, branch, etc.
I fetch and decode
I register reads
I internal computation; just runs a Sail step (omitted)
I register writes
I finish



Register write

Condition:
An instruction instance i in state Plain (Write_reg(reg_name,
reg_value, next_state′)) can do the register write.



Register write

Action:
1. record reg_name with reg_value and write_deps in

i.reg_writes; and
2. update the state of i to Plain next_state′.

where write_deps is the set of all read_sources from i.reg_reads
. . .



Register read

Condition:
An instruction instance i in state Plain (Read_reg(reg_name,
read_cont)) can do a register read if:
I (DO) the most recent preceding instruction instance that will

write the register has done the expected register write.



Register read

Let read_source be the write to reg_name by the most recent
instruction instance that will write to the register, if any. If there is
none, the source is the initial value. Let reg_value be its value.
Action:
1. Record reg_name, read_source, and reg_value in i.reg_reads;

and
2. update the state of i to Plain (read_cont(reg_value)).



Example: register dataflow dependencies

MP+fen+addr

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:EOR X2,X0,X0LDR X3,[X4,X2]

R x=0e:

Thread 1

addrrf
rffr

rmem web UI

(Forbidden. The barrier orders the writes, the address dependency
prevents executing e before d .)

https://is.gd/4zDgOz
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Instruction life time: loads

I fetch and decode
I register reads
I internal computation
I initiate read; when the address is available, constructs a read

request (omitted)
I satisfy read
I complete load; hands the read value to the Sail execution

(omitted)
I register writes
I finish



Satisfy read in memory

Condition:
A load instruction instance i in state Pending_mem_reads
read_cont with unsatisfied read request r in i.mem_reads can
satisfy r from memory if the read-request-condition predicate holds.
This is if:
1. (BO) all po-previous dmb sy instructions are finished.



Satisfy read in memory

Let w be the write in memory to r ’s address. Action:
1. update r to indicate that it was satisfied by w ; and
2. (CO) restart any speculative instructions which have violated

coherence as a result of this.
I.e. for every non-finished po-successor instruction i ′ of i with
a same-address read request r′, if r ′ was satisfied from a write
w ′ 6= w that is not from a po-successor of i , restart i′ and its
data-flow dependents.



Let w be the write in memory to r ’s address. Action:
1. update r to indicate that it was satisfied by w ; and
2. (CO) restart any speculative instructions which have violated

coherence as a result of this.
I.e. for every non-finished po-successor instruction i ′ of i with
a same-address read request r′, if r ′ was satisfied from a write
w ′ 6= w that is not from a po-successor of i , restart i′ and its
data-flow dependents.

CoRR

STR X0,[X1]W x=1a:
Thread 0

LDR X0,[X1]R x=1b:LDR X2,[X1]

R x=0c:

Thread 1

po

rf

rffr

rmem web UI

(Forbidden. If c is satisfied from the initial write x = 0 before b is
satisfied, once b reads from a it restarts c .)

https://is.gd/kl1ip9


Finish instruction

Condition:
A non-finished instruction i in state Plain (Done) can be finished if:
1. (CO) i has fully determined data;
2. all po-previous conditional branches are finished; and
3. if i is a load instruction:

3.1 (BO) all po-previous dmb sy instructions are finished;
3.2 (CO) it is guaranteed that the values read by the read requests

of i will not cause coherence violations, i.e. . . .



Finish instruction

Action:
1. record the instruction as finished, i.e., set finished to true; and
2. if i is a branch instruction, discard any untaken path of

execution. I.e., remove any (non-finished) instructions that are
not reachable by the branch taken in instruction_tree.



Example: finishing loads and discarding branches

MP+dmb.sy+ctrl

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:CBNZ X0,LC00LDR X2,[X3]

R x=0e:

Thread 1

ctrlrf
rffr

rmem web UI

(Speculatively executing the load past the conditional branch does
not allow finishing the load until the branch is determined.

Finishing the branch discards untaken branches.)

https://is.gd/deg3VT
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Instruction life time: stores

I fetch and decode
I register reads
I internal computation
I initiate write; when the address is available, constructs a write

request without value (omitted)
I instantiate write; when the value is available, updates the

write request’s value (omitted)
I commit and propagate
I complete store; just resumes the Sail execution (omitted)
I finish



Commit store

Condition:
For an uncommitted store instruction i in state
Pending_mem_writes write_cont, i can commit if:
1. (CO) i has fully determined data (i.e., the register reads cannot

change);
2. all po-previous conditional branch instructions are finished;
3. (BO) all po-previous dmb sy instructions are finished;
4. (CO) all po-previous memory access instructions have initiated

and have a fully determined footprint

Action: record i as committed.



Propagate write

Condition:
For an instruction i in state Pending_mem_writes write_cont with
unpropagated write, w in i.mem_writes, the write can be
propagated if:
1. (CO) all memory writes of po-previous store instructions that to

the same address have already propagated
2. (CO) all read requests of po-previous load instructions to the

same address have already been satisfied, and the load
instruction is non-restartable.



Propagate write

Action:
1. record w as propagated; and
2. update the memory with w ; and
3. (CO) restart any speculative instructions which have violated

coherence as a result of this.
I.e., for every non-finished instruction i′ po-after i with read
request r′ that was satisfied from a write w′ 6= w to the same
address, if w′ is not from a po-successor of i,restart i′ and its
data-flow dependents.



Action:
1. record w as propagated; and
2. update the memory with w ; and
3. (CO) restart any speculative instructions which have violated

coherence as a result of this.
I.e., for every non-finished instruction i′ po-after i with read
request r′ that was satisfied from a write w′ 6= w to the same
address, if w′ is not from a po-successor of i,restart i′ and its
data-flow dependents.

CoWR

STR X0,[X1]W x=1a:
Thread 0

STR X0,[X1]W x=2b:LDR X2,[X1]

R x=1c:

Thread 1

po

co

rf fr

(Forbidden. If c is satisfied from a before b is propagated, once b
propagates it restarts c .)



Example

MP+po+dmb.sy

STR X0,[X1]W x=1a:STR X0,[X2]

W y=1b:

Thread 0

po
LDR X0,[X1]R y=1c:DMB SYLDR X2,[X3]

R x=0e:

Thread 1

dmbrf
rffr

(Allowed. b can see a before a is propagated to other threads,
resolve the address dependency and allow c to propagate before a.)



Example

MP+rfi-addr+dmb.sy

STR X0,[X1]W x=1a:LDR X2,[X1]

R x=1b:EOR X3,X2,X2STR X0,[X4,X3]

W y=1c:

Thread 0

addr

LDR X0,[X1]R y=1d:DMB SYLDR X2,[X3]

R x=0f:

Thread 1

dmbrf
rf

rf

fr

(Allowed. b can see a before a is propagated to other threads,
resolve the address dependency and allow c to propagate before a.)



Example: write forwarding

MP+rfi-addr+dmb.sy

STR X0,[X1]W x=1a:LDR X2,[X1]

R x=1b:EOR X3,X2,X2STR X0,[X4,X3]

W y=1c:

Thread 0

addr

LDR X0,[X1]R y=1d:DMB SYLDR X2,[X3]

R x=0f:

Thread 1

dmbrf
rf

rf

fr

(Allowed. b can see a before a is propagated to other threads,
resolve the address dependency and allow c to propagate before a.)



Satisfy read by forwarding

Condition:
A load instruction instance i in state Pending_mem_reads
read_cont with unsatisfied read request r in i.mem_reads can
satisfy r by forwarding an unpropagated write by a program-order
earlier store instruction instance, if the read-request-condition
predicate holds. This is if:
1. (BO) all po-previous dmb sy instructions are finished.



Satisfy read by forwarding

Let w be the most-recent write from a store instruction instance
po-before i , to the address of r, and which is not superseded by an
intervening store that has been propagated or read from by this
thread. That last condition requires:
I (CO) that there is no store instruction po-between i and i′ with

a same-address write, and
I (CO) that there is no load instruction po-between i and i′ that

was satisfied by a same-address write from a different thread.
Action: Apply the action of Satisfy read in memory.



Example: write forwarding

MP+rfi-addr+dmb.sy

STR X0,[X1]W x=1a:LDR X2,[X1]

R x=1b:EOR X3,X2,X2STR X0,[X4,X3]

W y=1c:

Thread 0

addr

LDR X0,[X1]R y=1d:DMB SYLDR X2,[X3]

R x=0f:

Thread 1

dmbrf
rf

rf

fr

rmem web UI

(Allowed. b can see a before a is propagated to other threads,
resolve the address dependency and allow c to propagate before a.)

https://is.gd/dqmCH1


Write forwarding again

PPOAA PPOCA

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:EOR X2,X0,X0STR X3,[X4,X2]

W z=1e:LDR X5,[X4]

R z=1f:EOR X6,X5,X5LDR X7,[X8,X6]

R x=0g:

Thread 1

addr

addr

rf

rf

rf

fr

STR X0,[X1]W x=1a:DMB SYSTR X0,[X2]

W y=1c:

Thread 0

dmb

LDR X0,[X1]R y=1d:CBNZ X0,LC00STR X2,[X3]

W z=1e:LDR X4,[X3]

R z=1f:EOR X5,X4,X4LDR X6,[X7,X5]

R x=0g:

Thread 1

ctrl

addr

rf

rf

rf

fr

PPOCA rmem web UI

https://is.gd/kE3oap


Non-dependent register re-use does not create ordering

MP+dmb.sy+addr-po

STR W0,[X1]W x=1a:DMB SYSTR W0,[X2]

W y=1c:

Thread 0

dmb

LDR W0,[X1]R y=1d:EOR W2,W0,W0STR W3,[X4,W2,SXTW]

W z=1e:LDR W5,[X6]

R x=0f:

Thread 1

addr

po

rf

rffr

rmem web UI

https://is.gd/tAqy9J


Axiomatic Models

I Operational: define abstract machine, with states and
transitions

I Axiomatic: define allowed/forbidden predicate on candidate
executions



Why two styles of definition?

Operational:
I more concrete hardware intuition (for abst.microarch.op.)
I builds valid executions incrementally
I SOTA includes mixed-size support, ISA integration, ELF

support
I more complex

Axiomatic:
I more abstract
I global properties of full executions (but only those; not

incremental)
I pure memory model
I more concise



Candidate Executions

Consider a single candidate execution, and focus just on its read and write events.
Give them IDs a, b, . . . (unique within an execution): a : t : R x=n and a : t : W x=n.

Say a candidate pre-execution E consists of
I a finite set E of such events
I program order (po), an irreflexive transitive relation over E

[intuitively, from a control-flow unfolding and choice of arbitrary memory read values of the
source program]

I subrelations of po identifying events related by dependencies or separated by
barriers, addr , data, ctrl , dmb, etc.

Say a candidate execution consists of that together with
I reads-from (rf ), a relation over E relating writes to the reads that read from

them (with same address and value)
[note this is intensional: it identifies which write, not just the value]

I coherence (co), an irreflexve transitive relation over E relating only writes that
are to the same address; total when restricted to the writes of each address
separately
[intuitively, the hardware coherence order for each address]



Axiomatic models in Herd syntax

Define auxiliary relations, mostly with standard relational algebra:
I from-reads (fr):

r
fr−→ w iff (∃w0. w0

co−→ w ∧ w0
rf−→ r) ∨

(¬∃w0. w0
rf−→ r)

I internal (same-thread) and external (different-thread)
subrelations of rf, co, fr: rfi/rfe etc.

I relation union: r1 | r2
I relation composition: r1 ; r2
I identity relation on particular kinds of events: [W]

Require that particular relations are acyclic, irreflexive, or empty
(these are the “axioms” of an axiomatic model. Not to be confused
with “axiomatic PL semantics).



Official axiomatic model
(* Observed-by *)let obs = rfe | rfe | fre | coe
(* Dependency-ordered-before *)let dob = addr | data

| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (ctrl | data); coi
| (addr | data); rfi

(* Atomic-ordered-before *)let aob = rmw
| [range(rmw)]; rfi; [A | Q]

(* Barrier-ordered-before *)let bob = po; [dmb.full]; po
| [L]; po; [A]
| [R]; po; [dmb.ld]; po
| [A | Q]; po
| [W]; po; [dmb.st]; po; [W]
| po; [L]
| po; [L]; coi

(* Ordered-before *)let ob = (obs | dob | aob | bob)+
acyclic po-loc|fr|co|rf as internal
irreflexive ob as external
empty rmw & (fre; coe) as atomic

Thread 0
R x=2

W y=1
addr

Thread 1
R y=1

rf
W x=1

data

W x=2
corf

10 / 24



Herd

Alglave + Maranget
http://diy.inria.fr/doc/herd.html

http://diy.inria.fr/doc/herd.html


Operational-Axiomatic Correspondence (Pulte thesis)

loads • fetch
• initiate-memory-read (footprint known)
• satisfy-read by-forwarding (from po-predecessor write)
• satisfy-read-from-memory
• complete-load (all reads satisfied)
• finish

stores • fetch
• announce-write-footprint
• initiate-memory-write (data known)
• commit-store
• propagate-memory-write
• complete-store
• finish

barriers • fetch
• commit-barrier
• finish
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• satisfy-read-from-memory
• complete-load (all reads satisfied)
• finish

stores • fetch
• announce-write-footprint
• initiate-memory-write (data known)
• commit-store
• propagate-memory-write
• complete-store
• finish

barriers • fetch
• commit-barrier
• finish



Under this correspondence the relations of ARMv8-ax can be
viewed as describing the order of transitions in an ARMv8-op trace
for a given execution:

Theorem (Pulte)
Let x = (po, co, rf, rmw) be a finite candidate execution of
ARMv8-axiomatic for a given program P . The execution x is valid
under ARMv8-axiomatic if and only if there exists a valid finite
trace t of ARMv8-operational for the program P such that
(pot , cot , rft , rmwt) = (po, co, rf, rmw).
(here rft etc. are relations extracted from the operational trace t)



Back to IBM POWER

There the operational model has a more complex storage subsystem
state: for each hardware thread, a list of the writes and barriers
propagated to that thread.



Omitted

I some other “exotic” phenomena: might-access-same-address
etc.

I mixed-size effects
I system semantics – e.g. instruction fetch and i/d cache

maintenance


